首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
Inorganic particulate matter was sampled weekly during the period April 1985–April 1986 in Isa Town, Bahrain. The mean annual conductivity of water-soluble inorganic particulate matter was 59.99 μScm−1; pH 7.5; total suspended solid 0.06 gdm−3; total dissolved solid 63.79 ppm; total hardness as MgCO3 86.80 ppm; as CaCO3 208.05 ppm; Cl 111.27 ppm; Na+ 2.18 ppm; and NO3 0.006 M. Each shows seasonal variations in concentration. The average aerosols maxima were recorded in summer. The total suspended solid (TSS) mode of aerosol displays some change, with a mean in winter of 0.039 gdm−3 and a mean value in summer of 0.044 gdm−3. The aerosols data were influenced differently by some atmospheric parameters such as temperature, humidity, wind speed and direction.  相似文献   

2.
Monthly mean chemical composition of aerosol with diameter less than 8 μm was identified in Sapporo in 1982. The mass of aerosol was made up of nine components: elemental C, organics, SO42−, NO3, NH4+, Cl, Na+, soil particles and water. The concentrations of carbonaceous particles (elemental C and organics) was relatively high (12.7–16.0μ m−3) in autumn and winter (October–February) due to emission from domestic heating and comprised 36–41% of total aerosol mass. Higher concentration of soil particles was observed in spring (March–May) (9.7–13.1 μg m−3) and comprised 22–29% of total aerosol mass due to suspension by strong wind. On the other hand, the concentration of excess SO42− (non-sea salt SO42−), which ranged from 2.6–5.2 μg m−3, did not change remarkably with season, and the fraction of excess sulfate increased to 21% in summer (July–August) probably due to photochemical transformation from SO2. Nitrate concentration was far less than that of SO42− throughout the year in Sapporo.  相似文献   

3.
Air sample filters from a Local Authority archive have been analyzed for sulphate using XRF. This has allowed an assessment to be made of the spatial distribution of 24-h sulphate concentrations in the city of Norwich in eastern England, over a 9-month period. The overall mean sulphate concentration was 10.4 μg m−3, with a range of overall mean values between the sites of 7.7–12.2 μg m−3. This spatial variability within the city is similar to the spatial variability between cities found in another previous study. The mean SO2−4/SO2 and smoke/SO2−4 ratios at the different sites are similar, but there are distinct variations in the overall mean ratios over the measurement period. There appear to be relationships between the SO2−4/SO2 ratio and temperature and humidity. The ratios are also related to wind direction, with some evidence that a proportion of the SO2−4 in the urban atmosphere of Norwich originates via long-distance transport from the east.  相似文献   

4.
A study of sulfate aerosol acidity in Metropolitan Toronto was conducted during the summer of 1986. Fine-fraction aerosol (<2.5-μm) were collected using Teflon membrane filters and analyzed for major ionic species (H+, NH+4, NO3, SO2−4). Samples were collected for 6 weeks at three study sites: one in the Center City and the others 13 km (WNW) and 20 km (NE) away. There were very strong correlations among the three sites with respect to measured aerosol species (r2 > 0.9 for 24-h data). However, spatial variations in the magnitude of aerosol acidity were observed during sulfate episodes. For example, the peak concentrations for all sites occurred on 25–26 July 1986. While the 24-h data for sulfate were quite uniform at the three sites (34, 34 and 35 μg m−3), H+ concentrations were 9.4, 8.3 and 6.0 μg m−3 (as H2SO4) for the NE, WNW and Center City sites, respectively. For most of the summertime episodes, the downtown area also had lower aerosol acidity compared to the two sites in suburban areas.  相似文献   

5.
Atmospheric deposition of SO2, and fine particles of Pb and Cd are calculated over a one-year period in a 66 km2 airshed with a segment-puff model. Emission variations, hourly mixing heights and meteorological values are considered to compute monthly averages of concentrations and deposition. Dry deposition is calculated by means of deposition velocities which are season- and land use-dependent. Wet deposition is determined using a washout coefficient. To assess the simulation performance, calculated SO2 results from the combination between the deposition velocity, the windspeed and direction and the location and type of sources. As annual averages, results for dry plus wet deposition are computed to be 0.84 mg m−2d−1 for sulfur, 4.15 μgm−2d−1 for lead and 0.0013 μgm−2d−1 for cadmium. A variation factor is derived from a sensitivity analysis. This factor amounts to 2.3−2.8 for the concentrations and 2.6−3.1 for the deposition, depending on the pollutant.  相似文献   

6.
This study reports the diurnal patterns in the concentrations of ozone (O3), nitrogen dioxide (NO2), sulphur dioxide (SO2) and total suspended particulate matter (TSP) in the urban atmosphere of Varanasi city in India during 1989. The city was divided into five zones and three monitoring stations were selected in each zone.Ambient concentrations of NO2 and SO2 were maximum during winter but ozone and TSP concentrations were highest during summer. The measured maximum concentrations (2-h average) were 150 and 231 μg m−3 (0.078 and 0.086 ppm) for NO2 and SO2, respectively, for the winter season. Ozone and TSP concentrations reached a maximum of 160 (0.08 ppm) and 733 μg m−3, respectively, in the summer. NO2 and SO2 concentrations peaked in the morning and evening. Peak concentrations of O3 occurred in the afternoon, generally between noon and 4 p.m. Maximum concentrations of O3, NO2, SO2 and TSP were measured in zones I and II, and minimum in zone V.  相似文献   

7.
A 2-week intensive ambient aerosol study was conducted in December 1988 in Wuhan (Hubei Province), a city of nearly 2 million located on the Yangtze River in central China (P.R.C.). This is an industrial region where soft coal burning is widespread, and emission controls for vehicles and industrial facilities are minimal. The sampling site was located in one of the civic centers where residential and commercial density is highest. An Andersen dichotomous sampler was operated with Teflon membrane filters to collect fine (dp < 2.5 μmad) and coarse (2.5 ⩽ dp < 10 μmad) particles for total mass and element determinations. An annular denuder system (ADS) was used to collect fine fraction aerosols for analyses of ionic species including strong acidity (H+).The study was conducted between 18 and 30 December, which was rainless, consistently cool (3–10°C) and overcast, but without fog or acute stagnation. Fine particulate mass (PM, as μ m−3) averaged 139 (range 54–207); coarse PM averaged 86 (range 29–179). Trace element concentrations were also high. Crustal elements (Si, Al, Ca and Fe) were found primarily in the coarse fraction, while elements associated with combustion (S, K, Cl, Zn and Se) were enriched in the fine fraction. The concentrations of arsenic and selenium were evidence of a large source of coal burning, while vanadium levels (associated with fuel oil use) were not especially enriched.Despite the seemingly high PM loadings, ionic concentrations were not especially high. The average composition of soluble fine aerosol species (in neq m−3) were SO42−: 520 (range 180–980), NO3: 225 (range 50–470), Cl: 215 (range 20–640), and NH4+: 760 (range 280–1660). A deficit in accountable FP components (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m−3. (total mass compared to the total of ionic plus element masses) as well as the black appearance of collected materials indicate an abundance of carbonaceous aerosol, as high as 100 μ m−3Aerosol acidity was negligible during most monitoring periods, H+: 14 (range 0–50 neq m−3, equivalent to 0–2.5 μm m−3 as H2SO4). Sulfur dioxide, measured by the West-Gaeke method for part of the study, concentrations were low. Although not directly measured, the aerosol measurments suggested that gaseous HCl (from refuse incineration) and NH3 (animal wastes) concentrations might have been high. Higher aerosol acidity might be expected if HCl sources were more prominent and not neutralized by local ammonia or other base components.  相似文献   

8.
We have measured ambient levels of carbonyls in three major urban areas of Brazil: Sao Paulo, Rio de Janeiro and Salvador. The most abundant carbonyls were acetaldehyde (up to 63 μg m−3, or 35 ppb) followed by formaldehyde (up to 42 μg m−3, or 34 ppb), and acetone (up to 20 ppb). Levels of 10 other aliphatic and aromatic carbonyls were in the range 0–5 ppb. Total carbonyl concentrations were in the range 11–75 ppb. Indoor levels were also measured at several locations in Salvador. High levels of acetaldehyde, 430 μg m−3 or 240 ppb, were measured in a highway tunnel.Using carbonyl/CO concentration ratios, mobile source emissions of carbonyls are estimated for the Sao Paulo area. Ambient levels of acetaldehyde and acetaldehyde/formaldehyde concentration ratios in Brazil are compared to those for other urban areas, and are briefly discussed in relation with the large scale use of ethanol as a vehicle fuel.  相似文献   

9.
In order to understand the concentration and deposition levels of the major ions in Shimane, on the Japan Sea coast where precipitation chemistry data are scarce, the precipitation was collected at three sites (Matsue, Gotsu and Masuda) from April 1985 to March 1988.The mean precipitation chemistry was very close to each other except for the seasalt concentration. Masuda showed a halved seasalt contribution compared with the other sites. The volume-weighted annual pH mean at each site ranged from 4.6 to 4.9. Nitrate to SO4−2 equivalent ratios were in the range of 0.2 and 0.4 throughout the year. Ammonia and calcium species are interpreted to have neutralized approximately 70% of the original sulfuric and nitric acids.The annual depositions of the major ions in g m−2y−1 were as follows: H+; 0.023–0.037, NH4+; 0.57–0.68, Ca2+; 0.51–0.92, SO42−; 3.29–5.04, NO3; 1.20–1.70. These levels are of the same intensity as corresponding values of JEA network results.  相似文献   

10.
Measurements of gaseous HNO3, HCl and NH3 and particulate NO3, SO42−, Cl and NH4+ have been made at a small network of sites in eastern England using sampling intervals from 3 h to 7 days. Both HCl and HNO3 are spatially rather uniform, with some variation apparently due to spatial variations in NH3, which stoichiometrically exeeded the sum of both gaseous acids. Mean concentrations of NH3, HCl and HNO3 between February 1987 and January 1988 were 1.90, 0.67 and 1.01 μg m−3, respectively. Pollution roses revealed low NH3 concentrations, and high associated HCl and HNO3 with winds from the North Sea. HCl, but not HNO3 showed an appreciable elevation in concentration on the sector NW from our site, which we speculate may be due to the large capacity of coal-fired power stations in this upwind sector. Three-hourly data have been examined for diurnal effects and its is concluded that nocturnal formation of NO3 is occurring.  相似文献   

11.
Wet precipitation-only samplers were used to collect wet deposition at two sites in the Athens basin, Greece for the period March 1986–February 1987.Concentrations of major cations (H+, NH+4, Na+, K+, Ca2+ and Mg2+) and major anions (Cl, NO3 and SO2−4) were determined for the first time in rainwater samples in Greece. Bicarbonate concentrations were calculated. The relative importance of natural and anthropogenic sources were estimated by a chemical balance. The majority of rain collected has a neutral or alkaline character. Acidity was due to the presence of H2SO4 and HNO3. The statistical analysis of the correlation between the concentration of chemical species confirm the influence of natural and anthropogenic sources. In all samples, SO2−4 concentrations exceed NO3 concentrations despite the dominance of low S oil burning in the region. The wet flux of S was calculatd to be 0.34 gm−2a−1.  相似文献   

12.
Vertical profiles (surface to 5 km) of aerosol particle number concentration, NOy′ mixing ratio, and cloudwater SO42− and NO3 equivalent concentration were obtained in three field studies: North Bay, Ontario, during the summer of 1982 and the winter of 1983–1984, and Syracuse, New York, during the fall of 1984. The measurements from these locations and different seasons are compared. Generally, airborne concentrations are highest with air-mass back trajectories from the south and lowest with back trajectories from the north. For the southerly trajectories, median particle number concentrations (0.2–2 μm) near ground level (950 mb) vary from 1700 cm−3 during the summer project to 800 cm−3 during the winter project. At 700 mb, the south trajectory particle number concentration ranged between 60 and 170 cm−3. Median NOy′ mixing ratios for southerly back trajectories were approximately 6 and 9 ppb at 950 mb and 0.4 and 0.8 ppb at 700 mb for the fall and winter projects, respectively. Comparison of particle number concentration profiles outside of cloud with cloud droplet plus interstitial aerosol particle number concentrations inside cloud indicate that cumulus clouds can transport aerosols vertically from below cloud base. In contrast, stratiform clouds have similar concentrations inside the clouds as outside at the same altitude. The vertical variations of cloudwater sulphate and nitrate concentrations and the NO3/SO42− equivalent concentration ratio are discussed for each of the three field studies.  相似文献   

13.
Effects of 2-h exposures to 0–1 μmol mol−1 SO2, NO2 and (1:1) SO2 + NO2 on CO2 uptake by standardized snap bean leaves were studied. Interactions resulting from pollutant-induced changes in leaf conductance were evaluated. Minimum exposure concentrations required to depress CO2 exchange rates (CER) under the test conditions were:0.17 μmol mol−1 SO2, 0.38 μmol mol−1 NO2, and 0.08 μmol mol−1 of each pollutant in the 1:1 mixture. Treatments with 1 μmol mol−1 NO2 reduced CER 10% without affecting leaf conductance. One μmol mol−1 SO2 depressed CER by 50%. Leaf conductances increased in SO2-treated leaves showing 30% inhibition of CER. Greater inhibition led to subsequent stomatal closure. Inhibition caused by the individual pollutants (applied singly) was linear over the range of concentrations investigated. The dual-pollutant mixture produced a synergistic response that was most pronounced at the lower pollutant concentrations. The potentiated effect was correlated with marked stomatal closure.Experimental plants for this study were grown under low moisture stress conditions to enhance stomatal opening in the plant stock material and reduce (damp) the potential for further SO2-induced stimulation of stomatal opening. The experiments were designed to obtain limiting data for the test conditions.  相似文献   

14.
Fog, aerosol, and gas samples were collected during the winter of 1986 at Riverside, California. The dominant components of the aerosol were NH4+, NO3, and SO42−. Gaseous NH3 was frequently present at levels equal to or exceeding the aerosol NH4+. Maximum level were 3800, 3100, 690 and 4540 neq m−3 for NH4+, NO32− and NH3(g), respectively. The fogwater collected at Riverside had very high concentrations, particularly of the major aerosol components. Maximum concentrations were 26,000 29,000 and 6200 μM for NH4+, NO3 and SO42−, respectively. pH values in fogwater ranged from 2.3 to 5.7. Formate and acetate concentrations as high as 1500 and 580 μM, respectively, were measured. The maximum CH2O concentration was 380 μM. Glyoxal and methylglyoxal were found in all the samples; their maximum concentrations were 280 and 120 μM, respectively. Comparison of fogwater and aerosol concentrations indicates that scavenging of precursor aerosol by fog droplets under the conditions at Riverside is less than 100% efficient.The chemistry at Riverside is controlled by the balance between HNO3 production from NOx emitted throughout the Los Angeles basin and NH3 emitted from dairy cattle feedlots just west of Riverside. The balance is controlled by local mixing. Acid fogs result at Riverside when drainage flows from the surrounding mountains isolate the site from the NH3 source. Continued formation of HNO3(g) in this air mass eventually depletes the residual NH3(g). A simple box model that includes deposition, fog scavenging, and dilution is used to assess the effect of curtailing the dairy cattle feedlot operations. The calculations suggest that the resulting reduction of NH3 levels would decrease the total NO3 in the atmosphere, but nearly all remaining NO3 would exist as HNO3. Fogwater in the basin would be uniformly acidic.  相似文献   

15.
This work demonstrates the existence of a linear relation between the deposition velocity of ammonia and the friction velocity measured above a spruce stand in the western part of Denmark. In order to estimate the ammonia deposition velocity and flux to a Norway spruce forest, concentration gradients of ammonia and several meteorological parameters were measured in a meteorology tower during two periods, 1 week in spring and 1 week in late summer 1991. The estimated deposition velocities lie in the range −0.125 to 0.201 m s−1, with a mean of 0.026 m s−1. The deposition velocity and the flux were generally largest in the afternoon. On the basis of 24-h measurements of ammonia and routine meteorological measurements the relation between deposition velocity and friction velocity is extrapolated to an estimate of the average flux for the growing season May to September 1991. The estimate gave an average flux of 87 μg NH3N m−2 h−1 (=0.02 μg NH3N m−2 s−1). The average deposition velocity for the period was 0.045 m s−1.  相似文献   

16.
Nairobi city has a population of over 1.5 million and is growing at a rate of about 70 persons per day. Various activities in the city such as construction work, industrial processes, use of unroadworthy cars, and dust blown off unpaved roads contribute enormously to suspended particulate matter in the air. In this paper, analysis by gravimetric and energy dispersive X-ray fluorescence (EDXRF) of the suspended particulate matter in the air in the city centre, an industrial area and one residential area was carried out. The total suspended particulate matter (TSP) mean levels ranged from 69.983 to 397.903 μg m−3. The following components were measured from the TSP, mean values in μg m−3: iron 6.014–7.547, potassium 1.252–6.432, titanium 0.286–1.698, manganese 0.158–1.683, lead 0.395–1.321, bromine 0.122–0.707, zinc 0.159–0.678 and zirconium 0.017–0.245. The values of lead obtained (0.395–1.321 μg m−3) fall within the WHO recommendations, but compared to the values reported in some European countries, they are high. Most of the elements had low enrichment factors except for lead (104–353), bromine (429–1533) and zinc (14–79). Bromine and lead were highly correlated to the number of light vehicles (p=0.874 and 0.942, respectively). In addition the ratio of Br:Pb by weight was in the range 0.309–0.535, while the correlation factor for Br:Pb was 0.951, leading to the conclusion that both elements came from leaded gasoline.  相似文献   

17.
Ambient levels of the nitrogenous pollutants NO, NO2, nitric acid, nitrous acid, ammonia, particulate nitrate, particulate ammonium, peroxyacetyl nitrate (PAN) and peroxypropionyl nitrate (PPN) have been measured at a southern California mountain forest location severely impacted by urban photochemical smog. Air quality at the mountain forest location was characterized by high levels of nitric acid (up to 18 ppb) and the phytotoxic peroxyacyl nitrates PAN (up to 22 ppb) and PPN (up to 5 ppb). Alkyl nitrates were below our detection limits of 0.05–0.5 ppb. The (PAN + PPN)/NO2 ratios varied substantially (range 0.03–2.27) and were generally large, with typical 24-h averages of 0.19–0.50. Diurnal variations of the (PAN/PPN)/NO2 ratio exhibited both nighttime and daytime maxima reflecting diurnal variations in PAN (and PPN) thermal stability and photochemical production rates, respectively. Organic nitrogen-containing oxidation products (PAN + PPN) were more abundant than inorganic nitrate (HNO3 + NO3), with an average organic/inorganic concentration ratio of 2.5 (daytime ratio 1.0; nighttime ratio 3.7). The four oxidation products PAN, PPN, HNO3 and NO3 together accounted for 0.26 of the total reactive nitrogen. The results are discussed with respect to diurnal and seasonal variations and in terms of NO2 atmospheric oxidation pathways. Deposition fluxes and velocities to ponderosa pine have been measured for inorganic nitrate and for ammonium and have been compared with those obtained at other mountain forest locations.  相似文献   

18.
O3and PM2.5were introduced into the newly revised air quality standard system in February 2012, representing a milestone in the history of air pollution control, and China's urban air quality will be evaluated using six factors(SO2, NO2, O3, CO, PM2.5and PM10) from the beginning of 2013. To achieve the new air quality standard, it is extremely important to have a primary understanding of the current pollution status in various cities. The spatial and temporal variations of the air pollutants were investigated in 26 pilot cities in China from August 2011 to February 2012, just before the new standard was executed. Hourly averaged SO2, NO2and PM10were observed in 26 cities, and the pollutants O3, CO and PM2.5were measured in 15 of the 26 cities. The concentrations of SO2and CO were much higher in the cities in north China than those in the south. As for O3and NO2, however, there was no significant diference between northern and southern cities. Fine particles were found to account for a large proportion of airborne particles, with the ratio of PM2.5to PM10ranging from 55% to 77%. The concentrations of PM2.5(57.5 μg/m3) and PM10(91.2 μg/m3) were much higher than the values(PM2.5: 11.2 μg/m3; PM10 : 35.6 μg/m3) recommended by the World Health Organization. The attainment of the new urban air quality standard in the investigated cities is decreased by 20% in comparison with the older standard without considering O3, CO and PM2.5, suggesting a great challenge in urban air quality improvement, and more eforts will to be taken to control air pollution in China.  相似文献   

19.
20.
Twenty-seven samples of respirable particulate matter (RP) were collected in central Athens during the summer of 1987. The samples were analyzed for the concentration SO42− and NO3 (collected with Teflon and nylon filters and analyzed by ion-chromatography); organic and elemental carbon (collected on quartz fiber filters and analyzed with a thermo-optical method); and 20 elements (collected on Teflon filters and analyzed by proton-induced X-ray emission spectroscopy). Simultaneously collected samples for SO2 and HNO3 were also evaluated (collected with annular denuders and analyzed by ion-chromatography). T The average RP concentration measured was 80.7 μg m−3, well above the USEPA annual standard for PM10 aerosol. In addition, high levels of organic (16.9 μg m−3) and elemental carbon (4.2 μg m−3) were found. Correlations between aerosol carbon and Br, Pb, NO and NMHC (all > 0.8) confirm that gasoline and diesel powered vehicles are one of the major sources of pollution in the region. Correlations between RP and Al, Si, K, Ca and Fe also suggest that soil aerosols contribute to the high RP concentrations. Enrichment factors for the RP samples relative to the composition of soil in the Athens basin indentify major contributions from vehicles (Pb and Br) and industrial operations (S, Ti, Mn, Fe, Ni, Cu, Zn). Based on these results, a Chemical Mass Balance receptor model was applied to each of the 27 samples and the contributions to RP from soil (4.5 %), vehicles (20.3 %), steel industries (4.6. %) and cement plant emissions (3.2 %) estimated. Other major components of the RP were SO42− (13.0 %) and organic carbon from non-vehicle and industrial sources (15.5 %).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号