首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Arctic Foundations, Inc. (AFI), of Anchorage, Alaska, has developed a freeze barrier system designed to hydraulically isolate a contaminant source area. The system can be used for long‐term or temporary containment of groundwater until appropriate remediation techniques can be applied. The technology was evaluated under the United States Environmental Protection Agency's (EPA's) Superfund Innovative Technology Evaluation (SITE) program at the United States Department of Energy's (DOE's) Oak Ridge National Laboratory (ORNL) facility in Oak Ridge, Tennessee. For the demonstration, an array of freeze pipes called “thermoprobes” was installed to a depth of 30 feet below ground surface around a former waste collection pond and keyed into bedrock. The system was used to establish an impermeable frozen soil barrier to hydraulically isolate the pond. Demonstration personnel collected independent data to evaluate the technology's performance. A variety of evaluation tools were used—including a groundwater dye tracing investigation, groundwater elevation measurements, and subsurface soil temperature data—to determine the effectiveness of the freeze barrier system in preventing horizontal groundwater flow beyond the limits of the frozen soil barrier. Data collected during the demonstration provided evidence that the frozen soil barrier was effective in hydraulically isolating the pond.  相似文献   

2.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

3.
Land treatment facilities can provide effective treatment of secondary oily wastewater from maintenance operations, particularly in arid climates. Soil and underlying groundwater from a land treatment facility, which has been operating for eight years, were analyzed to determine the effectiveness of using bioremediation for the treatment of dissolved and free‐phase oil in maintenance wastewater. The study was conducted at a mining site in Western Australia. The facility was capable of treating 140 kiloliters (kL) of oily wastewater per day. The average petroleum hydrocarbon content of the wastewater was 2 percent weight per volume (w/v) based on data available for the first five years. The soil data indicate that the land treatment process has been operating efficiently even at high wastewater loadings with maximum degradation rates of 10–242 mg/kg per day. Based on the soil data, there is no evidence of accumulation of any metal or polycyclic aromatic hydrocarbon (PAH) compounds. The land treatment facility has led to only low levels of TPH (total petroleum hydrocarbons) contamination (<4 ppm) in the underlying groundwater. However, nitrate concentrations in the groundwater were shown to increase over the first five years of the facility's operation. This article reports and discusses the operational data from the land treatment process, illustrating its effectiveness in treating oily wastewater. © 2001 John Wiley & Sons, Inc.  相似文献   

4.
Using a comprehensive approach to decommission a 180,000-square-foot automotive parts manufacturing facility saves time and money while reducing environmental liability. Prior to starting the facility decommissioning, a detailed facility characterization was conducted to identify contaminated areas. Remediation activities were scheduled to coincide with facility demolition. Specialized subcontractors were used to perform tasks such as asbestos and lead-paint abatement, soil bioremediation, underground storage tank and clarifier removal, and facility destruction and recycling. The project timetable was reduced by using several crews simultaneously to conduct recycling, demolition, and remediation. Costs were offset by selling remaining equipment, scrap metals, overhead lights and fixtures, and a premanufactured steel building. A total of 415 tons of scrap metal was recycled, not including the aforementioned steel building. On-site recycling and remediation were used wherever possible to reduce cost and associated hauling liabilities. For example, concrete and asphalt debris were crushed and used as base for final site paving, saving disposal costs and base material purchase costs. On-site bioremediation of soil impacted by perchloroethene (PCE) saved over $1.5 million, with total project savings of $2.4 million. On-site remediation and recycling also reduced both long-term and short-term environmental liability.  相似文献   

5.
Hazardous waste site investigations were carried out at the Marine Corps Air Station (MCAS) in Yuma, Arizona and at Hanscom Air Force Base (HAFB) in Bedford, Massachusetts. The purpose of the first was to determine the location and extent of metals contamination throughout the base. The objective of the second was to evaluate the risk of metals contamination to groundwater from soil at three locations within the airfield. Dynamic workplans were developed and an adaptive sampling and analysis plan carried out with the data produced in the field used to support the goals of each project. An inductively coupled plasma/optical emission spectrometer (ICP/OES) was modified for field operation. A more efficient microwave digestion method and pressurized Teflon filtration system were developed for the HAFB project. Results were comparable to standard Environmental Protection Agency (EPA) methods, which must rely on two digestion procedures to recover EPA-targeted metals within the prescribed recovery range. The MCAS investigation, conducted over a five-month period, advanced the Navy's efforts from 30 months behind schedule to 18 months ahead of schedule, while the data generated at HAFB showed no risk to groundwater from metals.  相似文献   

6.
A moorland soil site polluted with PCB showed a high diversity ofmetabolically active bacteria. Beside frequent types of 16S rRNAsequences similar to those of the species ofSphingomonasand the Acidobacterium phylum an unusual high number ofsequences from the genus Burkholderia were found. Burkholderia was also the main genus in isolates enriched onbiphenyl or various chlorobenzoates. In microcosm experimentssterilized surfaces exposed to PCB polluted soil always showed thepresence of clay aggregates formed by bacteria attached to thesubstratum. The bacteria use the PCB loaded clay colloids astransport medium for the water insoluble substrate to get accessto the carbon source. This is a novel mechanism of how bacteria dealwith hydrophobic substrates.  相似文献   

7.
Polychlorinated biphenyls (PCBs) are a persistent environmental issue worldwide. This study summarizes the results obtained from a bench‐scale test of remediating PCB‐impacted soil. The research aimed to evaluate the effectiveness of extracting the PCB Aroclor 1260 from soil, transferring it to a liquid matrix, and then treating the PCB‐containing liquid using an Activated Metal Treatment System, a technology developed by NASA based on zero valent magnesium (ZVMg). The soil was from a former electrical plant area impacted by PCBs. The initial concentration of untreated soil contained an average of 4.7 ± 0.15 mg/kg of Aroclor 1260. The results showed that the mass transfer phenomena is possible using ethanol as a liquid matrix, reaching transfer results up to 93 percent. The ZVMg enabled the destruction of the Aroclor 1260, which reached 20 percent without any buildup of undesirable by‐products, such as less chlorinated PCBs.  ©2016 Wiley Periodicals, Inc.  相似文献   

8.
A landfill reclamation project was considered to recover landfill airspace and soil, reduce future groundwater impacts by removing the waste buried in the unlined area, and optimize airspace use at the site. A phased approach was utilized to evaluate the technical and economic feasibility of the reclamation project; based on the results of these evaluations, approximately 6.8 ha of the unlined cells were reclaimed. Approximately 371,000 in-place cubic meters of waste was mined from 6.8 ha in this project. Approximately 230,600 cubic meters of net airspace was recovered due to beneficial use of the recovered final cover soil and reclaimed soil as intermediate and daily cover soil, respectively, for the current landfill operations. This paper presents the researchers’ landfill reclamation project experience, including a summary of activities pertaining to reclamation operations, an estimation of reclamation rates achieved during the project, project costs and benefits, and estimated composition of the reclaimed materials.  相似文献   

9.
In 1993 environmental consultants, working in concert with the State of Michigan, discovered groundwater contamination that threatened the drinking water supply of the town of Big Rapids. The contamination originated from leaking underground storage tanks and gasoline lines, which were removed. A pilot study indicated the contaminated area extended to 240′ x 180′ and affected soil as well as groundwater. A remediation plan was designed by and implemented by Continental Remediation Systems, Inc., a Natick, Massachusetts, firm. The remediation plan is ongoing and includes an interceptor trench to stop gasoline from flowing into the creek, as well as air sparging to vent and treat the contaminated soil. It is anticipated that the remediation project will take six months to complete. The chief advantage of on-site remediation is that it avoids the costs and liabilities associated with landfill disposal and no materials need leave the site.  相似文献   

10.
As in all developing countries, cities in Tunisia face serious problems of environmental pollution caused mainly by the inadequate and inefficient final disposal of their generated solid wastes. The Tunisian government launched a development program including the construction of landfills in the main cities and the closure of the contaminated sites issued from solid wastes landrising practice. The project of the Henchir El Yahoudia landfill restoration is the first experience in this programme. It has been suggested to convert the site to a green park and to implement an ornamental plant nursery. The whole surface of the landfill is approximately 100 ha from which 30 ha have been already transformed to an urban recreational area and the remaining 70 ha have to be characterized for the project extension. A field investigation by boring was conducted in order to define the geological and the hydrogeological conditions, the vertical and horizontal wastes layer extension, content and degree of decomposition and the composition and quantities of leachate and landfill gas. Representative samples of waste, soil, groundwater and leachate were collected for laboratory analyses. Several of these borings were converted to piezometers to define the flow regime in the site. The results showed that the biogas (CH4, H2S, and CO2), leachate and waste, distribution in the site is mainly affected by the temporal variation of the site operating method. The underlying fissured clay layer facilitated leachate infiltration into the groundwater where high BOD, COD and nitrogen concentrations were registered.  相似文献   

11.
In June 1992, SoilTech ATP Systems, Inc., completed the soil treatment phase of the Waukegan Harbor Superfund Project in Waukegan, Illinois, after approximately five months of operation. SoilTech successfully treated 12,700 tons of sediment contaminated with polychlorinated hiphenyls (PCBs) using a transportable SoilTech anaerobic thermal processor (ATP) system nominally rated at ten tons per hour throughput capacity. The SoilTech ATP technology anaerobically desorbs contaminants such as PCBs from solids and sludges at temperatures over 1,000° F. Principal products of the process are clean, treated solids and an oil condensate containing the hydrocarbon contaminants. At the Waukegan Harbor Superfund site, PCB concentrations in the sediments excavated and dredged from a ditch, lagoon, and harbor slip averaged 10,400 parts per million (ppm) (1.04 percent) and were as high as 23,000 ppm (2.3 percent). Treated soil was backfilled in an on-site containment cell. The removal efficiency of PCBs from the soil averaged 99.98 percent, relative to the project performance specification of 97 percent, and treated soil PCB concentrations were measured below 2 ppm. Approximately 30,000 gallons of PCB oil, desorbed from the feed material, were returned to the owner for subsequent off-site disposal. After modifications to the emissions control equipment, compliance with the 99.9999 percent destruction and removal efficiency (DRE) for PCBs in stack emissions required by the U.S. Environmental Protection Agency was achieved.  相似文献   

12.
In situ chemical oxidation (ISCO) with permanganate has been widely used for soil and groundwater treatment in the saturated zone. Due to the challenges associated with achieving effective distribution and retention in the unsaturated zone, there is a great interest in developing alternative injection technologies that increase the success of vadose‐zone treatment. The subject site is an active dry cleaner located in Topeka, Kansas. A relatively small area of residual contamination adjacent to the active facility building has been identified as the source of a large sitewide groundwater contamination plume with off‐site receptors. The Kansas Department of Health and Environment (KDHE) currently manages site remedial efforts and chose to pilot‐test ISCO with permanganate for the reduction of perchloroethene (PCE) soil concentrations within the source area. KDHE subsequently contracted Burns & McDonnell to design and implement an ISCO pilot test. A treatability study was performed by Carus Corporation to determine permanganate‐soil‐oxidant‐demand (PSOD) and the required oxidant dosing for the site. The pilot‐test design included an ISCO injection approach that consisted of injecting aqueous sodium permanganate using direct‐push technology with a sealed borehole. During the pilot test, approximately 12,500 pounds of sodium permanganate were injected at a concentration of approximately 3 percent (by weight) using the methods described above. Confirmation soil sampling conducted after the injection event indicated PCE reductions ranging from approximately 79 to more than 99 percent. A follow‐up treatment, consisting of the injection of an additional 6,200 pounds of sodium permanganate, was implemented to address residual soil impacts remaining in the soil source zone. Confirmation soil sampling conducted after the treatment indicated a PCE reduction of greater than 90 percent at the most heavily impacted sample location and additional reductions in four of the six samples collected. © 2009 Wiley Periodicals, Inc.  相似文献   

13.
The use and performance of soil vapor extraction (SVE) as an in-situ remedial technology has been limited at numerous sites because of both geologic and chemical factors. SVE systems are not well suited to sites containing low permeability soils or sites contaminated with recalcitrant compounds. Six-phase soil heating (SPSH) has been developed by the Battelle Pacific Northwest Laboratories (Battelle) to enhance SVE systems. The technology utilizes resistive soil heating to increase the vapor pressure of subsurface contaminants and to generate an in-situ source of steam. The steam strips contaminants sorbed onto soil surfaces and acts as a carrier gas, providing an enhanced mechanism by which the contaminants can reach an extraction well. Full-scale applications of SPSH have been performed at the U.S. Department of Energy's Savannah River Site in Aiken, South Carolina; at a former fire training site in Niagara Falls, New York; and at Fort Richardson near Anchorage, Alaska. At each site, chlorinated solvents were present in low permeability soils and SPSH was applied in conjunction with SVE. The results of the three applications showed that SPSH is a cost-effective technology that can reduce the time required to remediate a site using only conventional SVE.  相似文献   

14.
This paper presents a summary of the comparative analysis of two polychlorinated biphenyl (PCB) detoxification technologies that were evaluated in pilot scale equipment. Two treatment technologies, base catalyzed decomposition (BCD) and gas phase chemical reduction, treated materials removed from the PCB landfill in Warren County, North Carolina. There has been a remarkable amount of public opposition to this landfill. Very stringent performance criteria for soil cleanup of PCBs and dioxins and for air emissions from the treatment equipment were used, along with a number of other factors to evaluate the two technologies. The BCD technology was selected as the best performing one for this project.  相似文献   

15.
Redevelopment and reuse plans are often based upon an expedited delineation and remediation life cycle, since delayed reuse usually has economic consequences. It has also become increasingly important to utilize sustainable practices to achieve investigation and remediation goals. In this article, the Triad approach is used to expedite the delineation of a source area within a municipal landfill to complete the remedial effort prior to construction of an urban civic center. The Triad approach uses the three elements of systematic project planning, dynamic work strategy, and real‐time measurement to expedite site characterization (Interstate Technology and Regulatory Council, 2003). In this article, the Triad sampling strategy consisted of two phases. The first phase included in situ screening of soil and groundwater using the membrane interface probe (MIP), and the second phase included confirmatory sampling via vertical profiles in the soil and groundwater. This study found that, using the MIP in a dynamic sampling strategy, a critical element of the Triad approach, combined with the proper placement of confirmatory samples, significantly reduced overall project cost and will expedite the site redevelopment. The use of the Triad approach also contributed to the integration of green and sustainable practices into the project. © 2010 Wiley Periodicals, Inc.  相似文献   

16.
This article describe a unique federal project aimed at the commercialization of different technologies for the decontamination of dredged material. The project is organized so that commercialization is achieved in a seamless way, starting with validation at the bench- and pilot-scale levels, and ending with the actual construction of operational facilities. This is the first integrated sediment decontamination program in which a step-wise bench-scale validation process of innovative/emerging technologies will scale-up to a production-scale facility capable of processing up to 375,000 m3 of dredged material per year. The need to develop public-private partnerships for the facility construction is emphasized as a way of obtaining adequate finding for capital and operating costs during the startup time of the commercialization process. It is expected that the end result of the project work will be the creation of economically-viable, self-sustaining decontamination technology companies.  相似文献   

17.
This article presents the results of a study that was conducted to determine the effectiveness of using alfalfa (Medicago sativa L.) to enhance the phytoremediation of three different types of chemical contaminants. The chemicals studied were trinitrotoluene (TNT), the polycyclic aromatic hydrocarbon (PAH) pyrene, and the polychlorinated biphenyl (PCB) Aroclor 1248. Experiments were conducted using soils that contained high and low organic matter content. The results indicated that recoveries of pyrene and TNT from soil were highly dependent on the soil organic matter content, while the recovery of PCB was not. Significantly low levels of pyrene and TNT were recovered from all treatments in the soil with 6.3 percent organic matter content compared to recovery levels found in soil with 2.6 percent organic matter. The presence of alfalfa plants had a significant effect on the transformation of TNT and PCB in the low organic matter content soil only and had no effect on the fate of pyrene. In the low organic matter soil, only 15 percent and 17 percent of the initial TNT and PCB levels, respectively, were transformed in the unplanted control soils compared to 66 percent and 77 percent in the alfalfa planted pots. In both soil types, pyrene dissipation could not be attributed to the presence of alfalfa plants. Overall, it was concluded that under high soil organic matter conditions, adsorption and covalent binding to the soil organic matter appeared to be the dominant force of pyrene and TNT removal. The effectiveness of using alfalfa to enhance PCB and TNT transformations was more significant in the lower organic matter soil; thus phytoremediation had a greater effect in soils with lower organic matter content. © 2001 John Wiley & Sons, Inc.  相似文献   

18.
This study presents an assessment of the current status of open dumps in Laconia prefecture of Peloponnese in southern Greece, where all open dumps are targeted for closure by 2008. An extensive field survey was conducted in 2005 to register existing sites in the prefecture. The data collected included the site area and age, waste depth, type of disposed waste, distance from nearest populated area, local geographical features and observed practices of open burning and soil coverage. On the basis of the collected data, a GIS database was developed, and the above parameters were statistically analysed. Subsequently, a decision tool for the restoration of open dumps was implemented, which led to the prioritization of site restorations and specific decisions about appropriate restoration steps for each site. The sites requiring restoration were then further classified using Principal Component Analysis, in order to categorize them into groups suitable for similar restoration work, thus facilitating fund allocation and subsequent restoration project management.  相似文献   

19.
EOS, or emulsified oil substrate, was used to stimulate anaerobic biodegradation of trichloroethene (TCE) and tetrachloroethene (PCE) at a former Army‐owned manufacturing facility located in the Piedmont area of North Carolina. Previous use of chlorinated solvents at the facility resulted in soil and groundwater impacts. Ten years of active remediation utilizing soil vacuum extraction and air sparging (SVE/AS) were largely ineffective in reducing the TCE/PCE plume. In 2002, the Army authorized preparation of an amended Remedial Action Plan (RAP) to evaluate in situ bioremediation methods to remediate TCE in groundwater. The RAP evaluated eight groundwater remediation technologies and recommended EOS as the preferred bioremediation alternative for the site. Eight wells were drilled within the 100 × 100 feet area believed to be the primary source area for the TCE plume. In a first injection phase, dilute EOS emulsion was injected into half of the wells. Distribution of the carbon substrate through the treatment zone was enhanced by pumping the four wells that were not injected and recirculating the extracted water through the injection wells. The process was repeated in a second phase that reversed the injection/extraction well pairs. Overall, 18,480 pounds of EOS were injected and 163,000 gallons of water were recirculated through the source area. Anaerobic groundwater conditions were observed shortly after injection with a corresponding decrease in both PCE and TCE concentrations. Dissolved oxygen, oxidation‐reduction potential, and sulfate concentrations also decreased after injection, while TCE‐degradation products, ferrous iron, and methane concentrations increased. The reduction in TCE allowed the Army to meet the groundwater remediation goals for the site. Approximately 18 months after injection, eight wells were innoculated with a commercially prepared dechlorinating culture (KB‐1) in an attempt to address lingering cis‐1,2‐dichloroethene (cis‐DCE) and vinyl chloride (VC) that continued to be observed in some wells. Dehalococcoides populations increased slightly post‐bioaugmentation. Both cis‐DCE and VC continue to slowly decrease. © 2007 Wiley Periodicals, Inc.  相似文献   

20.
The phytoremediation potential of using tall fescue (Festuca arundinacea Schreb.) grass and sericea lespedeza (Lespedeza cuneata [Dum. ‐Cours.]) legume species was assessed using three different groups of organic contaminants in soil. One hundred parts per million (ppm) each of a nitroaromatic compound (TNT), a polycyclic aromatic hydrocarbon (Pyrene), and a polychlorinated biphenyl (Aroclor 1248) were used to contaminate the soils. The experiments were conducted using soils with high and low organic‐matter content. The results indicate that recoveries of Pyrene and TNT were very low in all treatments in soil with high organic‐matter content (6.3 percent) compared with recoveries in soil with low organic‐matter content (2.6 percent). In contrast, recoveries of PCB from soil were not dependent on the soil's organic‐matter content. Planting both the legume and grass species had significant effect on the transformations of TNT and PCB in the soil with low organic‐matter content and did not affect the fate of Pyrene in both soils. The amount of TNT transformed in the four months of plant growth was 63 percent in the tall fescue and 46 percent in the sericea‐planted soils, compared with only a 15 percent unaccounted loss in the unplanted control soils. Furthermore, the grass species, with its massive root system, was significantly better at causing TNT dissipation compared with the legume species, which has less root vegetative mass. The plant biomass, particularly the shoot weight of the tall fescue grass, was significantly increased as a result of TNT treatment. Tall fescue and sericea biomass did not appear to have any significant effect on Pyrene transformation. Planting sericea provided a significantly high level of PCB transformation in soils with either high or low amounts of organic matter. Tall fescue did not appear to have any significant effect on PCB transformation. © 2002 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号