首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
通过土壤培养实验考察了硫酸盐还原菌(SRB)包括希瓦氏菌、梭状芽胞杆菌和两者混合菌对碱性和酸性农田土中有效态重金属(Cd、Pb、Cu和Zn)的钝化效果及其作用机制.结果表明,在相同接菌量下,希瓦氏菌处理组对碱性土中有效态重金属的钝化效果优于梭状芽胞杆菌和两者混合菌的处理组;而不同种类的SRB对酸性土中有效态重金属的钝化效果无显著差异.培养第20 d后土壤中有效态重金属的钝化率不再显著变化.SRB处理对碱性土中有效态重金属的钝化率可达80%以上,而对酸性土中有效态重金属的钝化率低于40%.在碱性土中,SRB能够有效还原SO42-,并且提高土壤pH值,使S2-可与重金属紧密结合,显著提高有效态重金属钝化率.尽管SRB使酸性土壤pH值升高,但土壤仍然呈酸性使SO42-还原受到抑制,不利于有效态重金属的钝化.总体来看,SRB适用于碱性和酸性土壤的重金属污染治理,但与酸性土壤相比,SRB对碱性土壤中有效态重金属的钝化效果更好.  相似文献   

2.
pH及络合剂对亚铁活化S2 O82-氧化去除活性艳蓝的影响研究   总被引:1,自引:1,他引:1  
以蒽醌染料活性艳蓝KN-R为目标污染物,研究了pH及不同pH条件下络合剂对于络合的亚铁活化过硫酸钠氧化去除KN-R的影响,并对络合体系与未络合体系进行比较.结果表明,由于PS在酸性条件下降解速度最快及酸性条件下主导自由基SO4-.氧化还原电位大于碱性条件下的.OH,所以酸性条件下KN-R的去除率远大于中性及碱性条件.pH=3时,EDTA体系KN-R 3 h剩余率仅为17.0%,PS的消耗率最低为32.3%,EDTA是酸性条件下的最佳络合剂选择;pH=7时,EDTA、柠檬酸体系3 d后KN-R的剩余率分别为11.3%、12.4%,PS消耗率仅为28.9%、28.0%,是中性条件的最佳络合剂选择;pH=10时,葡萄糖酸、柠檬酸、EDTA、酒石酸体系对KN-R的去除率及PS的消耗率基本相同,均能充当亚铁离子的络合剂.微量的亚铁存在时,络合剂的加入能很好地提高污染物的去除率,3 d后从52.5%提高到79.3%,说明PS适合于污染物的原位化学氧化降解(ISCO).  相似文献   

3.
广州地区雨水化学组成与雨水酸度主控因子研究   总被引:22,自引:3,他引:22  
刘君峰  宋之光  许涛 《环境科学》2006,27(10):1998-2002
采集了广州地区2003-10~2004-09的雨水样品,通过对雨水样品的pH值、主要阴阳离子组成和可溶性有机碳(DOC)的测定,分析了广州地区酸雨的现状以及影响雨水酸度的主要因素等.结果表明,在观测期间,广州地区酸雨频率高达85%;雨水的主要离子组成为NH4+、SO42-、NO3-、Ca2+、Cl-和Na+,而DOC约占总化学组成的24.0%;雨水酸度的主要控制离子还是SO42-,但NO3-对雨水酸度的影响越来越大;同时,水溶性有机酸对雨水酸度的贡献也很明显.另外,来自扬尘中高浓度的碱性含钙化合物也对雨水酸度有明显的中和作用.  相似文献   

4.
酸碱改性活性炭及其对甲苯吸附的影响   总被引:6,自引:1,他引:5  
刘寒冰  杨兵  薛南冬 《环境科学》2016,37(9):3670-3678
分别用酸溶液(H_2SO_4、HNO_3、H_3PO_4)和碱溶液(NaOH或NH_3·H_2O)浸渍方法对活性炭进行改性,并对酸改性活性炭进行碱溶液二次改性处理,通过表征改性前后活性炭BET比表面积、孔结构、表面官能团等理化特征和测定其对甲苯蒸气的饱和吸附量,研究了影响活性炭吸附甲苯蒸气的关键因素.结果表明,酸改性使BET比表面积、微孔面积、微孔容积减少、表面酸性官能团增加,而碱改性呈现相反的理化特征变化.活性炭理化特征的变化可能与改性溶液的酸碱性、氧化还原性有关,并且这种相反的变化直接关系到活性炭对甲苯蒸气的吸附.3种酸改性的活性炭对甲苯蒸气饱和吸附量相对于原活性炭减少9.6%~20.0%,而两种碱改性的活性炭则增加29.2%~39.2%.相关性分析显示甲苯吸附量与BET比表面积、微孔面积、微孔容积正相关,而与表面酸性官能团负相关;多元回归分析进一步表明微孔容积和酸性官能团数量是影响活性炭甲苯吸附的关键因素.二次改性活性炭甲苯吸附量与表面含氧酸性官能团拟合结果则表明,—COOH、C=O和—OH都对活性炭甲苯吸附能力有影响,其中—COOH影响较大.研究结果表明有效提高活性炭对甲苯吸附能力,改性宜以提高活性炭微孔容积和减小活性炭表面酸性官能团数量,特别是—COOH数量为目标导向.  相似文献   

5.
广州城市污泥中重金属形态特征及其生态风险评价   总被引:2,自引:3,他引:2  
分析了广州市4个不同来源的城市污水处理污泥中重金属含量,考察了污泥样品中重金属形态分布和生物可利用性,并分别利用风险评价指数(RAC)和固废重金属毒性浸出方法评价了污泥中重金属生态危害风险和浸出毒性风险.结果表明,污泥样品中Cu、Cr、Pb和Zn含量较高,不同来源污水处理污泥中重金属含量差别较大.污泥样品中重金属绝大部分以非稳定态存在,酸性污泥中可迁移的酸溶态重金属比例较高.由单一萃取结果,1 mol·L-1NaOAc溶液(pH 5.0)和0.02 mol·L-1EDTA+0.5 mol·L-1NH4OAc溶液(pH 4.6)分别对酸性和碱性污泥中生物可利用态重金属具有较好的萃取能力.污泥酸性越强,其中生物可利用态重金属比例越大.污泥中重金属的迁移能力使其处于高生态危害风险程度;重金属的生物可利用性使酸性污泥大多处于极高危害风险程度,而使碱性污泥大多处于中等危害风险水平.除城市污水处理污泥外,污泥样品中重金属具有高的浸出毒性风险,萃取重金属生物可利用态后,污泥仍具有高浸出毒性风险,但由于浸出毒性风险降低使部分污泥可进行填埋处置.  相似文献   

6.
The wet, dry and cloud water deposition of acidic substances on the forest canopy are considered as major mechanisms for pollutant induced forest decline at high elevations. Direct cloud capture plays a predominant role of intercepting acidic substances in above cloud-base forests. We conducted a field study at Mt. Mitchell, North Carolina (35°44′05″N, 82°17′15″W; 2038 m MSL)—the highest peak in the eastern U.S.—during May–September 1986 and 1987 in order to analyze the chemistry of clouds in which the red spruce and Fraser fir stands stay immersed. It was found that Mt. Mitchell was exposed to cloud episodes 71% of summer days, the cloud immersion time being 28% for 1986 (a record drought summer in southeastern U.S.) and 41% for 1987. Sulfate, NO3, NH4+ and H+ ions were found to be the major constituents of the cloud water, which was collected atop a 16.5 m tall meteorological tower situated among 6–7 m tall Fraser fir trees. The initiation of precipitation in clouds invariably diluted the cloud water acidity. The cloud water pH during short episodes (8 h duration or less), which resulted from the orographic lifting mechanisms, was substantially lower than that during long episodes, which were associated with meso-scale and synoptic-scale disturbances. Sulfate accounted for 65% acidity in cloud water, on the average, and contributed 2–3 times more than the NO3. Inferential micrometeorological models were used to determine deposition of SO42− and NO3 on the forest canopy and the hydrological input due to direct cloud capture mechanism. The cloud water deposition ranged between 32 and 55 cm a−1 in contrast to the bulk precipitation which was about 130 cm a−1 as measured by an on-site NADP (National Atmospheric Deposition Program) collector. For S compounds, wet, dry and cloud water deposition accounted for 19%, 11% and 70%, respectively for 1986, and 16%, 8% and 76%, respectively for 1987. For N compounds, dry deposition contributed 35% and 23% for 1986 and 1987, respectively, whereas, cloud water deposition contributed 50% and 65% for 1986 and 1987, respectively. Our estimates are compared with the reported literature values for the other sites.  相似文献   

7.
Cloud water collections have been made on Mt. Mitchell using a nearly real-time cloud and rain acidity/conductivity (CRAC) analyzer. Results are reported for integrating times of approximately 5 min during several cloud events in the summer and fall of 1987. Both pH and ionic strength during cloud events were found to be much more variable than previously indicated by cloud collection. Maximum values of H+ and SO42− ion concentrations in 5-min samples were as much as 2.5 times greater than those measured in 1-h integrated collections. These results are not influenced by instrumental variability to any measurable extent. Results from repeated quality control samples were highly reproducible, and agreement between integrated collection data and the average values of 5-min sequential samples was also very good.  相似文献   

8.
Basic oxygen furnace slag(BOFS) has the potential to remove hexavalent chromium(Cr(VI))from wastewater by a redox process due to the presence of minerals containing Fe2+. The effects of the solution p H, initial Cr(VI) concentration, BOFS dosage, BOFS particle size, and temperature on the removal of Cr(VI) was investigated in detail through batch tests. The chemical and mineral compositions of fresh and reacted BOFS were characterized using scanning electron microscope(SEM) equipped with an energy dispersive spectrometer(EDS)system and X-ray diffractometer(XRD). The results show that Cr(VI) in wastewater can be efficiently removed by Fe2+released from BOFS under appropriate acidic conditions. The removal of Cr(VI) by BOFS significantly depended on the parameters mentioned above. The reaction of Cr(VI) with BOFS followed the pseudo-second-order kinetic model. Fe2+responsible for Cr(VI) removal was primarily derived from the dissolution of Fe O and Fe3O4 in BOFS. When H2SO4 was used to adjust the solution acidity, gypsum(Ca SO4·2H2O)could be formed and become an armoring precipitate layer on the BOFS surface, hindering the release of Fe2+and the removal of Cr(VI). Finally, the main mechanism of Cr(VI) removal by BOFS was described using several consecutive reaction steps.  相似文献   

9.
The chemical composition of winter and spring cloud water sampled at 1620 masl elevation on Mt Rigi in central Switzerland was dominated by NO3, SO42−, NH4+ and H+. A wide range of concentration levels was observed, with maxima of 3700, 1800 and 4600 micronormal for NO3, SO42− and NH4+, respectively. Concentrations at a lower elevation (1030 masl) site on the mountain were higher due to lower cloud liquid water contents and higher pollutant levels at that site. The lowest pH observed was 2.95; large concentrations of NH3 in the region prevented pH values from falling even lower. A comparison of simultaneously sampled cloud water and precipitation revealed much higher concentrations for most species in the cloud water, except in one case of extreme precipitation riming when the concentrations in the two phases converged. An exception to the pattern was H+; at times the precipitation was more acidic than the cloud water. The chemical composition of the cloud drops varied with drop size. Drops smaller than 10 μm diameter were enriched in NO3, SO42− and NH4+ relative to larger drops. Since the larger drops are the ones most effeciently captured by snow crystals, knowledge of their composition is essential to understanding the chemical implications of accretional growth of precipitation.  相似文献   

10.
11.
The treatment of the tannery wastewater was studied by orthogonal test of beaker coagulation. FeSO4 and alkaline sodium aluminum waste liquid contained NaOH-NaAlO2 were used as flocculants, with polyacrylamide (PAM) as coagulation. When the dosage of FeSO4 was 2.66 g/L (pH 5.5), the wastewater pH value of adding alkaline sodium aluminum waste liquid was 8, and the dosage of PAM was 1 mg/L, the optimum result was obtained. A test device of co-coagulation flotation reactor was designed on the basis of the conglutination of bubble, flocci and turbulent flotation theory. In the device, the gas-1iuid mixed pump substituted the air compressor and the pressure releaser. The combination of coagulation and air flotation were realized. The pump is a new kind of air saturation equipment. The air compressor and the pressure releaser were used commonly in traditional air flotation device. The results of treatment of the tannery wastewater showed a stable state, when the operating pressure was 5×105 Pa, circumfluence ratio was 225%.  相似文献   

12.
Discharge of wastewater containing nitrogen and phosphate can cause eutrophication. Therefore, the development of an efficient material for the immobilization of the nutrients is important. In this study, a low calcium fly ash and high calcium fly ash were converted into zeolite using the hydrothermal method. The removal of ammonium and phosphate that coexist in aqueous solution by the synthesized zeolites were studied. The results showed that zeolitized fly ash could efficiently eliminate ammonium and phosphate at the same time. Saturation of zeolite with Ca2+ rather than Na+ favored the removal of both ammonium and phosphate because the cation exchange reaction by the NH4 + resulted in the release of Ca2+ into the solution and precipitation of Ca2+ with PO4 3− followed. An increase in the temperature elevated the immobilization of phosphate whereas it abated the removal of ammonium. Nearly 60% removal efficiency for ammonium was achieved in the neutral pH range from 5.5 to 10.5, while the increase or decrease in pH out of the neutral range lowered the adsorption. In contrast, the removal of phosphate approached 100% at a pH lower than 5.0 or higher than 9.0, and less phosphate was immobilized at neutral pH. However, there was still a narrow pH range from 9.0 to 10.5 favoring the removal of both ammonium and phosphate. It was concluded that the removal of ammonium was caused by cation exchange; the contribution of NH3 volatilization to immobilization at alkaline conditions (up to pH level of 11.4) was limited. With respect to phosphate immobilization, the mechanism was mainly the formation of precipitate as Ca3(PO4)2 within the basic pH range or as FePO4 and AlPO4 within acidic pH range.  相似文献   

13.
UV/PMS降解水中罗丹明B的动力学及反应机理   总被引:1,自引:1,他引:0  
采用紫外(UV)活化过硫酸氢钾(PMS)产生强氧化性硫酸根自由基(SO_4~·-)降解人工染料罗丹明B(RhB).考察了溶液初始p H、氧化剂剂量、RhB初始浓度、天然有机物(NOM)、Fe~(2+)浓度、自由基淬灭剂(甲醇和叔丁醇)及水体中常见阴离子对降解效果的影响,并探测反应体系中生成的无机阳离子及小分子有机酸的种类和浓度.结果表明,降解反应遵循准一级反应动力学,其降解速率受到溶液初始pH的显著影响,当溶液酸性越强或碱性越强时,RhB的降解效果越好,且酸性条件下降解效果优于碱性条件.同时,加大氧化剂剂量及降低底物浓度也会对RhB的降解起促进作用.体系中投加过渡金属Fe~(2+)可显著促进RhB的降解效果,当Fe~(2+)与PMS的浓度比为1∶1时,降解效果最佳.水体中的NO_3~-对RhB的降解有着显著的促进作用,而H_2PO_4~-、C_2O_4~(2-)、Cl~-和NOM则对RhB的降解有抑制作用.采用离子色谱分析了UV/PMS体系降解RhB所产生的NH_4~+,以及甲酸、乳酸、乙酸和草酸,推测RhB在UV/PMS体系中的降解主要是通过共轭结构的破坏、N-位脱乙基并伴有苯环结构的破坏进行的.综合分析表明,UV/PMS工艺可有效运用于罗丹明B污染水体的修复处理过程.  相似文献   

14.
香溪河沉积物、间隙水的磷分布特征及释放通量估算   总被引:13,自引:11,他引:2  
采集香溪河沿程5个样点不同季节、不同深度的沉积物,用Hedley分级方法分析磷形态及垂向变化特征,同时研究上覆水和间隙水理化性质对沉积物中磷释放的影响.香溪河上覆水及间隙水pH值范围为4.72~8.55,夏季呈弱酸性,秋季、冬季及次年春季pH值呈弱碱性;沉积物处于较强还原性环境;上覆水及间隙水总磷质量浓度(TP)年变化范围为0.02~0.48mg·L~(-1),沉积物TP含量为0.48~1.45 g·kg~(-1);沉积物中磷形态的含量为HCl-P(HCl提取态)Res-P(残余磷)NaOH-P(NaOH提取态磷)NaHCO_3-P(NaHCO_3提取态磷)H_2O-P(水提取态磷).沉积物-上覆水体交界面还原性环境有利于沉积物中磷向上覆水中释放;春季水体的弱碱性、夏季的弱酸性有利于沉积物向上覆水释磷,从而增加了上覆水体富营养化的风险;间隙水TP与沉积物TP含量密切相关;5个样点中有4个样点的PO_4~(3-)-P由间隙水向上覆水扩散,释放通量为0.01~0.04mg·(m~2·d)~(-1).沉积物是底层水体营养盐的重要来源.  相似文献   

15.
酸性条件下黄铁矿氧化机制的研究   总被引:3,自引:0,他引:3  
王楠  易筱筠  党志  刘云 《环境科学》2012,33(11):3916-3921
以黄铁矿粉末制备成的碳糊电极为工作电极,利用循环伏安曲线和极化曲线等电化学手段,对酸性条件下黄铁矿的氧化过程和机制进行了研究.结果表明,黄铁矿的氧化主要包括以下两个过程:首先,黄铁矿(FeS2)矿物晶格中的Fe2+溶出而被氧化为Fe3+,此过程会伴随有如硫单质、缺铁硫化物(Fe1-xS2)和多硫化物(FeSn)等氧化中间产物的生成,覆盖在黄铁矿的表面而形成一层钝化膜,阻碍了其氧化溶解过程;接着,黄铁矿表面的钝化膜被进一步氧化为可溶性的SO24-.在酸性条件下,黄铁矿氧化反应的最终产物为Fe3+和SO24-.另外,在所研究的酸度范围内,随着H2SO4溶液浓度的增大,体系的开路电位和腐蚀电位均正移,氧化和还原的峰电流值升高,腐蚀电流增大,说明增加体系的酸度会促进黄铁矿的氧化过程.  相似文献   

16.
Rainfall samples were collected from three observation sites in Guilin from 2013 to 2017, and the chemical composition characteristics of precipitation and the contribution made by different ion sources were analyzed when atmospheric pollutants levels were reduced. The results showed that acid gas emissions and atmospheric pollutant concentrations continued to decline during the study period. However, the change in the volume-weighted mean pH at the three sites suggested that acid rain pollution was not alleviated and began to deteriorate after 2015. The continuing downward trend for alkaline neutralizing ions (Ca2+, NH4+) in precipitation indicated that the reduction in alkaline neutralizing substances in the atmosphere was an important factor that led to the deterioration in acid rain across Guilin. The principal component analysis and spearman correlation analysis indicated five sources of ions in precipitation. Quantitative assessment of these five sources indicated that fossil fuel combustion contributed the most ions concentration in precipitation at the three sites, followed by agriculture, terrestrial (crustal) sources, marine sources, and biomass burning. Long-distance airflow might affect the acidity, the electrical conductivity (EC), and ion concentrations in precipitation across Guilin. The airflow trajectory from the west and southeast directions corresponded to higher acidity and ion concentrations. According to the current air pollution control strategy planned by Guilin, reducing atmospheric coarse particles and NH3 at the same time may potentially lead to further deteriorations in acid rain contents. Therefore, Guilin needs to develop more reasonable pollution prevention measures that synergistically control atmospheric pollutants and acid rain pollution.  相似文献   

17.
制备了以KNbO3为载体材料的Co(OH)2复合材料并对其进行了详细的表征,分析了材料的组成成分、组成形态进而确定了其为核壳结构形貌的KNbO3@Co(OH)2.利用合成的样品作为催化剂活化过一硫酸盐(peroxymonosulfate,PMS)来降解帕珠沙星(pazufloxacin,PZF),结果表明制备的催化剂对PZF的去除效率显著增加.讨论了不同初始PMS剂量对降解效率的影响,发现随着PMS增加可活化生成更多的硫酸根自由基(sulfate radicals,SO4·-)和羟基自由基(hydroxyl radicals,HO·)来降解PZF,但继续增大PMS用量降解效率未见明显提升.酸性和中性pH值条件下利于反应活化PMS降解PZF,而碱性体系减缓反应,甚至强碱体系更易形成Co(OH)2沉淀不利于反应体系中活性组分CoOH+的形成,大大抑制了催化性能.此外,在体系中加入淬灭剂叔丁醇(tert-Butanol,TBA)或者乙醇(ethanol,ETOH)进行自由基的淬灭实验,结果表明SO4·-自由基为体系降解PZF过程中主要贡献的自由基,而HO·自由基的贡献较少.催化剂具有较好的稳定性5次循环之后仍能在10 min之内完全去除PZF.本研究提出了新的思路为制备其他载体的Co(OH)2核壳结构提供参考依据,同时将该催化剂结合高级氧化技术应用到水体新兴有机污染物净化领域具有很好的应用前景.  相似文献   

18.
为研究庐山冬季不同粒径雾滴化学成分特征,于2015年和2016年在庐山开展冬季云雾物理化学特征的很高综合观测实验,利用主动式分档雾水采集器(three-stage CASCC)共采集44组3级粒径雾滴的雾水样品,其分档空气动力学直径为4~16μm(S3级),16~22μm(S2级)和>22μm(S1级).用850professional IC型色谱仪(瑞士万通)分析雾水中的水溶性离子浓度,讨论3级分档雾水化学特征和不同粒径雾水中各离子组分的来源及相关性.结果表明,2015年和2016年庐山冬季3级雾水多呈酸性,2016年酸性更强,pH值与雾滴的粒径大小有依赖性关系,4~16μm的小雾滴酸性更强.雾水中主要离子有Ca2+,NH4+,SO42-,NO3-和Cl-.NH4+,SO42-,NO3-主要集中在4~16μm的小雾滴中,受海洋和土壤源的影响比较小,主要是人为活动所导致,2015年雾水Cl-主要受人为源的影响,2016年人为输入显著降低,主要受海洋源影响.Mg2+,Ca2+主要集中在>22μm的大雾滴中.SO2、NOx排放逐年降低导致2016年雾水中SO42-和NO3-浓度明显小于2015年.  相似文献   

19.
Experiments were done to check on the possibility that cloud droplets might, during freezing, lose acidity by evolution of HCl or HNO3, lose NH3 or lose dissolved H2O2. A spray of droplets with average diameter 39μm was produced by an ultrasonic transducer. The droplets acquired a temperature between −8 and −12°C and fell onto an ice surface, where they froze. Appropriate analytical techniques were applied to compare the composition of the frozen droplets with that of the sprayed liquid. It was found that the four chemical species studied were totally retained in the ice after freezing.  相似文献   

20.
梁冰  郑泽  姜利国 《地球与环境》2015,43(3):363-368
采用EPA 1314pH酸碱预滴定实验和pH浸出实验,研究了pH对磷矿废石磷元素浸出特性的影响,以及磷矿废石的酸碱缓冲容量。实验结果表明:磷矿废石的碱缓冲容量小,pH从8.75上升到13.50消耗了0.1mmol/g的NaOH,磷矿废石酸的缓冲容量较大,pH从5.50到1.00,共消耗2.2mmol/g的H2SO4;浸提液的酸碱性是影响磷矿废石中磷元素浸出的重要参数,酸性条件下很大程度上促进了磷元素的浸出,随着H+离子浓度的增加,总磷浓度随之升高。相反在碱性条件下的反应过程中,OH-阻碍磷元素的浸出,消耗正磷酸根离子和羟基磷酸根离子,使其生成沉淀,有一定的固磷作用,为磷元素的固化提供了更多途径。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号