首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Aerosol black carbon (BC) is monitored on a timebase of 30 min at a location in the city centre of Ljubljana, the capital city of the Republic of Slovenia, during military action by the Yugoslav army. Methods and instrumentation are described in another paper (Bizjak et al., 1992, submitted to Atmospheric Environment).  相似文献   

2.
研究炭黑生产尾气中可燃气态污染物CO、H2及CH4等的净化及其余热利用。研究结果表明,采用直接燃烧法,不仅可将炭黑尾气中可燃气态污染物转化为无害的物质CO2和H2,O,并可回收利用燃烧热,使炭黑生产余热利用率提高40%以上。直接燃烧装置可采用低热值尾气余热锅炉,并配置发电机组,即炭黑尾气发电。经济技术评价表明,采用直接燃烧法和炭黑尾气发电,其经济效益和环境效益十分可观。  相似文献   

3.
4.
A coupled boundary-layer model and Lagrangian particle model are used to investigate the role of boundary-layer shear especially that produced by inertial oscillations in affecting the horizontal dispersion of pollutants on time-scales of 24–36 h. The coupled models show that the amplitude and the effective periods of the inertial oscillations are the main cause of nocturnal accelerating dispersion. The effective width of the plume in the morning is determined by whether the morning daytime mixing coincides with the phase of the inertial oscillation being at a maximum or minimum value. The phase of the oscillation is determined by latitude. Thus, latitude is shown to be an extremely important parameter in determining horizontal dispersion. An analytical model is introduced to investigate the role of external parameters such as latitude in influencing the horizontal dispersion. The analytical model is based on a simple Ekman-type model for the daytime and nighttime boundary layer. The Ekman model is used to provide initial conditions to an inertial oscillation regime between the nighttime boundary layer and the old daytime boundary layer. The analytical model was able to reproduce the magnitude and phase of the inertial oscillations reasonably well. However, the Ekman model overestimates the shear in the boundary layer causing the inertial oscillation to be too large. A semi-empirical method was used to provide more reasonable estimates of the daytime boundary-layer structure. This semi-empirical approach gave rates of the horizontal dispersion which were in general agreement with the numerical results.  相似文献   

5.
对2019年北京市怀柔区SO2、NOx、CO和O3 4种污染物5 min浓度数据及PM10和PM2.5浓度的监测结果进行整点数据、日数据、逐月日数据、小时数据、日最大8 h平均O3数据、月数据、各季节小时数据、各季节日数据统计,分析PM2.5浓度、气象条件及降水等因素对大气污染物浓度的影响。结果表明:大气污染物中O3浓度超标天数最多,其次是PM2.5、PM10。大气污染物浓度日变化、季节变化特征明显,SO2、NOx浓度的变化特征相似,最大值出现在冬季,春季和秋季次之,最小值出现在夏季,其中1月污染最严重。O3有着相反的季节变化特征,最高值出现在夏季,最低值出现在冬季。PM10和PM2.5浓度最高值出现在3月(春季),其次是冬季,秋季次之,最小值出现在夏季。降水对SO2和NOx的去除效果不明显,小雨天气时,容易出现大气污染物浓度增长的现象。总体上可以看出,降水对NOx去除比SO2更有效,对大粒径颗粒物的去除量大于小粒径颗粒物。本研究可为怀柔区相关部门制定减少污染物排放,控制城市大气颗粒物浓度,提高城市环境空气质量等措施提供数据及理论支持。  相似文献   

6.
中国区域反应性气体排放源清单   总被引:14,自引:6,他引:14       下载免费PDF全文
反应性气体是形成气溶胶及酸雨、光化学烟雾等环境问题的重要前体物,采用政府部门公布的基础数据(包括社会-经济数据、化石燃料和生物质燃料消耗、废物处理数据等,绝大部分为县级水平)及一些较新的、中国特有的排放因子,计算了中国大陆2007年高时空分辨率的关键反应性气体SO2、NOx、CO、NH3、VOCs的排放源清单.计算出的全国和各地区的排放量使用了0.5°×0.5°的网格来显示,结果表明,各反应性气体的估算年排放量分别为:SO2 3158.4万t,主要是燃煤所致;NOx、CO分别为2492.6,15785.2万t,均主要来源于燃煤和生物质燃烧;NH3 1601.7万t,主要源于动物排放和农田化肥的使用;VOCs 3709.8万t,主要源于溶剂挥发、废物处理、交通源等.本研究计算的排放结果比以前的清单稍高,主要是由于部分排放量以前被低估了;东部地区的排放量比西部高.反应性气体的排放具有较强的季节性,主要是由于自然因素及居民采暖、农业秸秆的露天焚烧的季节性等所致.  相似文献   

7.
北京典型道路交通环境机动车黑碳排放与浓度特征研究   总被引:1,自引:2,他引:1  
本研究对2009年北京市典型道路(北四环中路西段)进行实际交通流监测和调研,分析了总车流量、车型构成和平均速度的日变化规律.应用北京机动车排放因子模型(EMBEV模型)和颗粒物黑碳排放的研究数据,计算该路段的黑碳平均排放因子和排放强度.根据同期观测的气象数据,应用AERMOD模型对道路黑碳排放进行了扩散模拟,并根据城市背景站点和道路边站点的监测数据对模拟结果进行了验证.研究表明,该路段黑碳平均排放因子与重型柴油车在总车流中所占比例呈现出极强的相关性,由于北京市实行货车区域限行制度,日间时段总车流的平均黑碳排放因子为(9.3±1.2)mg·km-1·veh-1,而夜间时段上升至(29.5±11.1)mg·km-1·veh-1.全天时均黑碳排放强度为17.9~115.3g·km-1·h-1,其中早(7:00—9:00)晚(17:00—19:00)高峰时段的黑碳排放强度分别为(106.1±13.0)g·km-1·h-1和(102.6±6.2)g·km-1·h-1.基于同期监测数据验证,AERMOD模型的模拟效果较好.模拟时段的道路黑碳排放对道路边监测点的平均浓度贡献为(2.8±3.5)μg·m-3.由于局地气象条件差异,日间和夜间的机动车排放对道路边黑碳的模拟浓度存在显著差异.日间时段,小型客车排放对道路边站点的黑碳浓度贡献最高,达(1.07±1.57)μg·m-3;其次为公交车,达(0.58±0.85)μg·m-3.夜间时段货车比例明显上升,其黑碳排放占主导地位,贡献浓度(2.44±2.31)μg·m-3.  相似文献   

8.
机动车大气污染物及CO2减排对于改善空气质量和缓解气候变化具有重要的作用。综合利用北京市机动车保有量、道路行驶工况、气象、燃料组分及燃料消耗量等数据,应用COPERT模型计算得到北京市机动车主要大气污染物和CO2排放量,并识别其污染排放特征和不同车型、排放标准等级车辆的排放贡献,采用ADMS-Urban模型模拟了机动车污染排放对周边环境的影响。结果表明:2019年北京市机动车4项主要大气污染物CO、NOx、PM2.5和VOCs排放量分别为12.15万、4.06万、0.18万和2.57万t。车辆结构得到优化,国四及以上排放标准车辆占比达86.97%,数量占4%的柴油客货车排放贡献大,分别占机动车NOx和PM2.5排放总量的84%和60%;非末端排放占机动车VOCs排放量的20%,需要引起关注。机动车尾气排放对5个交通监测站点贡献的NO2平均浓度为15.7 μg/m3,其对环境质量影响较大;机动车CO2排放量为1 683万t,其中柴油车排放贡献约21%。对北京市机动车大气污染物和碳排放需要进一步协同控制。  相似文献   

9.
氨是影响室内空气质量的主要污染物,室内空气中的氨主要来源于装修材料,文章通过对11个室内空气样品进行检测,探讨室内装修中氨的影响,并提出了防治室内氨污染的措施和建议.  相似文献   

10.
室内空气污染物氨的检测与防治   总被引:1,自引:0,他引:1  
氨是影响室内空气质量的主要污染物,室内空气中的氨主要来源于装修材料,文章通过对11个室内空气样品进行检测.探讨室内装修中氨的影响,并提出了防治室内氨污染的措施和建议。  相似文献   

11.
为研究黑碳(BC)对呼吸系统急性发病的影响及气温的修正效应,收集北京市2009~2012年264075例呼吸系统急诊病例与同期空气污染物(BC、PM2.5、SO2、NO2)及气象数据,在划分呼吸道感染部位(上、下呼吸道)与人群年龄的基础上,采用分布-滞后非线性模型与广义相加模型进行建模.首先分别研究BC、气温与发病的(滞后)关联,继而构造二元交互模型探索气温-BC的协同关系,再分层量化BC在不同气温水平的健康影响;并同时纳入气态污染物验证BC结果的稳健性.结果表明,对总呼吸系统、上感、下感而言,气温-发病风险的暴露-响应曲线均近似“V”型,阈值温度分别为24℃、26℃和24℃,且低温的滞后累积影响强于高温.主效应模型揭示BC诱发即时性风险,影响在3d内消失;BC浓度每升高四分位数(IQR),总呼吸系统、上感、下感的超额发病风险(ER)分别为1.97%、2.64%和1.34%.少儿(£14岁)超额发病风险最高(总呼吸系统,3.40%),而老年组(³60岁)结果不甚显著.双污染物模型显示,BC与SO2共存会放大BC关联风险,尤以上感响应明显;而BC与NO2共存会适度增强下感风险.BC-气温的非参数二元模型显示,BC升高使发病风险类似对数函数上升,且高温会显著增强BC的健康影响.分层模型得到,每IQR BC在气温高于阈值时导致的下感风险显著高于上感,分别为5.55%、1.27%(P>0.05);而低于阈值时BC所致上、下感风险相当,均在0.55%左右.BC对呼吸系统发病的急性影响与感染部位和气温水平紧密相关,不同年龄段间也体现差异化特征.  相似文献   

12.
The objective of this study was to determine the black carbon concentration in Beijing in 2003. The aerosol properties were measured using an Aethalometer and a tapered element oscillating microbalance (TEOM) on the roof of the Physics Building of Peking University (39.99° N, 116.31° E) from July to August 2003 and from November 2003 to January 2004. The average black carbon (BC) concentrations in the summer and winter were 8.80 and 11.4 μg/m3, respectively. During winter, two different cyclone cut offs were installed at the inlet of an aethalometer. The BC mass concentration in TSP, PM10, and PM2.5 were obtained. The results indicated that in winter aerosol, 90% of BC exited in PM10 and 82.6% of BC exited in PM2.5. The BC in PM10 accounted for 5.11% of the PM10 mass. Translated from Acta Scientiae Circumstantiae, 2005, 25(1): 17–22 [译自: 环境科学学报]  相似文献   

13.
不同季节气象条件对北京城区高黑碳浓度变化的影响   总被引:2,自引:0,他引:2  
利用2013年至2015年北京城区黑碳气溶胶(下文统称为"BC")和PM2.5观测资料,结合地面气象观测资料、ECMWF边界层高度再分析资料和FNL/NCEP不同高度风速再分析资料,讨论了BC质量浓度及其在PM_(2.5)质量浓度中所占比例(下文统称"黑碳占比")的季节、月、日变化特征,并通过计算北京城区BC浓度与不同高度风速的相关矢量,分析了气象条件和外来输送对北京城区BC浓度变化的影响.结果发现:研究时段内北京城区BC浓度平均值为(4.77±4.49)μg·m~(-3);黑碳占比为8.23%±5.47%.BC浓度和黑碳占比在春、夏季低,秋、冬季高,其日变化特征在4个季节均为"白天低夜间高"的单峰型特征.随着PM_(2.5)浓度的升高,BC浓度增大,黑碳占比减小.当北京地区风向为东北、东北偏东、东南和西南偏西(主风向)时,BC浓度与风速和边界层高度均呈反向变化,即随风速和边界层高度的增大而减小.另外不同季节BC浓度随风速变化的临界值及其变化速率不同.冬季高BC浓度时段,北京城区BC浓度在低层大气的关键影响区分别位于河北南部与山东交界地区以及河北西北部与山西内蒙交界地区;高空关键影响区主要位于北京以西的河北西部、山西北部和内蒙古地区.  相似文献   

14.
为探究大气污染的特征,于2020年5月—2021年4月在中国西北部的兰州市区采集了总悬浮颗粒物样品227个,利用离子色谱仪、热/光碳分析仪对主要水溶性离子、元素碳(EC)和有机碳(OC)的质量浓度进行了测定.结果显示,兰州地区大气总悬浮颗粒物质量浓度均值为(376.7±974.8)μg·m-3,高于国家环境空气质量二级标准(NAAQS),呈昼低夜高的变化特征主要是由于兰州地区夜间大气多处于静稳状态导致的污染物累积效应.水溶性阴、阳离子按质量浓度排序为NO3->SO42->Cl-、Ca2+>NH4+>Na+>K+>Mg2+,其中二次离子(NO3-、SO42-、NH4+  相似文献   

15.
近年来我国多个地区遭遇严重重污染天气过程,极大影响了人们的身体健康与生活环境。在研究重污染天气的过程中,PM2.5与其他大气污染物的关联度成了学术界研究重点。基于向量自回归模型,综合运用单位根检验、AR特征根检验、广义脉冲响应函数以及方差分解法分析了天津市2014年1月1日—2016年12月31日包含PM2.5在内的空气质量相关数据;研究PM2.5与其影响因素的动态关系,及其他大气污染物对PM2.5的影响作用。结果表明:PM2.5与其他大气污染物之间所构成的空气质量系统模型是稳定的,且SO2、NO2与CO浓度的增加短期内会引起PM2.5浓度的增加,治理SO2与NO2对PM2.5的影响较大;O3浓度的增加对PM2.5有抑制作用。因此,建议天津市将调整产业结构,加强对SO2的治理放在首位。  相似文献   

16.
天津城市大气污染物浓度垂直分布特征   总被引:10,自引:0,他引:10  
利用2007年10月10日~2008年9月30日天津边界层气象观测塔得到的PM2.5质量浓度、O3和NO2体积分数等梯度资料,对比分析了不同高度上各污染物数据统计特征,并对各污染物数据的时间变化特征及垂直分布进行了讨论.结果表明,天津市PM2.5污染严重,且易发生光化学污染事件.各高度层PM2.5浓度在12、1和2月份存在较大差异,其他月份差异较小;O3体积分数均表现出夏季高冬季低的典型特征;NO2体积分数在220m高度处变化较为复杂且全年波动较大,120m处变化平稳,40m处则表现出春夏季高、秋冬季低的特点.PM2.5体积分数和NO2体积分数日变化均呈现双峰型,峰值的出现与早晚出行高峰以及边界层的变化有关,且污染物出现峰值的时间由低到高存在2~3h的延迟.O3体积分数与太阳辐射强度关系密切,各层均在14:00前后达到最大,而夜间的还原反应使各层臭氧体积分数下降.40m和120m处NO2体积分数变化较为一致,全天波动很小,而220m处波动较大,昼夜差异明显.  相似文献   

17.
Overestimates of black carbon in soils and sediments   总被引:2,自引:0,他引:2  
Several recent reports suggest that black carbon (BC), which broadly encompasses charcoal, soot, and other forms of pyrogenic carbon, may constitute a significant proportion of the refractory carbon in soil and sedimentary organic matter. BC is a sink for biospheric and atmospheric carbon dioxide, and is intimately tied to the biogeochemical cycling of both carbon and oxygen through its role in organic matter cycling. Additionally, BC may represent a large fraction of the missing carbon sink in global carbon accounting. Here, we demonstrate that documented measurements of BC may be the result of methodological artifacts, which inadvertently overestimate the amount of BC. We found that a widely used thermal oxidative method can create a residue that falls under the operational definition of BC in samples that are relatively BC-free. Moreover, during this procedure, labile organic matter constituents are condensed into pyrogenic carbon, implying that the labile components are present in lesser quantities. These methodological deficiencies are promoting overestimates in the amount of refractory carbon in soil and sedimentary organic matter and may endorse inaccuracies in the rates of carbon fluxes, the mean residence times of terrestrial carbon, and organic matter burial rates in oceanic environments.  相似文献   

18.
19.
无锡市大气PM2.5中黑碳的粒径分布与混合态特征   总被引:1,自引:0,他引:1  
针对长江三角洲地区PM2.5中的重要组分黑碳(BC)气溶胶,2010~2011年利用单颗粒黑碳光度计(SP2),对江苏省无锡市夏冬两季BC气溶胶的质量浓度、粒径分布及单颗粒混合态进行了连续在线观测.结果表明,无锡市冬季BC质量浓度(6.1μg/m3)是夏季(2.5μg/m3)的2.4倍,内混态BC比例(NIB)冬季(64.8%)也显著高于夏季(44.6%),说明冬季BC污染与来外来污染传输有关.反向轨迹分析表明,来自华北平原的污染气团输入是冬季高浓度BC污染的首要原因. NIB的日变化趋势与BC质量浓度的完全相反.午后BC质量浓度最低时NIB最高,反映了二次光化学产物包覆在BC颗粒外层的老化过程.此外,夏冬两季BC粒径分布保持稳定,其质量浓度峰值对应粒径在225nm左右,数浓度峰值对应粒径在120nm左右.  相似文献   

20.
京津冀及周边地区水泥工业大气污染控制分析   总被引:1,自引:0,他引:1  
以京津冀及周边地区水泥工业为研究对象,基于产排污系数法,建立了水泥工业主要大气污染物排放计算方法,对2016年该地区水泥工业主要大气污染物排放控制水平进行了分析.结果表明:京津冀及周边地区2016年水泥工业SO2、NOx、PM(有组织)排放量分别达到3.2×104t、23.9×104t、9.7×104t,较2015年分别减少24.1%、18.2%、27.2%,各项污染物大幅下降.水泥工业PM无组织排放量占PM总排放量的45.4%,仍需要采取集中收集的方式加强治理.山东、河南是水泥工业SO2、NOx、PM、PM10、PM2.5重点排放来源,应通过化解过剩产能降低污染排放.从各工艺来看,新型干法工艺应考虑采用高效脱氮脱硫技术、协同处置技术、高效大型袋式除尘技术等新技术,进一步降低各项污染物的排放量;粉磨站也需进一步提高污染治理水平.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号