首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Phytoremediation of pollutants in soils is an emerging technology, using different soil-plant interaction properties. For organic pollutants, such as polycyclic aromatic hydrocarbons (PAHs), phytodegradation seems to be the most promising approach. It occurs mostly through an increase of the microbial activity in the plant rhizosphere, allowing the degradation of organic substances, a source of carbon for soil microbes. Despite a large amount of available data in the literature concerning laboratory and short term PAH phytodegradation experiments, no actual field application of such technique was previously carried out. In the present study, a soil from a former coking plant was used to evaluate the feasibility and the efficiency of PAH phytodegradation in the field during a three years trial and following a bioremediation treatment. Before the phytoremediation treatment, the soil was homogenized and split into six independent plots with no hydrological connections. On four of these plots, different types of common plant species were sowed: mixture of herbaceous species, short cut (P1), long cut (P2), ornamental plants (P3) and trees (P4). Natural vegetation was allowed to grow on the fifth plot (P5), and the last plot was weeded (P6). Each year, representative sampling of two soil horizons (0–50 and 50–100 cm) was carried out in each plot to characterize the evolution of PAHs concentration in soils and in soils solution obtained by lixiviation. Possible impact of the phytoremediation technique on ecosystems was evaluated using different eco- and genotoxicity tests both on the soil solid matrix and on the soil solution. For each soil horizon, comparable decrease of soil total PAHs concentrations were obtained for three plots, reaching a maximum value of 26% of the initial PAHs concentration. The decrease mostly concerned the 3 rings PAHs. The overall low decrease in PAHs content was linked to a drastic decrease in PAHs availability likely due to the bioremediation treatment. However, soil solutions concentration showed low values and no signficant toxicity was characterized. The mixture of the herbaceous species seemed to be the most promising plants to be used in such procedure.  相似文献   

2.
3.
The evaluation and selection of technologies for the effective remediation of hydrocarbon-contaminated sites requires careful consideration of the waste/site/soil characteristics that determine their ultimate success. The presence of weathered hydrocarbon wastes and sub-optimal environmental conditions places technical restraints on the bioremediation of polynuclear aromatic hydrocarbon-contaminated soils. A brief overview of applicable bioremediation technologies is followed by an indepth critical evaluation of limiting factors that can influence the efficacy of biotreatment options, including waste composition, temperature, substrate, bioavailability, accompanying toxicants and soil structure.  相似文献   

4.
Soil and groundwater contamination due to petroleum hydrocarbon spills is a frequent problem worldwide. In Mexico, even when programs oriented to the diminution of these undesirable events exist, in 2000, a total of 1,518 petroleum spills were reported. Exploration zones, refineries, and oil distribution and storage stations frequently are contaminated with total petroleum hydrocarbons (TPH); diesel fraction; gasoline fraction; benzene, toluene, ethyl benzene, and xylenes (BTEX); and polycyclic aromatic hydrocarbons (PAHs). Among the many methodologies available for the treatment of this kind of contaminated soil, bioremediation is the most favorable, because it is an efficient/low‐cost option that is environmentally friendly. This article discusses the capability of using a biopile to treat soils contaminated with about 40,000 mg/kg of TPH. Design and operation of a 27‐m3 biopile is described in this work, including microbiological and respirometric aspects. Parameters such as TPH, diesel fraction, BTEX, and PAHs considered by the U.S. Environmental Protection Agency were measured in biopile samples at 0, 2, 4, 6, 8, 10, and 22 weeks. A final average TPH concentration of 7,300 mg/kg was achieved in 22 weeks, a removal efficiency of 80 percent. © 2007 Wiley Periodicals, Inc.  相似文献   

5.
Heavy metal contamination of soil resulting from anthropogenic sources poses a significant challenge in many industrialized societies. The current technologies employed for removal of heavy metals often involve expensive ex-situ processes requiring sophisticated equipment and removal, transportation, and purification of the soil. Generally, in-situ remedial technologies are favored to ex-situ methods for detoxification, neutralization, degradation, or immobilization of contaminants. In-situ bioremediation is increasingly favored because of its effectiveness and low cost. A new type of bioremediation, known as vegetative remediation or “phytoremediation,” uses metal-tolerant hyperaccumulator plants to take up metal ions from soils and store them in their aboveground parts. To select the appropriate phytoremediation technology, one must understand the technical feasibility, cost effectiveness, and availability of the suitable plant species. Equally important is determining whether the site's soil conditions are optimal to enhance or restore the soil biological activity. Before phytoremediation can be exploited on a contaminated site, greenhouse-scale confirmatory testing is necessary to measure plant uptake and correlate shoot metal concentrations to available soil metals. These tests also validate that the harvesting and subsequent disposal of metal-containing plant tissues are environmentally safe and manageable.  相似文献   

6.
Soil pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a consequence of various industrial processes which destabilizes the ecosystem. Bioremediation by bacteria is a cost‐effective and environmentally safe solution for reducing or eliminating pollutants in soils. In the present study, we artificially polluted agricultural soil with used automobile engine oil with a high PAH content and then isolated bacteria from the soil after 10 weeks. Pseudomonas sp. strain 10–1B was isolated from the bacterial community that endured this artificial pollution. We sequenced its genomic DNA on Illumina MiSeq sequencer and evaluated its ability to solubilize phosphate, fix atmospheric nitrogen, and produce indoleacetic acid, in vitro, to ascertain its potential for contribution to soil fertility. Its genome annotation predicted several dioxygenases, reductases, ferredoxin, and Rieske proteins important in the ring hydroxylation initiating PAH degradation. The strain was positive for the soil fertility attributes evaluated. Such combination of attributes is important for any potential bacterium partaking in sustainable bioremediation of PAH‐polluted soil.  相似文献   

7.
多环芳烃污染土壤的微生物修复技术   总被引:1,自引:1,他引:0  
对生物修复技术中的微生物进行了分类,并阐述了微生物生物降解土壤中多环芳烃(PAHs)的基本原理。在此基础上,分析了国内外微生物生物修复技术的发展概况,采用图示法重点综述了原位处理技术和非原位处理技术的工艺流程,并列举了相应的工程应用实例。  相似文献   

8.
The ubiquity of polynuclear aromatic hydrocarbons (PAHs) in sewage sludges is now well documented. Since PAHs exhibit carcinogenic/mutagenic behaviour concern has been expressed over their fate following sludge application to agricultural soils. This paper presents a resume of the behaviour of sludge applied PAHs in soils and their propensity to transfer from the soil into plant tissues. This information is used to assess the environmental significance of PAHs in sludge amended soils. Sludge PAH inputs to the U.K. environment are compared with other known sources, such as waste disposal and atmospheric deposition and the possible impact of sludge application on human exposure is considered. It is concluded that at present there is no necessity to specifically regulate PAH inputs to agricultural soils in sewage sludge.  相似文献   

9.
This study was undertaken to evaluate in-situ soil bioremediation processes, including degradation and detoxification, for two types of wood preserving wastes and two types of petroleum refining wastes at high concentrations in an unacclimated soil. The soil solid phase, water soluble fractions of the soil, and column leachates were evaluated. Two bioassays, a mutagenic potential asay (Ames assay) and an aqueous toxicity assay (Microtox assay) were used to evaluate detoxification; high performance liquid chromatography was used to evaluate chemical concentration and degradation for eight polynuclear aromatic hydrocarbons (PAHs). The group of non-carcinogenic PAHs studied demonstrated greater degradation, ranging from 54–90% of mass added for the four wastes; the carcinogenic group of PAHs studied exhibited degradation ranging from 24–53% of mass added. Although no mutagenicity was observed in waste/soil mixtures after one year of treatment, Microtox toxicity was observed in water soluble fractions and in leachate samples. An integration of information concerning degradation of hazardous constituents with bioassay information represents an approach for designing treatability studies and for evaluating the effectiveness of in-situ bioremediation of contaminated soil/waste systems. When combined with information from waste, site and soil characterization studies, the data generated in treatability studies may be used in predictive mathematical models to: (1) evaluate the effectiveness of use of on-site bioremediation for treatment of wastes in soil systems; (2) develop appropriate containment structures to prevent unacceptable waste transport from the treatment zone; and (3) design performance monitoring strategies.  相似文献   

10.
Bioremediation is a proven alternative for remediating petroleum‐impacted soils at exploration and production (E&P) sites. Monitoring remediation performance can involve detection and quantification of biodegradation resistant compounds such as C3017α(H),21β(H)‐hopane, which requires the use of gas chromatography with mass spectrometry detection (GC/MS). Due to the remoteness of many E&P sites, this technology is not always available, and alternative methods are needed to provide reliable quantitative measurements of petroleum remediation efficiency. This study provides a detailed chemical characterization of lacustrine‐sourced crude oils and a technical basis for measuring the effectiveness of bioremediation efforts for soil impacted by those crudes. We show that the novel isoprenoid hydrocarbon botryococcane is relatively stable in lacustrine‐sourced crude oils compared with C3017α(H),21β(H)‐hopane under moderate biodegradation conditions generally observed in field samples. We have also demonstrated that, due to the stability and relatively elevated concentration of botryococcane in lacustrine oils, it can be reliably measured using the more cost‐effective and available GC/FID methodology, and thereby be used to monitor the progress of ongoing soil bioremediation activities at remote sites.  相似文献   

11.
Low-temperature thermal aeration (LTTA) is a remedial technology developed by Canonie Environmental Services Corp. (Canonie) for use on soils containing nonchlorinated hydrocarbons, chlorinated solvents, volatile organic compounds (VOCs), chlorinated pesticides, and low levels of polynuclear aromatic hydrocarbons (PAHs). The LTTA system separates these hazardous constituents from excavated soils and allows the treated soils to be redeposited on-site without restriction. This article describes the various components and operation of LTTA systems for the remediation of soils contaminated with chlorinated and nonchlorinated constituents. The article also details the results of projects completed to date, principally for soil impacted with chlorinated hydrocarbons, and discusses the general characteristics and results of systems used for soils contaminated with nonchlorinated hydrocarbons (gasoline, etc.).  相似文献   

12.
The biodegradation of 16 polycyclic aromatic hydrocarbons (PAHs), listed as priority pollutants by the USEPA, present in a coal-tar-contaminated soil from a former manufactured gas plant site was investigated using laboratory-scale in-vessel composting reactors to determine the suitability of this approach as a bioremediation technology. Preliminary investigations were conducted over 16 weeks to determine the optimum soil composting temperature (38, 55 and 70 degrees C). Three tests were performed; firstly, soil was composted with green-waste, with a moisture content of 60%. Secondly, microbial activity was HgCl2-inhibited in the soil green-waste mixture with a moisture content of 60%, to evaluate abiotic losses, while in the third experiment only soil was incubated at the three different temperatures. PAHs and microbial populations were monitored. PAHs were lost from all treatments with 38 degrees C being the optimum temperature for both PAH removal and microbial activity. Calculated activation energy values (E(a)) for total PAHs suggested that the main loss mechanism in the soil-green waste reactors was biological, whereas in the soil reactors it was chemical. Total PAH losses in the soil-green waste composting mixtures were by pseudo-first order kinetics at 38 degrees C (k = 0.013 day(-1), R2 = 0.95), 55 degrees C (k = 0.010 day(-1), R2 = 0.76) and at 70 degrees C (k = 0.009 day(-1), R2 = 0.73).  相似文献   

13.
Traditional bioremediation approaches have been used to treat petroleum source contamination in readily accessible soils and sludges. Contamination under existing structures is a greater challenge. Options to deal with this problem have usually been in the extreme (i.e., to dismantle the facility and excavate to an acceptable regulated residual, or to pump and treat for an inordinately long period of time). The excavated material must be further remediated and cleanfill must be added to close the excavation. If site assessments were too conservative or incomplete, new contamination adulterating fill soils may result in additional excavation at some later date. Innovative, cost-efficient technologies must be developed to remove preexisting wastes under structures and to reduce future remediation episodes. An innovative soil bioremediation treatment method was developed and evaluated in petroleum hydrocarbon contaminated (PHC) soils at compressor stations of a natural gas pipeline running through Louisiana. The in-situ protocol was developed for remediating significant acreage subjected to contamination by petroleum-based lubricants and other PHC products resulting from a chronic leakage of lubricating oil used to maintain the pipeline itself. Initial total petroleum hydrocarbon (TPH) measurements revealed values of up to 12,000 mg/kg soil dry weight. The aim of the remediation project was to reduce TPH concentration in the contaminated soils to a level of <200 mg/kg soil dry weight, a level negotiated to be acceptable to state and federal regulators. After monitoring the system for 122 days, all sites showed greater than 99-percent reduction in TPH concentration.  相似文献   

14.
Experience with bioremediation technology has enabled bioremediation contractors to offer performance-based contracts for many types of bioremediation projects. This development is significant because it alleviates the previous concern with the technology regarding its lack of success at certain sites. Environmental Strategies Corporation, an independent environmental consulting firm with no financial interest in bioremediation technology, conducted an independent survey to identify bioremediation contractors that are willing to enter into performance-based bioremediation contracts. This article discusses the background of treating contaminated soil and groundwater using bioremediation and describes how a performance-based contract can be structured. The survey's format and results are then presented and analyzed. Finally, several case studies of successful bioremediation projects are presented.  相似文献   

15.
The direct application of surfactants to petroleum-contaminated soil has been proposed as a mechanism to increase the bioavailability of insoluble compounds. Solubilization of hydrophobic compounds into the aqueous phase appears to be a significant rate limiting factor in petroleum biodegradation in soil. Nonionic surfactants have been developed to solubilize a variety of compounds, thus increasing the desorption of contaminants from the soil. In this study, laboratory scale land treatment scenarios were used to monitor the bioremediation of petroleum contaminated soils. In efforts to achieve the lowest levels of residual petroleum hydrocarbons in the soil following biotreatment, 0.5 and 1.0% (volume/weight) surfactant was blended into soils under treatment. Two soil types were studied, a high clay content soil and a sandy, silty soil. In both cases, the addition of surfactant (Adsee 799®, a blend of ethoxylated fatty acids, Witco Corporation) stimulated biological activity as indicated by increased heterotropbic colony forming units per gram of soil. However, the increased activity was not correlated with removal of petroleum hydrocarbons. The results suggest that the application of surfactants directly to the soil for the purpose of solubilizing hydropbobic compounds was not successful in achieving greater levels of petroleum hydrocarbon removal.  相似文献   

16.
房彬  张建  李玉庆  刘范嘉  马劲 《化工环保》2016,36(4):375-380
综述了植物修复、微生物修复和生物联合修复等土壤氰化物污染生物修复技术的降解机理、降解途径及降解影响因素的研究进展,探讨了氰化物生物修复技术的发展趋势和应用前景。指出基于提高修复时效和针对土壤复合污染类型的多技术融合研究、基于提高微生物耐受性和降解效率的菌株固定化及菌根真菌-植物联合技术研究以及基于工程化应用为导向的现场试验研究是未来研究的重点领域,为土壤氰化物污染的综合治理和修复提出了新思路。  相似文献   

17.
Asphalt products, particularly sealants, are prepared using petroleum products that contain a com‐plex mixture of aliphatic and aromatic hydrocarbons, including polycyclic aromatic hydrocarbons (PAHs). Clearly, these products are ubiquitous in urban environments, which raises an issue regard‐ing the potential for PAHs to be transported from parking lots to underlying or adjacent soil, surface‐water bodies, or groundwater. Based on a literature review, there are limited studies focus‐ing on this issue; however, the studies that have been published have fascinating conclusions. The literature shows, as expected, that asphalt‐based products contain PAHs. The highest PAH concen‐trations are present in asphalt sealants, particularly those manufactured using coal tar. Furthermore, due to the low solubility and high partition coefficients of PAHs, the potential for PAHs to leach from asphalt surfaces is negligible, which has been confirmed by leachability studies. Thus, there is little risk that PAHs will be present in stormwater runoff or leach into groundwater from asphalt‐paved areas in a dissolved form. However, asphalt pavement and sealants produce particulate matter that can contain concentrations of PAHs in the sub‐percent range (100s to 1,000s mg/kg total PAHs) that is transported in stormwater runoff. Some studies show that this can cause soil and sediment con‐tamination with total PAH concentrations in the range of 1 to 10 mg/kg. From a remediation per‐spective, many site cleanups are conducted to remediate the presence of PAHs to cleanup goals below 1 mg/kg or, in some cases, 0.1 mg/kg or lower. From a total risk perspective, remediating sites to low PAH cleanup goals may be unwarranted in light of the risk of transportable PAHs produced from paved parking surfaces. In other words, is it reasonable to conduct a cleanup to remediate low PAH concentrations and then redevelop the area with asphalt pavement and sealant, which may pose a greater PAH‐related risk? © 2006 Wiley Periodicals, Inc.  相似文献   

18.
During removal of an industrial landfill in Folsom, California, fill material was excavated and processed through a mechanical screening plant to segregate soil from construction and demolition debris. The segregated soil was stockpiled and analyzed for a wide range of chemical groups to determine if the soil could be backfilled on‐site. The analytical results indicated many of the stockpiles had concentrations of polycyclic aromatic hydrocarbons (PAHs) that exceeded US EPA Regional Screening Levels, and a large quantity of soil was initially classified as requiring off‐site disposal at considerable cost. Because PAHs are ubiquitous in urban settings and the landfill did not contain a significant source of PAHs, development of a site‐specific PAH cleanup goal was proposed to regulators. Cal/EPA guidance for using on‐site data to develop a background threshold for metals was applied to the development of the PAH cleanup goal. The Cal/EPA approach involves demonstrating whether the data belong to a single population or multiple populations based on data distribution tests and probability plots. This article explains the statistical and graphical methods that were used to demonstrate that the Cal/EPA approach was valid for PAHs and that the calculated cleanup level was consistent with published anthropogenic background levels of PAHs in California and across the United States. The site‐specific PAH cleanup goal enabled most of the soil to be backfilled on‐site, saving about $227,000 in transportation and disposal costs, and regulators subsequently approved unrestricted future use of the property. © 2010 Wiley Periodicals, Inc.  相似文献   

19.
In-situ bioremediation is a process by which contaminants in subsurface environments are biologically eliminated or mineralized; however, it is often difficult to implement. Microbes sparsely distributed in deep soils are incapable of degrading a chemical rapidly; furthermore, fine-pore structures of soils tend to retard the penetration and propagation of these microbes and hinder oxygen transfer. The latter is particularly detrimental to the aerobic growth of microbes, which is often essential for bioremediation. Measures intended to promote bioremediation, such as the addition of surfactants for enhancing dissolution and the application of genetically engineered microbes for accelerating the biodegradation of contaminants, are almost impossible to adopt. This is attributable to the fact that various facets of the bioremediation process (e.g., the distribution of dissolved contaminants, nutrients, and oxygen, and the concentration of microbes) cannot be readily manipulated. This article proposes a novel technology, namely, bio-wall. This technology resorts to an in-situ constructed medium with porosity and organic content greater than those of the original soil for promoting the adsorption and retention of microbes and the biodegradation of contaminants. Moreover, oxygen and nutrients are supplied to the bio-wall to facilitate microbialgrowth. The results of conceptual design study and simulation have revealed that the technology is indeed feasible and, under certain environmental conditions, cost-effective. Particularly noteworthy is the fact that bio-wall can prevent contaminant migration through the enhancement of the biodegradation rate and reduction of the plume-distance, both by several orders of magnitude.  相似文献   

20.
The effect of Tween 80 and selected bacteria additions on the bioremediation of PAH contaminated landfill soil (70.38mgkg(-1)) was evaluated in a slurry phase bioreactor. A phenanthrene-degrading consortium was selected by enrichment cultures and used as autochthonous inoculum. The Tween 80 addition increased the aqueous concentration of both high and low molecular weight PAHs. In the experiment with Tween 80 and inoculum addition, added microorganisms improved (>90%) the biodegradation of two- and three-ring PAHs as well as of the four-ring PAHs pyrene and fluoranthene. Biodegradation of the higher molecular weight PAHs was about 30% in experiments with Tween 80 addition, with and without inoculum addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号