首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 337 毫秒
1.
Trichloroethylene (TCE) is a toxic organic compound, which can adversely affect human health. The chemical is one of the most frequently found contaminants in groundwater in the United States and around the world. A landfill in Maryland contaminated with high levels of TCE decades ago was added to the U.S. Environmental Protection Agency's National Priority List (NPL) in 1994. A biowall was installed on the site in 2013 to promote the bioremediation of TCE and subsequently of its degradation products. Six-year monitoring data indicated a steady removal of >99% groundwater TCE at the wall since installation. However, a concurrent buildup of intermediate byproducts was observed downgradient of the wall. An examination of the entire system was necessary to find the reason behind the inefficiency of the biowall. In this study, the background of the site, remediation plan, and installation were assessed. Monitoring data, including the concentration of TCE and its degradation byproducts, and geochemical and physical characteristics were evaluated to understand the conditions and challenges facing decision-makers of this project and possible options to improve biowall efficacy.  相似文献   

2.
This article describes a design approach that has been developed for bioremediation of chlorinated volatile organic compound–impacted groundwater that is based upon experience gained during the past 17 years. The projects described in the article generally involve large‐scale enhanced anaerobic dechlorination (EAD) and combined aerobic/anaerobic bioremediation techniques. Our design approach is based on three primary objectives: (1) selecting and distributing the proper additives (including bioaugmentation) within the targeted treatment zone; (2) maintaining a neutral pH (and adding alkalinity when needed); and (3) sustaining the desired conditions for a sufficient period of time for the bioremediation process to be fully completed. This design approach can be applied to both anaerobic and aerobic bioremediation systems. Site‐specific conditions of hydraulic permeability, groundwater velocity, contaminant type and concentrations, and regulatory constraints will dictate the best remedial approach and design parameters for in situ bioremediation at each site. The biggest challenges to implementing anaerobic bioremediation processes are generally the selection and delivery of a suitable electron donor and the proper distribution of the donor throughout the targeted treatment zone. For aerobic bioremediation processes, complete distribution of adequate concentrations of a suitable electron acceptor, typically oxygen or oxygen‐yielding compounds such as hydrogen peroxide, is critical. These design approaches were developed based on understanding the biological processes involved and the mechanics of groundwater flow. They have evolved based on actual applications and results from numerous sites. An EAD treatment system, based on our current design approach, typically uses alcohol as a substrate, employs groundwater recirculation to distribute additives, and has an operational period of two to four years. An aerobic in situ treatment system based on our current design approach typically uses pure oxygen or hydrogen peroxide as an electron acceptor, may involve enhancements to groundwater flow for better distribution, and generally has an operational period of one to four years. These design concepts and specific project examples are presented for 17 sites. © 2012 Wiley Periodicals, Inc.  相似文献   

3.
In response to new coal combustion residuals (CCR) disposal regulations, many coal‐fired utilities have closed existing unlined surface impoundments (SIs) that were traditionally used for disposal of CCR. The two primary closure options are closure‐in‐place (CIP), which involves dewatering and capping, and closure‐by‐removal (CBR), which includes excavation, transportation, and disposal of the CCR into a lined landfill. This article provides a methodology and a case study of how green and sustainable remediation concepts, including accounting for the life cycle environmental footprints and the physical risks to workers and community members, can be incorporated into the closure decision‐making process. The environmental impacts, occupational risks, and traffic‐related fatalities and injuries to workers and community members were calculated and compared for closure alternatives at a hypothetical site. The results demonstrated that the adverse impacts of the CBR option were significantly greater than those of the CIP option with respect to the analyzed impact pathways.  相似文献   

4.
Well-recovery networks coupled to immobilized microbe bioreactors (IMBRs) were installed at a 172-acre former wood preserving facility for the bioremediation of organic wood preservatives present in site groundwater. Free-phase creosote from the hardpan and soluble preservative fractions contained in subsurface groundwater were pumped separately to different holding tanks. Trace creosote fractions contained in the subsurface groundwater were further gravity separated in the holding tank. Immobilized microbial isolates evaluated in earlier laboratory and field pilot tests were established into two 40, 000-liter bioreactors for the biodegradation of all targeted consitituents. Microbial growth, dissolved oxygen, pH, nutrients, flow rate, and temperature were monitored in this in situ/ex situ bioremediation system. The process was used to remove the polycyclic aromatic hydrocarbon (PAH) and phenolic components of creosote and pentachlorophenol from contaminated groundwater. Data generated during the past 2 1/2 years indicate that 26 target compounds consistently are reduced to levels acceptable for discharge. Currently operating in Baldwin, Florida, this full-scale prototype is remediating the former wood preserving facility and is being used as a model system for the design and construction of new bioreactor systems needed at similar industrial sites in the United States and abroad.  相似文献   

5.
This article is intended to provide background information on leachate management in closed landfill sites based on a comparison of two landfill sites and the identification of leachate characteristics depending on the final cover and the season. Site S is older and has no final cover, while site J is younger and has final capping. The results of leachate analysis from the two landfills show that the biological oxygen demand to chemical oxygen demand ratio decreases below 0.1 to the range 0.05–0.07 for site S, whereas the ratio at site J was in the range 0.08–0.55. The inorganic nitrogen concentration was in the range 169.9–386.1 mg/l with an average of 265.2 mg/l at site S. Ammonia nitrogen accounted for 98.9% of the total nitrogen. The absence of a final cover on closed landfill sites may contribute to the stabilization of such landfills due to flushing. The nitrogen content at landfill S dropped in the summer, whereas it decreased in the fall at site J. A higher fluctuation in the pollutant levels of organic matters and nitrogen at the younger landfill site was observed, compared to the older site, even though the younger site had final capping. Therefore, intensive leachate management should be arranged at the early stages after closing for proper treatment. Specifically, nitrogen management of leachate is a critical factor in treatment operations.  相似文献   

6.
The former Bermite site north of Los Angeles, California, was used to manufacture various explosives and related products containing energetic compounds, including perchlorate. Remediation of perchlorate in site soil and groundwater is being conducted to meet regulatory requirements and allow planned redevelopment activities to proceed. The general approach to perchlorate remediation of shallow soil at the site includes excavation of affected soils followed by ex situ bioremediation. Glycerin was chosen for use as an electron donor because of its stability, safety, low cost, and regulatory acceptance. However, full‐scale bioremediation operation with glycerin initially resulted in inconsistent results despite consistent perchlorate biodegradation observed in treatability study microcosms. To eliminate the inconsistency and optimize the biotreatment process, additional studies were performed in the field on parallel tracks to determine crucial factor(s) that influenced inconsistent breakdown of perchlorate in site soils. Total Kjeldahl nitrogen (TKN) was determined to be a significant factor limiting perchlorate biodegradation. The addition of di‐ammonium phosphate (DAP) resulted in the consistent and complete perchlorate removal, generally within two weeks of incubation with a median destruction rate of about 200 μg/kg/day. Soil processing rates were gradually increased over the year, and, by the summer, approximately 2,000 to 2,500 tons of soil were being processed per day with a total of approximately 160,000 tons processed by the end of July. The total unit treatment cost for the process is about approximately $35/ton. The glycerin‐DAP process is playing a major role in the remediation of this 1,000‐acre former industrial site. © 2008 Wiley Periodicals, Inc.  相似文献   

7.
An in-situ bioremediation project has been designed and constructed for a site in south-central Kansas just north of Wichita. A pipeline leaked an unknown quantity of refinedfuels in the 1970s. The spill was undetected until hydrocarbons were found in a nearby municipal water supply well. Of concern, from a regulatory perspective, are the alkylbenzene components found in the groundwater, including benzene, toluene, ethylbenzene, and xylene (BTEX). Initial abatement procedures, including free product removal and pumping, had become ineffective. In-situ bioremediation was selected to complete the restoration process. The project emphasizes the need for a strong understanding of the geologic and hydrogeologic conditions prevalent under the site. Site studies were conducted to determine the distribution and mass of the contaminant and the hydraulic regime. Laboratory microbial studies were used to determine the efficacy of nitrate as a primary electron acceptor. Information from site studies was used to design a treatment system tailored to the requirements of the site. The treatment system is designed to deliver the maximum amount of nutrient-enriched water to the contaminated zone while maintaining hydraulic control of the site.  相似文献   

8.
As a result of former industrial activities, many properties across the United States contain various chemicals in their soils at concentrations above background levels. Polynuclear aromatic hydrocarbons (PAHs) are often encountered at sites of gas manufacture, wood treating, tar refining, coke making, and petroleum reflning. When the presence of PAHs in site soil is deemed to create a situation of unacceptable risk to public health or the environment, treatment or disposal is required to reduce concentrations to acceptable levels. The ideal remedial process for PAHs in soils would destroy them to an environmentally sound level at relatively low cost without producing adverse by-products. In many cases bioremediation can accomplish these goals. The degree to which bioremediation can destroy PAHs in a particular soil, however, is highly dependent on the characteristics of that soil, including the nature of the hydrocarbon that is the source of the PAHs. It is the objective of this article to describe efforts leading to this conclusion and to summarize how soil characteristics influence bioremediation of PAHs.  相似文献   

9.
Direct aerobic biodegradation of vinyl chloride (VC) offers a remedial solution for persistent vinyl chloride plumes that are not amenable to the anaerobic process of reductive dechlorination because of either prevailing geochemical conditions or the absence of active Dehalococcoides ethenogenes. However, tools are needed to evaluate and optimize aerobic VC bioremediation. This article describes the development and testing of two techniques—a microbiological tool and a molecular tool—for this purpose. Both methods are based on detection of bacteria that can use vinyl chloride and ethene as growth substrates in the presence of oxygen. The microbiological tool is an activity assay that indicates whether bacteria capable of degrading ethene under aerobic conditions are present in a groundwater sample. This activity assay gave positive results in the area of active VC degradation of an aerobic VC bioremediation test site. A rapid semiquantitative genetic assay was also developed. This molecular tool, based on polymerase chain reaction (PCR) detection of a gene involved in the metabolism of both ethene and VC, revealed the presence of potential VC degraders in an enrichment culture and site groundwater. These tools could provide a basis for judging the potential of aerobic VC degradation by ethenotrophs at other sites in addition to offering a mechanism for treatment monitoring and system optimization. © 2009 Wiley Periodicals, Inc.  相似文献   

10.
Perchlorate has been identified as a water contaminant in 14 states, including California, Nevada, New Mexico, Arizona, Utah, and Texas, and current estimates suggest that the compound may affect the drinking water of as many as 15 million people. Biological treatment represents the most‐favorable technology for the effective and economical removal of perchlorate from water. Biological fluidized bed reactors (FBRs) have been tested successfully at the pilot scale for perchlorate treatment at several sites, and two full‐scale FBR systems are currently treating perchlorate‐contaminated groundwater in California and Texas. A third full‐scale treatment system is scheduled for start‐up in early 2002. The in‐situ treatment of perchlorate through addition of specific electron donors to groundwater also appears to hold promise as a bioremediation technology. Recent studies suggest that perchlorate‐reducing bacteria are widely occurring in nature, including in groundwater aquifers, and that these organisms can be stimulated to degrade perchlorate to below the current analytical reporting limit (< 4 μg/l) in many instances. In this article, in‐situ and ex‐situ options for biological treatment of perchlorate‐contaminated groundwater are discussed and results from laboratory and field experiments are presented. © 2002 Wiley Periodicals, Inc.  相似文献   

11.
Electrical resistance heating (ERH) is an in situ treatment for soil and groundwater remediation that can reduce the time to clean up volatile organic compounds (VOCs) from years to months. The technology is now mature enough to provide site owners with both performance and financial certainty in their site‐closure process. The ability of the technology to remediate soil and groundwater impacted by chlorinated solvents and petroleum hydrocarbons regardless of lithology proves to be beneficial over conventional in situ technologies that are dependent on advective flow. These conventional technologies include: soil vapor recovery, air sparging, and pumpand‐treat, or the delivery of fluids to the subsurface such as chemical oxidization and bioremediation. The technology is very tolerant of subsurface heterogeneities and actually performs as well in low‐permeability silts and clay as in higher‐ permeability sands and gravels. ERH is often implemented around and under buildings and public access areas without upsetting normal business operations. ERH may also be combined with other treatment technologies to optimize and enhance their performance. This article describes how the technology was developed, how it works, and provides two case studies where ERH was used to remediate complex lithologies. © 2005 Wiley Periodicals, Inc.  相似文献   

12.
Off-site reclamation and incineration of residues proved to be the most efficient and cost-effective solution for remediation of the Broderick Wood Products Superfund site, a closed-down wood-preserving plant outside of Denver, Colorado. More than 3,200 cubic yards of hazardous K001 creosote sludge were removed and recovered at a total cost of only $3.1 million.  相似文献   

13.
Composting was applied as a bioremediation methodology for the reclamation of dredged sediments of Isnapur, Khazipally and Gandigudem lakes polluted with industrial wastes. The present study is an attempt to elaborate upon organic matter transformations and define the parameters for product maturity adapting chemical and spectroscopic methods during composting. The stability and maturity of sediments were evaluated by assessing parameters like C/N ratio, nitrification index (NH(4)-N/NO(3)-N), water-soluble organic carbon concentration, CO(2) evolution rate, cation exchange capacity and indices such as humification index, E4/E6 ratio, compost mineralization index (ash content/oxidizable carbon), germination index, dehydrogenase, polyphenoloxidase activities and FTIR spectroscopy. The results showed that the changes in the above chemical and biological parameters can be employed as reliable indicators of stability and maturity. The FTIR spectra revealed enrichment in the aromatic groups and a degradation of the aliphatic groups indicating stabilization of the final compost.  相似文献   

14.
Although the application of microbe biotechnology has been successful with petroleum-based constituents, microbial digestion has met with limited success for widespread residual organic and metal pollutants located above the potentiometric surface. Vegetation-based remediation, on the other hand, shows potential for accumulating, immobilizing, and transforming low levels of persistent contamination from the subsurface. Agricultural bioremediation, called geobotany or phytoremediation, relies on the remediating abilities of contaminant-accumulating plants to remove contamination from soil or groundwater. In natural ecosystems, plants act to filter and metabolize substances generated by nature. Phytoremediation affirmatively applies this process to help clean up contamination created by artificial means. Plants have proven effective at remediating areas contaminated with organic chemical wastes such as petroleum products, solvents, wood preservatives, pesticides, and metals. Phytoremediation is not the best technology for every site but has shown success with lead, cadmium, zinc, and radionuclides. The phytoremediation process takes much longer than conventional methods to clean a site and is dependent upon the type and degree of contamination. Concentrations must be within a narrow range of tolerable levels and the presence of the contamination must be at the appropriate depth. Nevertheless, phytoremediation offers an effective alternative to conventional, engineered remedial plans that usually involve costly activities like excavation, treatment, and disposal of soil or pump-and-treat technologies for groundwater. Phytoremediation also seems to be a promising new technology for the treatment of stormwater, industrial wastewater, and sewage. The relative low costs of capital for start-up together with negligible operations and maintenance costs provide a strong incentive for further investigation and development of phytoremediation projects.  相似文献   

15.
Removal of benzene, toluene, and the isomers of xylene (BTX) from gasoline-contaminated groundwater under denitrifying conditions was investigated. In laboratory microcosms, benzene removal was found to be significantly stimulated by phosphorus addition. For total xylenes, removal followed a similar response, but toluene disappearance was unaffected by phosphorus enrichment. An in-situ bioremediation project was conducted to extend this laboratory work to an actual field-scale cleanup of gasoline-contaminated groundwater. The flow of groundwater from two extraction wells to an infiltration gallery created a mostly closed loop to recycle the groundwater enriched with added nutrients and the electron acceptor (nitrate). The coincident occurrence of BTX loss (greater than 90 percent) in situ, nitrate (as well as phosphorus and ammonia) appearance, and increased levels of denitrifying bacteria at a downgradient well all suggested that denitrification may play a significant role in BTX remediation at this site.  相似文献   

16.
 The concentrations of bisphenol A (BPA) contained in landfill leachates from solid waste disposal sites were measured. The concentrations of BPA contained in leachates from industrial waste sites were in the range below the detection limit to 2800 μg/l, while those from municipal sites were in the range 26–8400 μg/l. The leachates from ash-rich sites contained relatively lower concentrations of BPA compared with organic-rich leachates. It is suggested that BPA concentration increases with time after the completion of reclamation in the case of ash-rich sites, whereas the concentration of BPA decreases with time in the case of organic-rich sites. A 7-year survey on a site in Japan showed neither a decrease nor an increase in the concentration of BPA during on-going reclamation. A leachate from a site in the Philippines contained high concentrations of BPA. A slight positive correlation was found between BPA concentrations and total organic carbon (TOC). A major portion of the BPA in leachates was found in dissolved and organic unassociated fractions, which cannot be precipitated by coagulation. More than 99.9% of the BPA contained in raw leachates was removed by a conventional series of treatment processes consisting of biological treatment, coagulation, sedimentation, sand filtration, and activated carbon adsorption. Received: May 29, 2002 / Accepted: October 17, 2002  相似文献   

17.
18.
Experimental oil spill studies were conducted to quantify the effectiveness of selected in-situ shoreline treatment options to accelerate natural oil removal processes on mixed-sediment (sand and pebble) shorelines. At each of three distinct shoreline sites, treatment test plots and control plots were established within a 40-, 80- and 143-m continuous stretch of oiled shoreline. A total of 5500 l of oil was deposited along a 3-m wide swath in the upper intertidal zone at each site. Approximately one week after oiling, a different treatment technique was applied to each plot. The treatment techniques were: sediment relocation (surf washing), mixing (tilling), bioremediation (fertilizer application), and bioremediation combined with mixing. One plot at each site was monitored for natural attenuation. The quantity of oil removed from the plots was measured six times up to 60 days post-treatment and then again one year later. Changes in the physical character of the beach, oil penetration, movement of oil to the subtidal environment, toxicity, and biodegradation were monitored over the 400-day period.The results verified quantitatively that relocation of oiled sediments significantly accelerated the rate of oil removal from the shoreline by more than one year. Microscopic observations and image analyses confirmed that the oil-mineral aggregate formation process was active and was increased by sediment relocation. Oil biodegradation occurred in this arctic environment, both in the oiled sediments and on the fine mineral particles removed from the sediment by natural physical processes. The biodegradation of oil in sediment was significantly stimulated by simple bioremediation protocols. Mixing (by tilling) did not clearly stimulate oil loss and natural recovery in the context of this experimental design. None of the treatment techniques elevated toxicity in the nearshore environment to unacceptable levels, nor did they result in consequential alongshore or nearshore oiling.  相似文献   

19.
生物表面活性剂强化疏水性有机污染物生物降解研究进展   总被引:7,自引:0,他引:7  
介绍了生物表面活性剂的类型、理化性质、生物表面活性剂提高疏水性有机污染物生物可利用性的机理及其在污染场地生物修复中应用方面的研究进展。生物表面活性剂不仅具有乳化、增溶、降低表/界面张力等功能,而且低毒、对环境友好、易于生物降解,因而在环境污染的生物治理方面具有极大的应用潜力。  相似文献   

20.
Groundwater at the former Serry's Dry Cleaning site in Corvallis, Oregon, was impacted by chlorinated volatile organic compounds (CVOCs). The primary CVOCs impacting the site include tetrachloroethene, trichloroethene, dichloroethene, and vinyl chloride, which were detected at concentrations up to 22,000, 1,700, 3,100, and 7 μg/L, respectively, prior to treatment. Large seasonal fluctuations in groundwater CVOC concentrations indicated that a significant fraction of the CVOC mass was present in the smear zone. Field‐scale pilot tests were performed for the Oregon Department of Environmental Quality's Dry Cleaner Program to evaluate the performance of EHC® in situ chemical reduction (ISCR) technology. The pilot study involved evaluating field performance and physical distribution into low‐permeability soil using basic Geoprobe® injection tooling. The testing results confirmed that bioremediation enhanced by ISCR supported long‐term treatment at the site. This article describes the implementation and results of the tests. Performance data are available from a three‐year period following the injections, allowing for a discussion about sustained performance and reagent longevity. © 2010 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号