首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although vapor extraction systems (VES) certainly help remediate volatile hydrocarbons (e.g., gasoline in unsaturated soils), recent studies have found that much of the related hydrocarbon removal is due to aerobic biodegradation, not simple volatilization. In many cases, more than 50 percent of the hydrocarbon removal by these systems is due to biodegradation. By emphasizing biodegradation and minimizing volatilization, the costs of system operation can be reduced, especially for off-gas treatment. Maximizing biodegradation also supports more efficient site remediation because not only are the volatile hydrocarbons cleaned up, but the less volatile contaminants are also cleaned up—by biodegradation. More complete site cleanups are possible through bioventing, especially when cleanup criteria are related to total petroleum hydrocarbons. This article explores the major environmental conditions that influence biodegradation, analyzes several bioventing case histories, and calculates biodegradation's remedial costs.  相似文献   

2.
The paper summarizes the results of a study concerning the operation of industrial plants and their effects to the environment. It also addresses, shortly, the consequences to the quality of human life and proposes potential measures that may contribute to the reduction of the negative environmental impacts. The relatively small organized Industrial Area of Alexandroupolis (Greece) is examined as a case study. In particular, the activities of its major industrial facilities are presented and their emissions to the environment are examined. In addition, the socio-economic aspects of the operation of the Industrial Area are studied. The results of the study showed that the operation of the Industrial Area has specific negative effects in the natural environment of the region and in the quality of life of the residents. Methodological and legislative tools, such as control systems for the environmental pollution, the green chemistry, and the environmental management systems, may be employed to assist the prevention and confrontation of environmental problems.  相似文献   

3.
Truck-based collection of municipal solid waste imposes significant negative externalities on cities and constrains the efficiency of separate collection of recyclables and organics and of unit-price-based waste-reduction systems. In recent decades, hundreds of municipal-scale pneumatic collection systems have been installed in Europe and Asia. Relatively few prior studies have compared the economic or environmental impacts of these systems to those of truck collection. A critical factor to consider when making this comparison is the extent to which the findings reflect the specific geographic, demographic, and operational characteristics of the systems considered. This paper is based on three case studies that consider the specific characteristics of three locations, comparing pneumatic systems with conventional collection on the basis of actual waste tonnages, composition, sources, collection routes, truck trips, and facility locations. In one case, alternative upgrades to an existing pneumatic system are compared to a potential truck-collection operation. In the other cases, existing truck operations are compared to proposed pneumatic systems which, to reduce capital costs, would be installed without new trenching or tunneling through the use of existing linear infrastructure. For the two proposed retrofit pneumatic systems, up to 48,000 truck kilometers travelled would be avoided and energy use would be reduced by up to 60% at an incremental cost of up to $400,000 USD per year over the total operating-plus-capital cost of conventional collection. In the location where a greenfield pneumatic system is already in operation, truck collection would be both less expensive and more energy-efficient than pneumatic collection. The results demonstrate that local geographic, demographic, and operational conditions play a decisive role in determining whether pneumatic collection will reduce energy requirements, produce more or fewer greenhouse gas emissions, and cost more or less over the long-term. These findings point to the local factors that will determine the relative economic and environmental costs and benefits in specific situations.  相似文献   

4.
There has been a growing movement within the environmental industry to develop more sustainable approaches in environmental remediation. These have generally included carbon footprint analysis, life cycle assessment, and best management practices to reduce the overall net environmental, social, and economic impacts of investigation and remediation activities. One of the foundational reasons net environmental impacts are currently evaluated is to identify and, subsequently, reduce contributions to climate change, primarily greenhouse gas emissions. While this trend toward sustainability and reduction in impact to the global environment is both important and admirable, the approach to remediation design and long‐term planning now needs to evolve further to better incorporate climate resilience into sustainable remediation design and implementation: designing remediation solutions that account for the projected impacts of climate change, as well as have the capacity to adapt to changing conditions. As a global population, we are now beyond the point of being able to prevent climate change and instead need to plan for adapting to it. In remediation, the effects of climate change create both risks and opportunities which should be considered during remedial design and long‐term planning. Responsible parties may see the push for—and management of—these considerations through their internal corporate risk management. The authors of this paper propose a simple framework for climate adaptation and resilience evaluations and plan development for remediation projects. ©2015 Wiley Periodicals, Inc.  相似文献   

5.
The aim of this paper is the application of Life Cycle Assessment to the operation of the MBT facility of Ano Liossia in the region of Attica in Greece. The region of Attica is home to almost half the population of Greece and the management of its waste is a major issue. In order to explicitly analyze the operation of the MBT plant, five scenarios were generated. Actual operation data of the MBT plant for the year 2008 were provided by the region of Attica and the LCA modeling was performed via the SimaPro 5.1 software while impact assessment was performed utilizing the Eco-indicator’99 method.The results of our analysis indicate that even the current operation of the MBT plant is preferable to landfilling. Among the scenarios of MBT operation, the one with complete utilization of the MBT outputs, i.e. compost, RDF, ferrous and non-ferrous metals, is the one that generates the most environmental gains. Our analysis indicates that the exploitation of RDF via incineration is the key factor towards improving the environmental performance of the MBT plant. Our findings provide a quantitative understanding of the MBT plant. Interpretation of results showed that proper operation of the modern waste management systems can lead to substantial reduction of environmental impacts and savings of resources.  相似文献   

6.
Bioventing—the injection of air into the vadose zone to increase microbial activity—is a commonly used, proven technology for remediating volatile organic compounds present in the vadose zone. Passive systems driven by wind or solar power are both more cost‐effective and sustainable than conventional systems. Such a passive system is being applied successfully to remediate a site impacted with total petroleum hydrocarbons (TPH) and benzene, toluene, ethylbenzene, and xylenes (BTEX) in soil. Bioventing technology was approved by the regulatory agency as an interim remedial action to remove chemicals of concern (COCs) in the vadose zone. A bioventing pilot study was conducted to evaluate the effectiveness of COC removal and collect parameters for full‐scale design and implementation. To evaluate the potential to use wind‐driven bioventing technology, two mobile weather stations were installed at the site and monitored for one month for a wind speed study. Based on the pilot‐test data and wind speed research, 12‐inch diameter funnel/vane 360‐degree wind collectors were designed as passive wind‐driven air‐injection devices and connected to existing monitoring wells. The measured air velocity ranged from 20 to 110 feet per minute during the start‐up and the first three months of operation and maintenance. Monitoring indicated a 20 percent oxygen delivery and greater than 90 percent reduction in COC concentrations, demonstrating a successful sustainable remediation with no power requirement and minimal operation and maintenance. © 2012 Wiley Periodicals, Inc.  相似文献   

7.
Because bioremediation must satisfy the fundamental biological tastes of specific organisms, environmental engineers must create a nutritious waste stew. Waste-hungry organisms need a proper electron acceptor. Oxygen is preferred; if it is not available, nitrate, sulfate, or carbon dioxide may work. The waste itself is a source of carbon and energy. Macronutrients are next—including phosphorus, nitrogen, and certain metals, if they are not already present in the wastewater—as well as micronutrients. Other factors, including pH, temperature, aeration, and mixing must suit the organisms' natural temperaments. This article explores how bioengineers can combine these ingredients in precise quantities and proportions in both conventional and innovative aerobic and anaerobic bioprocesses, including in situ treatment and even composting, to make the organisms healthy, happy, and inexpensive.  相似文献   

8.
The primary objective of waste management technologies and policies in the United States is to reduce the harmful environmental impacts of waste, particularly those relating to energy consumption and climate change. Performance indicators are frequently used to evaluate the environmental quality of municipal waste systems, as well as to compare and rank programs relative to each other in terms of environmental performance. However, there currently is no consensus on the best indicator for performing these environmental evaluations. The purpose of this study is to examine the common performance indicators used to assess the environmental benefits of municipal waste systems to determine if there is agreement between them regarding which system performs best environmentally. Focus is placed on how indicator selection influences comparisons between municipal waste management programs and subsequent system rankings. The waste systems of ten municipalities in the state of New York, USA, were evaluated using each common performance indicator and Spearman correlations were calculated to see if there was a significant association between system rank orderings. Analyses showed that rank orders of waste systems differ substantially when different indicators are used. Therefore, comparative system assessments based on indicators should be considered carefully, especially those intended to gauge environmental quality. Insight was also gained into specific factors which may lead to one system achieving higher rankings than another. However, despite the insufficiencies of indicators for comparative quality assessments, they do provide important information for waste managers and they can assist in evaluating internal programmatic performance and progress. To enhance these types of assessments, a framework for scoring indicators based on criteria that evaluate their utility and value for system evaluations was developed. This framework was used to construct an improved model for waste system performance assessments.  相似文献   

9.
Environmental consulting is a relatively new and rapidly growing field. It involves traditional engineering and construction risks as well as the specter of potential—and likely uninsured or uninsurable—liability for environmental conditions and professional errors. To succeed in today's litigious society, environmental consultants and contractors need to understand the risks inherent in their work. They must conduct their operations in a manner conducive to quality assurance, risk control, and effective project management. Constant and clear communication with the client is essential to a good working relationship and repeat business. Effective project control, risk management, file documentation, and contract negotiation are critical tools for profitable growth and our professional liability defense.  相似文献   

10.
11.

Infrastructure development and urbanization have created a demand for the prime construction material—"Concrete." The manufacture of concrete has pressurized the aggregate supply chain for over-exploitation of natural resources leading to eco-detrimental impacts besides environmental regulations. The auxiliary sectors of the construction industry are creating a vast quantum of by-products and waste, causing environmental degradation, which concerns governing bodies. Developing aggregates artificially using these by-products and waste materials would be an eco-friendly and economical solution. This article provides an overview of the ingredients, production methods, and factors influencing the characteristics of such sustainable building materials, which can substitute conventional aggregates in the near future.

  相似文献   

12.
Contrary to many's expectations, the Republican-led 104th Congress passed a substantial amount of environmental legislation. In addition to a variety of bills that received limited public attention, two major environmental laws—the Safe Drinking Water Act Amendments and the Food Quality Protection Act—were passed and signed into law. Still, many important legislative efforts were left unfinished at the end of the second session and will resurface in the 105th Congress. This article discusses the environmental legislation that passed in the 104th Congress and explores what environmental legislative initiatives will be addressed in the 105th Congress. (While not intended to be all-inclusive, the article mentions most major environmental legislation, with a particular focus on waste issues.)  相似文献   

13.
Environmental compliance requirements periodically impact the military's ability to use all installation resources. In response, environmental management strategies have been developed to ensure compliance and allow site closure. This study examines the relationship between environmental management strategies and environmental compliance at U.S. Marine Corps (USMC) installations via analysis of environmental compliance audit scores. Five environmental scores of interest from 1998 to 2004 audits—which include total compliance, total management, audit management, policy management, and training management—were subjected to statistical analysis. Results showed the USMC met environmental compliance and management standards, despite limited resources. High management strategy scores were moderately correlated with high total compliance scores. Total management scores improved over time, and noncompliance was most often associated with a lack of resources and plans. © 2006 Wiley Periodicals, Inc.  相似文献   

14.
This paper presents a general review of geosynthetic liner systems design considerations. The paper emphasizes the fundamental differences between a liner and a liner system, discusses the types of liner systems that are effective in landfill applications, and discusses how the components of a liner system may vary depending on the type of application, regulatory requirements, site hydrogeologic and climatic conditions, and the availability of materials. Regarding regulatory considerations, the paper discusses how liner systems must be selected and designed in conformance with regulatory performance standards in order to ensure long-term protection of the environment, and notes that many American state regulations for municipal waste landfills include minimum design guidelines that may be inadequate to meet the state's performance standards. The two aspects of chemical compatibility—retention and resistance to chemical attack—are discussed, and a generalized approach to designing geosynthetic liner systems is presented. The paper concludes with a discussion on future needs of the discipline and the industry.  相似文献   

15.
An inventory of material and energy consumption during the construction and operation (C&O) of a typical sanitary landfill site in China was calculated based on Chinese industrial standards for landfill management and design reports. The environmental impacts of landfill C&O were evaluated through life cycle assessment (LCA). The amounts of materials and energy used during this type of undertaking in China are comparable to those in developed countries, except that the consumption of concrete and asphalt is significantly higher in China. A comparison of the normalized impact potential between landfill C&O and the total landfilling technology implies that the contribution of C&O to overall landfill emissions is not negligible. The non-toxic impacts induced by C&O can be attributed mainly to the consumption of diesel used for daily operation, while the toxic impacts are primarily due to the use of mineral materials. To test the influences of different landfill C&O approaches on environmental impacts, six baseline alternatives were assessed through sensitivity analysis. If geomembranes and geonets were utilized to replace daily and intermediate soil covers and gravel drainage systems, respectively, the environmental burdens of C&O could be mitigated by between 2% and 27%. During the LCA of landfill C&O, the research scope or system boundary has to be declared when referring to material consumption values taken from the literature; for example, the misapplication of data could lead to an underestimation of diesel consumption by 60–80%.  相似文献   

16.
Contamination of soil and sediment by pollutants represents a major environmental challenge. Remediation of soil during the original Superfund years consisted primarily of dig and haul, capping, or containment. The 1986 amendments to CERCLA—SARA—provided the incentive for treatment and permanent remedies during site remediation. Thermal treatment, which routinely achieves the low cleanup criteria required by RCRA land-ban regulations, became one of the major technologies used for cleanup under the concept of ARAR. As the remediation industry matured and recognized specific market niches in soil remediation, a number of new technologies emerged. Thermal desorption, bioremediation, soil vapor extraction, soil washing, and soil extraction are being used on sites at which the technology offers advantages over incineration. In addition, a continuing stream of emerging technologies is being presented that requires careful evaluation relative to existing cleanup methods. Each of these technologies offers a range of options for achieving appropriate cleanup criteria, application to different soil matrices, cost, time of remediation, and public acceptability. Balancing cleanup criteria defined by regulation or risk assessment with technology cost and capability affords the opportunity to solve these problems with appropriate balance of cost and protection of human health and the environment.  相似文献   

17.
分析火电厂脱硫、除尘、废水处理等环保设施在建设和运行过程中存在的主要问题,如脱硫设施普遍存在燃煤硫分偏离设计值、旁路运行、除尘器出口烟尘浓度过大、GGH堵塞、烟气连续监测仪测量偏差大、运行维护管理不及时等。从主设备管理、加强运行和维护管理、数据管理等方面,提出加强脱硫等环保设施管理的主要对策,确保脱硫等环保设施的连续、稳定、高效运行。  相似文献   

18.
This paper presents research concerning the environmental analysis of the selective collection management of municipal solid waste. The main goal of this study is to quantify and to compare, by means of Life Cycle Assessment (LCA), the potential environmental impacts of three selective collection systems modelled on densely populated urban areas. These systems are: the mobile pneumatic, the multi-container and the door-to-door. Impact assessment method based on CML 2 baseline 2000 is applied to the different systems. The study separates and analyzes the collection systems in substages: two urban substages and one inter-city substage. At the urban level, the multi-container system has the least environmental impact of all systems. The mobile pneumatic system has greater environmental impacts in terms of global warming, fresh water aquatic ecotoxicity, terrestrial ecotoxicity, acidification and eutrophication. In this system, the pipes and the pneumatic transport have the greatest impacts. The door-to-door system has a greatest environmental impact in terms of abiotic depletion, ozone layer depletion and human toxicity. An overall evaluation of the three substages, with a sensitivity analysis, indicates that the mobile pneumatic system at an inter-city distance of 20 km shows the greatest environmental impacts and the greatest energy demand. Inter-city transport is key; the results show that from an inter-city distance of 11 km onwards, this becomes the substage which most contributes to global warming impact and energy demand, in all the systems.  相似文献   

19.
Integrated environmental management in urban areas is nowadaysconsidered a sine qua non objective of Community and nationalenvironmental and development policies. A large amount ofscientific information on the state of the environment is nowavailable from a large pool of data sources. This work presentsan innovative method for integration of these data sources andeffective coupling of environmental information with appropriatemodels and decision-support tools. State-of-the-art Earthobservation techniques, ground-based air quality measurements,atmospheric transport and chemical modelling, and multi-criteriadecision-aid systems are used in an integrated information fusionenvironment in support of environmental and health impactassessment and decision-making at the urban and regional scales. Results of the pilot application of the method in the area ofLombardy in Northern Italy demonstrate the validity andusefulness of this novel approach.  相似文献   

20.
Forum     
Most waste management techniques—including stabilization/solidification, soil washing, and precipitation/filter press—take more of a trial-and-error approach to environmental cleanups, failing to exploit the waste's fundamental chemical behavior. The result is scientifically inferior processes, wasted time and resources, and recurrence of the same old problems at treated sites. This column defines some of the principal problems of waste management technologies and recommends a prudent approach to their resolution. Several of the author's personal experiences are used to support his arguments. The technologies cited here were selected based on their widespread use, their cost-effectiveness, their ease of application, and their intrinsic limitations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号