首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Experiences gained from full-scale evaluation of advanced treatment processes used for reclaiming wastewaters should help in the evaluation of potential treatment systems for treatment and reuse of water in space. Water Factory 21 is a 0.66 m3s−1 (15 million gallons per day) water reclamation plant in California that has been in operation since 1976. The plant receives biologically treated wastewater. Lime treatment is effective for removal of heavy metals. Volatile organic constitutes are efficiently removed by air stripping. Non-volatile organic constituents are removed by activated carbon adsorption and reverse osmosis (RO). RO is a highly effective polishing step, and removes most of the remaining materials including inorganic salts, heavy metals, and organics. RO removed 85% of the total organic carbon, down to about 1 mg 1−1, which is lower than in many treated drinking waters. The series of treatment processes used insured virus and pathogen removal, with lime treatment and chlorination together proving highly effective. Sufficient data has been collected to provide statistically reliable confidence limits to be set on the performance of each unit process.  相似文献   

2.
Different amounts of granular activated carbon (GAC) have been tested for the removal of aliphatic and aromatic micropollutants contained in a liquid stream coming from an industrial plant. Tests have been carried out in a JAR-Test apparatus, using plugged flasks, in order to eliminate the oxygen influence on the adsorption process and to obtain information for studying the process in a pilot plant. The removal of aliphatic compounds resulted better than aromatic ones, probably because these substances are enveloped by water molecules which make adsorption on the GAC surface easier; in contrast, aromatic compounds show a lower affinity for the GAC, owing to their steric conformation. The good results obtained confirm that the proposed system is applicable to the examined effluent, even when the concentration of the pollutant load varies. In the latest part of this work, a plan for the construction of a full-scale plant to treat the examined wastewater has been developed.  相似文献   

3.
During the past decade, various promising technologies have been developed for the decontamination of groundwater insitu which do not require long-term pumping or high energy consumption. One approach is to use funnel and gate technology. In the case described here, the combination of adsorption of contaminants on granular activated carbon (GAC) and its biodegradation is applied to considerably extend the operating time of the filling material in the barrier system. Monochlorobenzene (MCB), a recalcitrant groundwater contaminant under anaerobic conditions, undergoes high-capacity adsorption on GAC up to about 450 mg per gram. Aerobic enrichment cultures, obtained from a contaminated aquifer, were able to mineralize initially adsorbed MCB. In respirometer experiments the rate of carbon dioxide formation was dependent on the equilibrium concentration of MCB. The oxygen consumption of activated carbon by means of autoxidative reactions may delay aerobic biodegradation in GAC filters. The oxygen uptake of pristine activated carbon amounted to 5.6 mg per gram GAC in laboratory column experiments. When GAC was pre-loaded with MCB, autoxidation rates were considerably reduced. Hence, it is advisable not to stimulate the biodegradation of MCB by oxygen supply in GAC biobarriers until after an initial period of solely sorptive MCB removal from the groundwater flow.  相似文献   

4.
Amec Foster Wheeler and Emerging Compounds Treatment Technologies, Inc. tested pilot‐scale ex situ treatment technologies for treatment of poly‐ and perfluorinated alkyl substances (PFAS) in groundwater. The pilot test compared ion exchange resin to granular activated carbon (GAC) and evaluated in‐place regeneration of the resin to restore PFAS removal capacity. During the pilot test, both resin and GAC removed perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) below U.S. Environmental Protection Agency (USEPA) health advisories (HAs) of 0.070 micrograms per liter (μg/L) combined. Compared at a common empty bed contact time (EBCT) of five minutes, the resin treated over eight times as many bed volumes (BVs) of groundwater as GAC before PFOS exceeded the USEPA HA and six times as many BVs for PFOA. On a mass‐to‐mass basis, resin removed over four times as much total PFAS per gram as GAC before breakthrough was observed at the USEPA HA. A solution of organic solvent and brine was used to regenerate the resin in the lead vessel, which had treated water up to the point of PFOS and PFOA breakthrough exceeding the USEPA HAs. The pilot test demonstrated successful in‐place regeneration of the resin to near‐virgin conditions. The regenerated resin was then used to treat the contaminated groundwater up to the same breakthrough point. Compared to the virgin resin loading cycles, PFAS removal results for the regenerated resin were consistent with virgin resin.  相似文献   

5.
Volatilization and Biodegradation of VOCs in Membrane Bioreactors (MBR)   总被引:1,自引:0,他引:1  
Volatilization and biodegradation are major competitive volatile organic compound (VOC) removal mechanisms in biological wastewater treatment process, which depend on compound specific properties and system design/operational parameters. In this study, a mathematical model was used to determine major removal pathways at various organic loading rates (OLR), solids residence time (SRT) and dissolved oxygen (DO) concentrations in a biological process for vinyl acetate. Model results showed that biological treatment process should be designed with long SRT, high OLR and low DO concentrations to maximize biodegradation and minimize volatilization of VOCs. Unless a VOC is toxic to microorganisms under the given conditions, low VOC emission rates are an inherent advantage of MBRs, which operate at higher OLR and longer SRT compared to conventional activated sludge process. A lab scale membrane bioreactor (MBR) was operated at varying OLR to investigate the relative volatilization and biodegradation rates for acetaldehyde, butyraldehyde and vinyl acetate. Synthetic wastewater containing three VOCs was introduced to the MBR. The DO concentration and SRT was maintained at 2.0 mg L− 1 and 100 days, respectively. The overall VOC removal rate was more than 99.7% for three VOCs at all the OLR. For vinyl acetate, the biodegradation rate increased from 93.87 to 99.40% and the volatilization removal rate decreased from 6.09 to 0.59% as OLR was increased from 1.1 to 2.0 kg COD m− 3 d− 1. It was confirmed that a MBR can be a promising solution to reduce VOC emissions from wastewater.  相似文献   

6.
The adsorption of two taste- and odor-causing compounds, namely MIB (2-methyl isoborneol—C11H20O) and geosmin (C12H22O) on activated carbon was investigated in this study. The impact of adsorbent pore size distribution on adsorption of MIB and geosmin was evaluated through single solute and multicomponent adsorption of these compounds on three types of activated carbon fibers (ACFs) and one granular activated carbon (GAC). The ACFs (ACC-15, ACC-20, and ACC-25) with different degrees of activation had narrow pore size distributions and specific critical pore diameters whereas the GAC (F-400) had a wider pore size distribution and lesser microporosity. The effect of the presence of natural organic matter (NOM) on MIB and geosmin adsorption was also studied for both the single solute and binary systems. The Myers equation was used to evaluate the single solute isotherms as it converges to Henry’s law at low coverage and also serves as an input for predicting multicomponent adsorption. The single solute adsorption isotherms fit the Myers equation well and pore size distribution significantly influenced adsorption on the ACFs and GAC. The ideal adsorbed solute theory (IAST), which is a well-established thermodynamic model for multicomponent adsorption, was used to predict the binary adsorption of MIB and geosmin. The IAST predicted well the binary adsorption on the ACFs and GAC. Binary adsorption isotherms were also conducted in the presence of oxygen (oxic) and absence of oxygen (anoxic). There were no significant differences in the binary isotherm between the oxic and anoxic conditions, indicating that adsorption was purely through physical adsorption and no oligomerization was taking place. Binary adsorptions for the four adsorbents were also conducted in the presence of humic acid to determine the effect of NOM and to compare with IAST predictions. The presence of NOM interestingly resulted in deviation from IAST behavior in case of two adsorbents, ACC-15 and F-400.  相似文献   

7.
This article demonstrates the applicability of in situ flushing for the remediation of soil contaminated with petroleum hydrocarbons at a Mexican refinery. The initial average total petroleum hydrocarbon (TPH) concentration for the demonstration field test was 55,156 g/kg. After six weeks of in situ flushing with alternate periods of water and water/surfactant, an average concentration of 1,407 mg/kg was reached, achieving a total removal efficiency of 98 percent. At the end of the process, no hydrocarbons such as diesel; gasoline; benzene, toluene, ethyl benzene, and xylene (BTEX); or petroleum aromatic hydrocarbons (PAHs) were found. Iron washing achieved a removal efficiency of 70 percent, and for vanadium, the removal efficiency was 94.4 percent. The volume of soil treated was 41.6 m3 (38 m2), equivalent to 69.5 tons of soil. A rough calculation of the process costs estimated a total cost of $104.20/m3 ($114.00/m2). Our research indicates that there are a few studies demonstrating in situ flushing experiences under field conditions where both organic (TPH, diesel, gasoline, PAHs, BTEX) and metal (iron and vanadium) removals are reported. © 2004 Wiley Periodicals, Inc.  相似文献   

8.
Per and polyfluoroalkyl substances (PFAS) are emerging and persistent organic pollutants that have been detected in many environmental media, humans, and wildlife. A common method to effectively remove PFAS from water is adsorption by activated carbon. Preliminary sorption experiments were conducted using five characterized Calgon Corporation coal‐based granular activated carbon (GAC; F100, F200, F816, F300, and F400), one coconut‐based GAC (CBC‐OLC 12 × 30), and one Jacobi Corporation coal‐based GAC (Omni‐G 12 × 40). Sorption of four representative PFAS onto each GAC was measured to select the most favorable carbon sources. F400 and CBC were chosen based on their performance in preliminary PFAS sorption experiments and contrasting properties. Freundlich and Langmuir isotherm models were developed for perfluorooctanoic acid (PFOA) and perfluorooctanoic sulfonate (PFOS) at an initial concentration of 1 mg/L. Sorption capacities were determined for PFOA and PFOS individually and in the mixture. Individual compounds showed higher sorption than when present in the mixture for both PFOA and PFOS. PFOS showed higher sorption than PFOA both individually and in the mixture and F400 showed higher sorption capacity than CBC. The presence of co‐contaminants (kerosene, trichloroethylene, and ethanol), and variations in groundwater conditions (pH, presence of anions, naturally occurring organic matter, and iron oxides) demonstrated limited impact on the sorption of PFAS onto GAC under the experimental conditions tested.  相似文献   

9.
Wet oxidative regeneration of activated carbon loaded with reactive dye   总被引:3,自引:0,他引:3  
Wet Oxidative Regeneration (WOR) of powdered activated carbon (PAC) and granular activated carbon (GAC) loaded with the reactive dyes, namely chemictive brilliant blue R and cibacron turquoise blue G, was studied. Attempts were made to regenerate the loaded carbons designated now as spent carbon. A slurry (10% w/v) of spent carbon in distilled water was oxidized by wet oxidation in the temperature range of 150-250 degrees C using oxygen partial pressures between 0.69-1.38 MPa in an 1 1 SS 316 autoclave. The percent regeneration was determined from a ratio, X(RC)/X(VC), corresponding to an equilibrium adsorption capacity of regenerated carbon/equilibrium adsorption capacity of virgin carbon from an initial adsorption period of 3 h. It was observed that the regeneration mainly occurred due to the oxidation of the adsorbates taking place on the surface of carbon. It was possible to regenerate the spent GAC and PAC to the extent of more than 98% (approximately X(RC)/X(VC) > 0.98) by wet oxidation. After four consecutive cycles of adsorption and regeneration using the same stocks of GAC, carbon weight loss observed at 200 degrees C was about 40%. SEM studies of the regenerated carbon showed widening of the pores and loss of structure between the adjacent pores as compared with the virgin carbon. PAC was found to be more suitable as compared with GAC for the adsorption and wet oxidative regeneration processes to treat the aqueous solution containing lower concentration of unhydrolyzed reactive dye. The suitability of wet oxidative regeneration is demonstrated at a bench scale to treat the synthetic reactive dye solution.  相似文献   

10.
The use of inks containing organic solvents by the offset printing process implies in the release of volatile organic compounds to the work environment. Many of these compounds such as benzene, toluene, ethylbenzene, and the xylene isomers (well known by the acronym BTEX) are extremely toxic. In this study, the BTEX concentrations were determined in two different printing plants that use distinct types of inks: the conventional and the so-called ecological, which is manufactured based on vegetal oil. Concentration ranges were 43–84, 15–3,480, 2–133, 5–459, and 2–236 μg m?3 for benzene, toluene, ethylbenzene, m?+?p-xylene, and o-xylene, respectively, for the conventional printing plant. At the ecological printing plant, concentration ranges were below limit of detection (<LD)-31, <LD-618, <LD-1,690, <LD-10,500, <LD-3,360 μg m?3 for benzene, toluene, ethylbenzene, m?+?p-xylene, and o-xylene, respectively. BTEX concentrations are lower at the ecological printing environment than in the conventional, where mineral oil-based inks are used. However, the worker who cleans the printing matrices is exposed to high concentrations of ethylbenzene and xylenes, due probably to the cleaning product’s composition (containing high amounts of BTEX). Although the BTEX concentrations found in both printing work environments were below the limits considered by the Brazilian Law for Activities and Unhealthy Operations (NR-15), the exposure to such vapors characterizes risk to the workers’ health for some of the evaluated samples, mainly the personal ones.  相似文献   

11.
Rainwater has been used as drinking water in Thailand for centuries especially in the rural parts and is accepted as an important water resource. From past to present, the quality of rainwater has changed with the landuse of the landscape, and its water quality is influenced by a diverse range of conditions such as the management of pollutant sources, the catchment condition, wind and meteorological conditions, and the location of rainwater collection points. In this study, the quality of rainwater collected off roofs at several locations was examined. Granular activated carbon (GAC) filtration was used as a pretreatment to microfiltration (MF) to remove the dissolved organic matter (DOC). After an initial adsorption period, the biofilm that formed on the GAC (biofilter) was found to remove DOC by up to 40%, 35%, and 15% for bed filter depths of 15, 10, and 5 cm, respectively. Biofilters also removed nitrate and phosphate by more than 80% and 35%. The hollow fiber membrane microfiltration with pore size of 0.1 μm was used to treat the effluent from biofiltration to remove the microorganisms/pathogens in the rainwater. Although there was no significant additional removal of DOC by MF, the biofilter removed all microorganisms. The use of biofilters as pretreatment to MF/UF could remove a higher amount of DOC, remove microorganisms, increase the membrane treatment efficiency, and reduce membrane fouling.  相似文献   

12.
Mercury from coal-fired utility boilers, as the largest atmospheric mercury emission source, imposes serious environmental risks and health concerns. In order to explore the possibility of reducing costs of activated carbon injection, we investigated the most promising mercury control technology, Hg0 removal using ZnCl2-impregnated adsorbents derived from sewage sludge. The results demonstrated that sludge-based adsorbents (SBAs) had fairly high mercury adsorption capacity over a wide range of temperatures (80–170 °C). Oxidizing atmosphere could improve the adsorption of Hg0 and weaken the inhibition of SO2 on mercury adsorption to some extent. NO exhibited no obvious impact on mercury removal performance. In addition, to clarify whether oxygen- or chlorine-containing functional groups attributed to good mercury adsorption capacity of SBAs, the oxygen-containing functional groups were removed using Boehm’s method, and a temperature-programmed decomposition desorption experiment was conducted. The results suggest that chlorine-containing functional groups played a significant role in the removal process of mercury from flue gas using SBAs.  相似文献   

13.
This paper analyses the evolution of the physico-chemical characteristics of the leachate from the Central Landfill of Asturias (Spain), which has been operating since 1986, as well as different treatment options. The organic pollutant load of the leachate, expressed as chemical oxygen demand (COD), reached maximum values during the first year of operation of the landfill (around 80,000 mg/L), gradually decreasing over subsequent years to less than 5000 mg/L. The concentration of ammonium, however, has not decreased, presenting values of up to 2000 mg/L. When feasible, recirculation can greatly decrease the organic matter content of the leachate to values of 1500–1600 mg COD/L. Applying anaerobic treatment to leachates with a COD between 11,000 and 16,000 mg/L, removal efficiencies of 80–88% were obtained for organic loading rates of 7 kg COD/m3 d. For leachates with lower COD (4000–6000 mg/L), the efficiency decreased to around 60% for organic loading rates of 1 kg COD/m3 d.Applying coagulation–flocculation with iron trichloride or with aluminium polychloride, it was possible to reduce the non-biodegradable organic matter by 73–62% when treating old landfill leachate (COD: 4800 mg/L, BOD5: 670 mg/L), also reducing turbidity and colour by more than 97%. It is likewise possible to reduce the non-biodegradable organic matter that remains after biological treatment by adsorption with activated carbon, although adsorption capacities are usually low (from 15 to 150 mg COD/g adsorbent). As regards ammonium nitrogen, this can be reduced to final effluent values of 5 mg/L by means of nitrification/denitrification and to values of 126 mg/L by stripping at pH 12 and 48 h of stirring.  相似文献   

14.
Remediation of recalcitrant compounds at sites with high concentrations of volatile organic compounds (VOCs) or nonaqueous‐phase liquids (NAPLs) can present significant technical and financial (long‐term) risk for stakeholders. Until recently, however, sustainability has not been included as a significant factor to be considered in the feasibility and risk evaluation for remediation technologies. The authors present a framework for which sustainability can be incorporated into the remediation selection criteria focusing specifically on off‐gas treatment selection for soil vapor extraction (SVE) remediation technology. SVE is generally considered an old and standard approach to in situ remediation of soils at a contaminated site. The focus on off‐gas treatment technology selection in this article allows for more in‐depth analysis of the feasibility evaluation process and how sustainable practices might influence the process. SVE is more commonly employed for recovery of VOCs from soils than other technologies and generally employs granular activated carbon (GAC), catalytic, or thermal oxidation, or an emerging alternative technology known as cryogenic‐compression and condensation combined with regenerative adsorption (C3–Technology). Of particular challenge to the off‐gas treatment selection process is the potential variety of chemical constituents and concentrations changing over time. Guidance is available regarding selection of off‐gas treatment technology (Air Force Center for Environmental Excellence, 1996; U.S. Environmental Protection Agency, 2006). However, there are common shortcomings of off‐gas treatment technology guidance and applications; practitioners have rarely considered sustainability and environmental impact of off‐gas treatment technology selection. This evaluation includes consideration of environmental sustainability in the selection of off‐gas treatment technologies and a region‐specific (Los Angeles, California) cost per pound and time of remediation comparisons between GAC, thermal oxidation, and C3–Technology. © 2008 Wiley Periodicals, Inc.  相似文献   

15.
Perfluorooctanoic acid (PFOA), perfluorohexanoic acid (PFHxA) and perfluorooctane sulfonate (PFOS) adsorbed onto granular activated carbon (GAC) were thermally treated in N2 gas stream. The purpose was to assess the fate of perfluoroalkyl and polyfluoroalkyl substances (PFASs) during thermal regeneration of GAC, which had been used for water treatment. Mineralized F, residual PFASs including short-chained species, and volatile organic fluorine (VOF) were determined. In a temperature condition of 700 °C, VOF were 13.2, 4.8, and 5.9 % as for PFOA, PFHxA, and PFOS. However, the VOF decreased to 0.1 %, if the GAC and off-gas were kept at 1000 °C. No PFASs remained in GAC at 700–1000 °C; at the same time, short-chained PFASs were slightly detected in the aqueous trapping of off-gas at 800 and 900 °C conditions. The destruction of PFASs on GAC could be perfect if the temperature is higher than 700 °C; however, the process is competitive against volatile escape from GAC. Destruction in gaseous phase needs a temperature as high as 1000 °C. Destruction of PFASs on the surface of GAC, volatile escape from the site, and thermolysis in gas phase should be considered, as to thermal regeneration of GAC.  相似文献   

16.
The major processes responsible for phosphorus (P) removal in constructed wetlands with horizontal sub-surface flow (HSF CWs) are adsorption, precipitation and plant uptake if the biomass is harvested. The filtration materials frequently used in HSF CWs, i.e., gravel or crushed rock, provide only limited adsorption and plants are not regularly harvested. As a result, the removal of P in HSF CWs is usually low and typically amounts to only 40 to 60% during the treatment of municipal or domestic sewage. The average inflow and outflow P concentrations for vegetated beds of Czech HSF CWs were 6.6 mg L-1 and 3.6 mgL-1, respectively. The average P removal was 45.7%. Despite a wide fluctuation of inflow phosphorus loading rates in the Czech CWs (10.9 – 356 g P m-2 a-1) the retention of P is well predictable. The CWs in the Czech Republic are relatively new and therefore, it is not possible to evaluate long-time performance of P removal. However, results from systems that have been in operation for longer periods (maximum of 9 years) indicate that P removal decreases over years probably as a result of limited sorption capacity. The amount of P removed by aboveground Phragmites biomass is very low and usually does not exceed 5% of the total removed P in the beginning of operation. As the sorption decreases over years and macrophyte biomass increases at the same time the importance of P bound in biomass becomes higher but it rarely exceeds the level of 20% of the total P removed.  相似文献   

17.
Permeable reactive barriers (PRBs) have traditionally been constructed via trenching backfilled with granular, long‐lasting materials. Over the last decade, direct push injection PRBs with fine‐grained injectable reagents have gained popularity as a more cost‐efficient and less‐invasive approach compared to trenching. A direct push injection PRB was installed in 2005 to intercept a 2,500 feet (760 meter) long carbon tetrachloride (CT) groundwater plume at a site in Kansas. The PRB was constructed by injecting EHC® in situ chemical reduction reagent slurry into a line of direct push injection points. EHC is composed of slow‐release plant‐derived organic carbon plus microscale zero‐valent iron (ZVI) particles, specifically formulated for injection applications. This project was the first full‐scale application of EHC into a flow‐through reactive zone and provided valuable information about substrate longevity and PRB performance over time. Groundwater velocity at the site is high (1.8 feet per day) and sulfate‐rich (~120 milligrams per liter), potentially affecting the rate of substrate consumption and the PRB reactive life. CT removal rates peaked 16 months after PRB installation with >99% removal observed. Two years post‐installation removal rates decreased to approximately 95% and have since stabilized at that level for the 12 years of monitoring data available after injection. Geochemical data indicate that the organic carbon component of EHC was mostly consumed after 2 years; however, reducing conditions and a high degree of chloromethane treatment were maintained for several years after total organic carbon concentrations returned to background. Redox conditions are slowly reverting and have returned close to background conditions after 12 years, indicating that the PRB may be nearing the end of its reactive life. Direct measurements of iron have not been performed, but stoichiometric demand calculations suggest that the ZVI component of EHC may, in theory, last for up to 33 years. However, the ZVI component by itself would not be expected to support the level of treatment observed after the organic carbon substrate had been depleted. A longevity of up to 5 years was originally estimated for the EHC PRB based on the maximum expected longevity of the organic carbon substrate. While the organic carbon was consumed faster than expected, the PRB has continued to support a high degree of chloromethane treatment for a significantly longer time period of over 12 years. Recycling of biomass and the contribution from a reduced iron sulfide mineral zone are discussed as possible explanations for the sustained reducing conditions and continued chloromethane treatment.  相似文献   

18.
This study describes the complete treatment of non-biodegradable landfill leachate by combined treatment processes. The processes consist of agitation as a novel stripping method used to overcome the ammonia toxicity regarding aerobic microorganisms. The NH3-N removal ratio was 93.9% obtained at pH 11.5 and a gradient velocity (G) 150 s?1 within a five-hour agitation time. By poly ferric sulphate (PFS) coagulation followed the agitation process; chemical oxygen demand (COD) and biological oxygen demand (BOD5) were removed at 70.6% and 49.4%, respectively at an optimum dose of 1200 mg L?1 at pH 5.0. The biodegradable ratio BOD5/COD was improved from 0.18 to 0.31 during pretreatment step by agitation and PFS coagulation. Thereafter, the effluent was diluted with sewage at a different ratio before it was subjected to sequencing batch reactor (SBR) treatment. Up to 93.3% BOD5, 95.5% COD and 98.1% NH3-N removal were achieved by SBR operated under anoxic–aerobic–anoxic conditions. The filtration process was carried out using sand and carbon as a dual filter media as polishing process. The final effluent concentration of COD, BOD5, suspended solid (SS), NH3-N and total organic carbon (TOC) were 72.4 mg L?1, 22.8 mg L?1, 24.2 mg L?1, 18.4 mg L?1 and 50.8 mg L?1 respectively, which met the discharge standard. The results indicated that a combined process of agitation-coagulation-SBR and filtration effectively eliminated pollutant loading from landfill leachate.  相似文献   

19.
Laboratory column experiments run for up to 13 days compared air sparging of groundwater contaminated by dissolved petroleum hydrocarbons in sterile and non-sterile aquifer sediments as well as uncontaminated sediments and groundwater. Loss of dissolved BTEX compounds in the contaminated columns was very rapid, occurring through volatilisation. The majority of the dissolved total organic carbon (TOC) persisted for much longer periods however. A direct comparison between losses from sterile and non-sterile columns suggested a negligible contribution of biodegradation to the removal of TOC. This was difficult to confirm through examination of O2 utilisation because oxidation of a small amount of reduced sulphur in the aquifer materials was the dominant sink for O2. Despite this, it was possible to conclude that less than 22% of the removal of TOC was through biodegradation during the first three days of air sparging.  相似文献   

20.
Because of the remarkable chemical structure of perfluoroalkyl and polyfluoroalkyl substances (PFAS), as well as the complex conditions of water, selecting an appropriate adsorbent for treating PFAS is critical. Adsorption needs to be environmentally friendly, low cost, and consider the types of adsorbents that work well in mixed PFAS solutions. In the present study, we used mixed PFAS to estimate the PFAS activity. This research aimed to evaluate and compare the efficacy of the adsorption of PFAS from water using different adsorbents: granular activated carbon (GAC), IRA 910 (strong anion resin), and DOWEX MB-50 (mixed exchange resin). Batch adsorption isotherms and kinetic studies were performed for perfluorooctanoic acid (PFOA), perfluorooctane sulfonic acid (PFOS), and perfluorohexane sulfonic acid (PFHxS). Freundlich models consistently described the kinetic behavior with a high correlation coefficient (R2 > 0.98). PFAS adsorption capacities on GAC and IRA910 were dependent on the chain length (PFOS > PFOA > PFHxS). The adsorption capacity of DOWEX MB-50 decreased because of the sulfonate effects (PFOS > PFHxS > PFOA). The rate constants (k2) that represented the adsorption of PFAS on different adsorbents observed within 96 h were accurately determined by the pseudo-second-order (PSO) model. GAC achieved followed the relationship k2(PFOS) > k2(PFOA) > k2(PFHxS). Furthermore, k2 of IRA910 decreased in the order of k2(PFOA) > k2(PFOS) > k2(PFHxS), implying that IRA910 promoted hydrophobicity more significantly on the adsorption of PFCAs than perfluoroalkane (-alkyl) sulfonic acids. The kinetics of DOWEX MB-50 revealed k2(PFHxS) > k2(PFOS) > k2(PFOA) because gel-type resins like DOWEX MB-50 are more suitable for shorter-chain PFAS. Further investigation is needed to determine the effect of organic matter under natural conditions and evaluate adsorptive selection caused by operational complexities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号