首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
介绍了燃煤电站汞的排放状况,并指出了汞危害性以及我国面临的脱汞压力,论述了烟气中汞存在形式以及影响其存在形式的因素.探讨了当前燃煤电站利用现有污染控制设备进行协同脱汞的研究进展,包括:燃烧器/反应器、选择性催化还原脱硝(SCR)、电除尘器(布袋除尘)(ESP/FF)、湿法烟气脱硫系统(WFGD)等设备.提出了脱汞吸附剂处理问题,并对今后烟气脱汞技术的研究趋势进行了展望.  相似文献   

2.
Chemical remediation of soil may involve the use of harsh chemicals that generate waste streams, which may adversely affect the soil's integrity and ability to support vegetation. This article reviews the potential use of benign reagents, such as biopolymers, to extract heavy metals. The biopolymers discussed are chitin and chitosan, modified starch, cellulose, and polymer-containing algae.  相似文献   

3.
The purpose of this study was to determine the hexavalent chromium (CrVI) biosorption capacities of several agricultural wastes from aqueous solutions. Samples were tested unaltered and after hydrochloric acid (HCl) treatment. Additional parameters tested include sample dose, contact time, particle size, mixing temperature, and the concentrations and pH of the CrVI solutions. Desorption studies were performed to determine if the removed CrVI could be recovered. In addition, tests were conducted to determine if the agricultural waste samples (AWS) could be reused for additional CrVI biosorption cycles. The results of this study demonstrate a wide range of CrVI biosorption proficiencies ranging from 13 to 98 percent removal. The parameters that resulted in higher CrVI removal include HCl treatment, higher sample dose, lower CrVI solution concentration, and lower mixing temperature. Desorption results showed an 8 to 25 percent CrVI recovery rate. Reused AWS were effective at removing CrVI during subsequent trials. Therefore, all AWS can be reused for additional CrVI biosorption cycles. Hence, these could reduce hazardous waste disposal inefficiencies and costs by avoiding disposing of spent AWS following each CrVI biosorption cycle.  相似文献   

4.
5.
制备了沸石负载纳米TiO_2催化剂和蒙脱土负载纳米零价铁吸附剂,结合传统处理技术,构建了"絮凝—预氧化(Fenton氧化)—沸石负载纳米TiO_2催化臭氧氧化—蒙脱土载负纳米零价铁吸附"组合工艺,处理压裂返排液,考察了影响COD去除效果的因素。实验结果表明:在催化剂投加量1.0 g/L、臭氧通入时间5 min、吸附剂投加量5.0 g/L、吸附时间4 h的最佳条件下,COD从原水的4 032.60 mg/L降至37.03 mg/L,处理后出水各项指标均达到GB 8978—1996《污水综合排放标准》中的一级标准;80℃下,出水回用配制的压裂液黏度为4.4 mPa·s,高于自来水配制和压裂返排液配制的压裂液,耐温性有一定提升。  相似文献   

6.
综述了传统处理方法和深度处理方法两大类压裂返排液处理方法的特点和处理效率。介绍了对氧化破胶的压裂返排液和非氧化破胶的压裂返排液进行处理的方法和机理,以及返排液循环使用效果和性能检测的标准。指出研发含有高分子聚合物稠化剂的返排液循环使用工艺、高效便捷的压裂返排液循环使用工艺和新型可循环使用的压裂液体系等将是未来压裂返排液循环使用的发展方向。  相似文献   

7.
将石灰混凝处理后的沉淀泥渣进行回流,对石灰混凝法进行改进,研究改进后的石灰混凝法对城市污水二级出水中有机物的去除效果。结果表明,活性泥渣回流有利于提高石灰混凝法对城市污水二级出水中有机物的去除。回流位置在石灰投加前、复合絮凝剂投加后,最佳回流量为新泥渣产生量的100%~200%,活性泥渣回流的最佳pH为11.0~11.5;活性泥渣中CaCO3、Mg(OH)2、Fe(OH)3等沉淀物以及有机高分子絮体均有助于提高其对有机物的去除效果,其中Mg(OH)2沉淀物起主导作用;含循环泥渣的活性污泥回流,对有机物的去除效果无明显影响。  相似文献   

8.
The New Jersey Department of Environmental Protection and Energy (NJDEPE) has been developing cleanup regulations that focus on remediation, rather than extended delineation, and on integrating regulatory requirements with technological developments. To this end, the NJDEPE, under the regulatory aegis of the Environmental Cleanup and Responsibility Act (ECRA), is monitoring an innovative treatment technology pilot test at a TCE-contaminated ECRA site in Hillsborough, New Jersey. The purpose of the study is to determine the applicability of pneumatic fracturing extraction (PFE) as a source-removal technique for extracting volatile organic compounds (VOCs) trapped informations with low permeability. The technology being pilot tested is pneumatic fracturing extraction, a process for enhancing permeability to promote in-situ removal and treatment of VOCs. The patented process uses high-pressure air injected into an isolated subsurface zone at controlled rates and pressures. At a critical point, the geologic material ruptures, and fractures are created that radiate outward from the fracture location. At the pilot test site, formation air flow was increased from 400 percent to 700 percent. PFE is a key component of the overall remediation strategy at the Hillsborough site. Consistent with proposed NJDEPE regulations, a ground-water pump-and-treat system will be installed for plume migration control. Once the pump-and-treat system has been established and shown to be effective, a more aggressive source removal program will be implemented using PFE. This program will include construction of a vadose zone PFE system and evaluation of the use of pneumatic fracturing to remove saturated zone residual dense nonaqueous phase liquids (DNAPL). Preliminary calculations suggest that if source zone concentrations can be reduced to 10 ppm of TCE, then TCE groundwater concentrations may be reduced to background levels at the property boundary compliance points.  相似文献   

9.
Infiltration and reinjection of treated groundwater have been used to increase the recovery of pesticide-related constituents at a pesticide formulation plant that produces consumer pesticide products. The stratigraphy at the site consists of silty and sandy clay deposits overlying a shallow silt, sand, and gravel aquifer. The groundwater and soils in two areas in the northwest portion of the property have been identified as being significantly affected by pesticide and pesticide-related compounds. An integrated system of soil removal, recovery wells, injection wells, an infiltration gallery, and a cut-off wall was selected as the best remedial alternative. Groundwater modeling, column tests, biological jar tests, and a pilot test demonstrated the feasibility of the system. The affected groundwater is treated to drinking-water quality by a system of filtering and carbon adsorption. Approximately 75 percent of the treated water is reinjected or allowed to infiltrate through the vadose zone, and the remainder is discharged to the local sewer system. Initially, the system was effective in removing the dissolved, suspended, and weakly adsorbed constituents. Subsequently, the recovery rate of the chemical constituents became dependent on chemical and physical processes related to the presence of residual amounts of dense, nonaqueous phase liquids and the clay content of the strata. The rate of pesticide recovery has decreased because of the retarding effect of the clay and the low solubility of the pesticides.  相似文献   

10.
11.
分析了油田压裂返排液的组分和特点,归纳总结了成熟的传统压裂返排液处理技术和新型处理技术的优缺点,提出了压裂返排液处理应朝着优化工艺组合、开发高级氧化和电絮凝等新技术、研制撬装处理设备使处理工艺模块化和有效成分回收利用等未来方向发展,为油田压裂返排液无害化、资源化处理技术的研发提供了思路和参考。  相似文献   

12.
采用微电解—Fenton氧化—絮凝组合工艺处理油田压裂废水,优化了工艺条件。实验结果表明:最佳工艺条件为初始废水pH 3.0、铁屑加入量1.5 g/L(铁屑与活性炭的质量比1∶1)、微电解时间80 min、Fenton氧化时间120 min、H2O2加入量940 mg/L,阳离子聚丙烯酰胺加入量120 mg/L;在最佳工艺条件下处理废水后,COD由3 116.0 mg/L降至681.3 mg/L,总COD去除率达78.1%,3个工段的COD去除率依次为33.1%,37.9%,7.1%,出水水质满足现场回注标准(SY/T 5329—2012《碎屑岩油藏注水水质推荐指标及分析方法》);该组合工艺对废水的处理效果远优于单独微电解、Fenton氧化或絮凝工艺,且方法简单易行、药剂利用率高。  相似文献   

13.
对西南地区某页岩气田压裂返排液进行了分析,在此基础上采用双效机械蒸汽再压缩(MVR)系统对其进行处理,建立了完整的计算模型,并对影响系统的主要参数进行了探讨。压裂返排液分析结果表明:蒸发浓缩液黏度与相同浓度氯化钠溶液的黏度相近,可排除因有机物富集导致其在蒸发器内壁附着而影响传热系数及堵塞蒸发器的可能。模型计算结果表明:进料含盐率由2%增至6%时,压缩机比功耗与压缩机进气量的降幅均小于4.0%,两效蒸发器面积分别减小约4.3%和18.5%;传热温差由4℃升至8℃时,压缩机比功耗增加约51.0%,两效蒸发器面积均减小约49.6%;在系统安全运行的前提下,提高蒸发温度可降低系统能耗。  相似文献   

14.
王燕  吴先威  易俊  戴捷 《化工环保》2018,38(3):251-255
采用不锈钢作阴极、镀钌铱的钛板作阳极、铁碳材料作粒子电极,构建新型三维电化学氧化体系,处理压裂返排液,并通过响应曲面法考察COD去除率和除油率的影响因素。实验结果表明:回归方程的相关系数及校正相关系数均大于0.9,回归方程的线性关系显著;返排液COD去除率和除油率影响因素的大小顺序均为电流电解时间粒子填充比,其中关键因素是电流,电解时间和粒子填充比之间的交互作用具有较大影响;在电解时间为31.8 min、电流为4.4 A、粒子填充比为61.2%的条件下,COD从606.4 mg/L降至68.5 mg/L,含油量从153.7 mg/L降至9.1 mg/L,达到GB 8978—1996《污水综合排放标准》中的一级标准。  相似文献   

15.
根据“十二五”环境保护规划要求,现役火电机组大部分脱硫装置必须拆除旁路挡板。介绍了现役火电机组脱硫装置旁路烟道设置所发挥的作用,分析了现役火电机组脱硫装置拆除旁路挡板后对机组所产生的影响及存在问题,并提出了相应的改造、完善和运维管理措施,为现役火电机组拆除脱硫旁路挡板后的工作提供借鉴和帮助。  相似文献   

16.
冯岐  刘德蓉  何芳  任勇  袁涛  熊伟 《化工环保》2018,38(3):317-322
采用电絮凝-过硫酸盐氧化协同工艺处理页岩气压裂返排废水,通过电解过程产生的Fe2+活化过硫酸盐产生强氧化性的硫酸根自由基氧化废水中的有机物,同时Fe2+被氧化成Fe3+进而水解起到絮凝作用。实验结果表明,在电解时间25 min、电流密度41.7 m A/cm~2、电极间距4 cm、搅拌转速100 r/min、废水pH 7.0、过硫酸盐添加量0.006 mol/L的条件下,COD去除率达94.5%,出水BOD_5/COD从0.13增至0.56,电导率从104 mS/m降至71 mS/m,矿化度从16 704 mg/L降至4 065 mg/L,不可滤残渣含量从554 mg/L降至59 mg/L。电絮凝-过硫酸盐氧化协同处理的效果明显优于单独电絮凝和硫酸亚铁活化过硫酸盐氧化工艺,循环伏安测试结果表明其原因是硫酸根自由基的产生,同时溶液的导电性增强,强化了絮凝效果。  相似文献   

17.
针对苏里格气田压裂返排液的特点,形成一套以"微生物降解—化学氧化"、"屏蔽-沉淀"、"混凝-沉降"、"交联抑制"为特色的返排液处理技术,处理后水质清澈透明、无异味,满足重复配液需求。开发了一套模块化多功能处理装置,可满足不同的返排液处理需求,灵活方便、可靠性强、效率高,处理能力最高达300m~3/d。该技术已在苏里格区域全面推广应用,取得了良好的社会经济效益。  相似文献   

18.
A field pilot test in which hydraulic fracturing was used to emplace granular remediation amendment (a mixture of zero‐valent iron [ZVI] and organic carbon) into fine‐grained sandstone to remediate dissolved trichloroethene (TCE)‐contaminated groundwater was performed at a former intercontinental ballistic missile site in Colorado. Hydraulic fracturing was used to enhance the permeability of the aquifer with concurrent emplacement of amendment that facilitates TCE degradation. Geophysical monitoring and inverse modeling show that the network of amendment‐filled fractures extends throughout the aquifer volume targeted in the pilot test zone. Two years of subsequent groundwater monitoring demonstrate that amendment addition resulted in development of geochemical conditions favorable to both abiotic and biological TCE degradation, that TCE concentrations were substantially reduced (i.e., greater than 90 percent reduction in TCE mass), and that the primary degradation processes are likely abiotic. The pilot‐test data aided in re‐evaluating the conceptual site model and in designing the full‐scale remedy to address a larger portion of the TCE‐contaminated groundwater plume. © 2012 Wiley Periodicals, Inc.  相似文献   

19.
This article presents a case study of the source‐area treatment of tetrachloroethene (PCE) in a low‐permeability formation using zero‐valent iron (ZVI). Evidence of the stimulation of biological reduction processes within the treatment zone occurred. Pneumatic fracturing and injection of microscale ZVI slurry in the overburden and weathered bedrock zones was performed at a commercial brownfields redevelopment site in Maryland. A 20,000‐square‐foot source area impacted with PCE at concentrations greater than 15,000 µg/L was treated at depths ranging from 10 to 70 feet bgs. An average ZVI dosage of 0.0024 iron‐to‐soil mass ratio within the overburden zone led to a 75 percent decrease in PCE mass in less than one year. For the weathered bedrock zone, an average 0.0045 iron‐to‐soil mass ratio resulted in a 92 percent decrease in PCE mass during the same period. The reducing environment and hydrogen generated by the ZVI may have stimulated Dehalobacter populations, as evidenced by concentrations up to 104 cells per milliliter measured within the treatment area despite a groundwater pH as high as 9. The biological reductive dechlorination of the chlorinated ethenes explains the temporary increase in trichloroethene and cis‐1,2‐dichloroethene concentrations. © 2013 Wiley Periodicals, Inc.  相似文献   

20.
Pneumatic waste collection systems are becoming increasingly popular in new urban residential areas, and an attractive alternative to conventional vehicle-operated municipal solid waste (MSW) collection also in ready-built urban areas. How well pneumatic systems perform in ready-built areas is, however, an unexplored topic. In this paper, we analyze how a hypothetical stationary pneumatic waste collection system compares economically to a traditional vehicle-operated door-to-door collection system in an existing, densely populated urban area. Both pneumatic and door-to-door collection systems face disadvantages in such areas. While buildings and fixed city infrastructure increase the installation costs of a pneumatic system in existing residential areas, the limited space for waste transportation vehicles and containers cause problems for vehicle-operated waste collection systems. The method used for analyzing the cost effects of the compared waste collection systems in our case study takes into account also monetized environmental effects of both waste collection systems. As a result, we find that the door-to-door collection system is economically almost six times more superior. The dominant cost factor in the analysis is the large investment cost of the pneumatic system. The economic value of land is an important variable, as it is able to reverse the results, if the value of land saved with a pneumatic system is sufficiently high.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号