首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Emissions of CO, N2O and NOx from combustion are estimated using a common set of demographic, economic and regulatory assumptions. The estimates represent a sum of emissions from six large geographical regions in which energy use was predicted using an economic forecasting model. Analysis was performed for 1960, 1975, 2000 and 2025. Future global CO emissions from combustion are likely to decrease because of regulation in the developed nations and fuel-switching in the developing nations. Future global N2O and NOx combustion emissions are likely to increase unless there is new regulation. The greatest uncertainties in emission estimates arise from not knowing the energy paths China and other developing nations will follow in the pursuit of economic development.  相似文献   

2.
3.
The spatial distributions of sulphur dioxide (SO2) and nitrogen oxides (NOx) emissions are essential inputs to models of atmospheric transport and deposition. Information of this type is required for international negotiations on emission reduction through the critical load approach. High-resolution emission maps for the Republic of Ireland have been created using emission totals and a geographical information system, supported by surrogate statistics and landcover information. Data have been subsequently allocated to the EMEP 50 x 50-km grid, used in long-range transport models for the investigation of transboundary air pollution. Approximately two-thirds of SO2 emissions in Ireland emanate from two grid-squares. Over 50% of total SO2 emissions originate from one grid-square in the west of Ireland, where the largest point sources of SO2 are located. Approximately 15% of the total SO2 emissions originate from the grid-square containing Dublin. SO2 emission densities for the remaining areas are very low, < 1 t km-2 year-1 for most grid-squares. NOx emissions show a very similar distribution pattern. However, NOx emissions are more evenly spread over the country, as about 40% of total NOx emissions originate from road transport.  相似文献   

4.
The anthropogenic emissions of SO2 and NOx for 25 Asian countries east of Afghanistan and Pakistan have been calculated for 1975, 1980, 1985, 1986 and 1987 based on fuel consumption, sulfur content in fuels and emission factors for used fuels in each emission category. The provincial- and regional-based calculations have also been made for China and India. The total SO2 emissions in these parts of Asia have been calculated to be 18.3 and 29.1 Tg in 1975 and 1987, respectively. The calculated total NOx emissions were 9.4 and 15.5 Tg in 1975 and 1987, respectively. The SO2 and NOx emissions in East Asia (China, Japan, South Korea, North Korea and Taiwan) were 23.4 and 10.7 Tg in 1975 and 1987, respectively.Keyword: Emission inventories, sulfur dioxide emissions, nitrogen oxide emissions, Asian emissions, anthropogenic emissions.  相似文献   

5.
An integrated approach for the simultaneous reduction of major combustion-generated pollutants from power plants is presented along with a simplified economic analysis. With this technology, the synergistic effects of high-temperature sorbent/coal or sorbent/natural gas injection and high-temperature flue gas filtration are exploited. Calcium-based (or Na-based, etc.) sorbents are sprayed in the post-flame zone of a furnace, where they react with S- and Cl-containing gases to form stable salts of Ca (or Na, etc.). The partially reacted sorbent is then collected in a high-temperature ceramic filter, which is placed downstream of the sorbent injection point, where it further reacts for a prolonged period of time. With this technique, both the likelihood of contact and the length of time of contact between the solid sorbent particles and the gaseous pollutants increase, because reaction takes place both in the furnace upstream of the filter and inside the filter itself. Hence, the sorbent utilization increases significantly. Several pollutants, such as SO2, H2S, HCl, and particulate (soot, ash, and tar), may be partially removed from the effluent. The organic content of the sorbents (or blends) also pyrolyzes and reduces NOx. Unburned carbon in the ash may be completely oxidized in the filter. The filter is cleaned periodically with aerodynamic regeneration (back pulsing) without interrupting furnace operation. The effectiveness of this technique has been shown in laboratory-scale experiments using either rather costly carboxylic salts of Ca or low- to moderate-cost blends of limestone, lime, or sodium bicarbonate with coal fines. Injection occurred in the furnace at 1150 degrees C, while the filter was maintained at 600 degrees C. Results showed that 65 or 40% SO2 removal was obtained with calcium formate or a limestone/coal blend, respectively, at an entering calcium-to-sulfur molar ratio of 2. A sodium bicarbonate/coal blend resulted in 78% SO2 removal at a sodium-to-sulfur molar ratio of 2. HCl removal efficiencies have been shown to be higher than those for SO2. NOx reductions of 40% have been observed with a fuel (coal)-to-air equivalence ratio, phi, around 2. The filter has been shown to be 97-99% efficient in removing PM2.5 particulates. Calculations herein show that this integrated sorbent/filter method is cost-effective, in comparison with current technologies, on both capital cost ($/kW) and levelized cost ($/ton pollutant removed) bases, if a limestone/coal mixture is used as the sorbent for fossil fuel plants. Capital costs for the filter/sorbent combination are estimated to be in the range of $61-$105/kW for a new plant. Because current technologies are designed for removing one pollutant at a time, both their cost and space requirements are higher than those of this integrated technique. At the minimum projected removal efficiencies for HCl/SO2/NOx of about 40%, the levelized costs are projected to be $203-$261/ton of combined pollutant SO2/HCl/NOx and particulates removed from coal-fired power plants.  相似文献   

6.
In this study, air pollutants, including ozone (O3), nitrogen oxides (NOx = NO + NO2), carbon monoxides (CO), sulfur dioxide (SO2), and volatile organic compounds (VOCs) measured in the Yangtze River Delta (YRD) region during several air flights between September/30 and October/11 are analyzed. This measurement provides horizontal and vertical distributions of air pollutants in the YRD region. The analysis of the result shows that the measured O3 concentrations range from 20 to 60 ppbv. These values are generally below the US national standard (84 ppbv), suggesting that at the present, the O3 pollutions are modest in this region. The NOx concentrations have strong spatial and temporal variations, ranging from 3 to 40 ppbv. The SO2 concentrations also have large spatial and temporal variations, ranging from 1 to 35 ppbv. The high concentrations of CO are measured with small variations, ranging from 3 to 7 ppmv. The concentrations of VOCs are relatively low, with the total VOC concentrations of less than 6 ppbv. The relative small VOC concentrations and the relative large NOx concentrations suggest that the O3 chemical formation is under a strong VOC-limited regime in the YRD region. The measured O3 and NOx concentrations are strongly anti-correlated, indicating that enhancement in NOx concentrations leads to decrease in O3 concentrations. Moreover, the O3 concentrations are more sensitive to NOx concentrations in the rural region than in the city region. The ratios of Δ[O3]/Δ[NOx] are ?2.3 and ?0.25 in the rural and in the city region, respectively. In addition, the measured NOx and SO2 concentrations are strongly correlated, highlighting that the NOx and SO2 are probably originated from same emission sources. Because SO2 emissions are significantly originated from coal burnings, the strong correlation between SO2 and NOx concentrations suggests that the NOx emission sources are mostly from coal burned sources. As a result, the future automobile increases could lead to rapid enhancements in O3 concentrations in the YRD region.  相似文献   

7.
基于情景分析法预测了2020、2030年不同情景下的中国能源消费量,按不同部门、不同燃料类型的SO2、NOx排放因子和去除率,预测了2020和2030年不同情景下的中国SO2和NOx排放量。根据计算结果,2020和2030年基准能源与市场情景、政策能源与市场情景和强化政策能源与市场管理情景的SO2和NOx排放量依次减小;相比于基准能源与市场情景,强化政策能源与市场管理情景下2020和2030年SO2排放量分别减少了651.66和846.55万t,NOx排放量分别减少了409.61和692.76万t。燃煤火电厂、工业和交通部门对SO2和NOx排放量的贡献最大,重点加强这3个经济部门的污染控制,可有效降低污染物的排放量。  相似文献   

8.
Environmental Science and Pollution Research - Mechanical vapor compression and multi-effect evaporation have been widely used in achieving zero discharge of desulfurization wastewater as they are...  相似文献   

9.
锅炉燃烧过程中产生的粉尘、SO2和NOx会对环境和人类造成严重的危害。随着人们环保意识的加强,锅炉烟气净化要求日趋严苛。进行了以O3为氧化剂,NaOH溶液为吸收剂,使用超重力反应器对锅炉尾气进行同时除尘脱硫脱硝的侧线实验研究,考察了不同操作条件对粉尘、SO2和NOx脱除率的影响规律,确定了适宜的操作条件:超重力反应器转速为1 000 r·min-1,气液比为125,pH值为11,O3/NOx物质的量之比为1.1。在该条件下,粉尘脱除率可达98.3%,SO2脱除率为98.4%,NOx脱除率为68.7%,处理后烟气能达标排放。超重力除尘脱硫脱硝一体化技术具有成本低、效率高、设备小和投资少等优点,在中小锅炉烟气净化过程具有广泛的应用前景。  相似文献   

10.
采用臭氧定量氧化NO,并结合湿法吸收进行脱硫脱硝实验研究。吸收实验选取3种常见碱性吸收液,采用鼓泡法进行NOx脱除效果对比,最终选定0.05 mol·L-1的Ca(OH)2乳浊液为吸收液。考察了NO和NO2不同配比下的吸收效果,当氧化度为60%(NO2/NO物质的量比1.3)时,吸收效果最佳。臭氧氧化实验结果表明,O3/NO物质的量比为0.6时能达到最佳氧化度,碱液吸收NOx脱除效率能达到76%,SO2脱除效率达100%。当改进鼓泡方式后,最佳氧化度条件下NOx脱除效率提高到85%。碱液pH对该法脱硝效率有影响,SO2的存在对NOx的脱除有一定促进作用。  相似文献   

11.
This study quantifies the trade-offs and synergies between climate and air quality policy objectives for the European power and heat (P&H) sector. An overview is presented of the expected performance data of CO2 capture systems implemented at P&H plants, and the expected emission of key air pollutants, being: SO2, NOX, NH3, volatile organic compounds (VOCs) and particulate matter (PM). The CO2 capture systems investigated include: post-combustion, oxyfuel combustion and pre-combustion capture.For all capture systems it was found that SO2, NOx and PM emissions are expected to be reduced or remain equal per unit of primary energy input compared to power plants without CO2 capture. Increase in primary energy input as a result of the energy penalty for CO2 capture may for some technologies and substances result in a net increase of emissions per kWh output. The emission of ammonia may increase by a factor of up to 45 per unit of primary energy input for post-combustion technologies. No data are available about the emission of VOCs from CO2 capture technologies.A simple model was developed and applied to analyse the impact of CO2 capture in the European P&H sector on the emission level of key air pollutants in 2030. Four scenarios were developed: one without CO2 capture and three with one dominantly implemented CO2 capture system, varying between: post-combustion, oxyfuel combustion and pre-combustion.The results showed a reduction in GHG emissions for the scenarios with CO2 capture compared to the baseline scenario between 12% and 20% in the EU 27 region in 2030. NOx emissions were 15% higher in the P&H sector in a scenario with predominantly post-combustion and lower when oxyfuel combustion (?16%) or pre-combustion (?20%) were implemented on a large scale. Large scale implementation of the post-combustion technology in 2030 may also result in significantly higher, i.e. increase by a factor of 28, NH3 emissions compared to scenarios with other CO2 capture options or without capture. SO2 emissions were very low for all scenarios that include large scale implementation of CO2 capture in 2030, i.e. a reduction varying between 27% and 41%. Particulate Matter emissions were found to be lower in the scenarios with CO2 capture. The scenario with implementation of the oxyfuel technology showed the lowest PM emissions followed by the scenario with a significant share allocated to pre-combustion, respectively ?59% and ?31%. The scenario with post-combustion capture resulted in PM emissions varying between 35% reduction and 26% increase.  相似文献   

12.
This paper highlights the effect of emissions regulations on in-use emissions from heavy-duty vehicles powered by different model year engines. More importantly, fuel economy data for pre- and post-consent decree engines are compared.The objective of this study was to determine the changes in brake-specific emissions of NOx as a result of emission regulations, and to highlight the effect these have had on brake-specific CO2 emission; hence, fuel consumption. For this study, in-use, on-road emission measurements were collected. Test vehicles were instrumented with a portable on-board tailpipe emissions measurement system, WVU's Mobile Emissions Measurement System, and were tested on specific routes, which included a mix of highway and city driving patterns, in order to collect engine operating conditions, vehicle speed, and in-use emission rates of CO2 and NOx. Comparison of on-road in-use emissions data suggests NOx reductions as high as 80% and 45% compared to the US Federal Test Procedure and Not-to-Exceed standards for model year 1995–2002. However, the results indicate that the fuel consumption; hence, CO2 emissions increased by approximately 10% over the same period, when the engines were operating in the Not-to-Exceed region.  相似文献   

13.
Vertical gradients from 0.25 to 2 m of NH3, HNO3 and HCl and associated aerosol components have been measured in the field above various surfaces in eastern England. The data have been examined to identify the effect, if any, of chemical reaction processes upon the observed vertical profiles. It is concluded that chemical transformations are too slow to influence concentration gradients and thus the surface exchange process. Assuming chemically conservative behaviour, deposition velocities for HNO3 and HCl have been calculated; these lie within the range 0.4–7.7 cms−1 and 0.4–6.9 cms−1 for HNO3 and HCl, respectively. Estimation of resistances to deposition indicates a negligible surface resistance for both species. Fluxes of ammonia were predominantly upward from the ground with a mean value of 0.031 μg m−2s−1 which is consistent both with an emission inventory of the U.K. and with the measured atmospheric concentration of NH3.  相似文献   

14.
The adsorption of NH3 and SO2 on the external leaf surface of bean (Phaseolus vulgaris L.) and poplar (Populus euramericana L.) was studied. The adsorbed quantities increased strongly with increasing air humidity, indicating that water on the leaf surface plays a major role in the interaction of these gases with the leaf surface. On the other hand temperature in the range between 15 and 26°C had no significant influence. The adsorbed quantities of NH3 at a specific air humidity appeared to be proportional to NH3 concentration. This proportionality was less clear for SO2. The affinity of SO2 for the leaf surface was found to be approximately twice that of NH3. A mixture of these gases in the air mutually stimulated their adsorption on the leaf. No significant desorption or uptake of these gases through the cuticle could be detected, indicating that the bulk of the adsorbed gases remains associated with the cuticle.  相似文献   

15.
A new sampling device is described for the simultaneous collection of NH3, HNO3, HCl, SO2 and H2O2 in ambient air. The apparatus is based on air sampling by two parallel annular denuder tubes. The gases are collected by absorption in solutions present in the annulus of the denuder tubes. After a sampling time of 30 min at flow rate of 32 ℓ min−1 the solutions are extracted from the denuders and analyzed off-line. The detection limits of NH3, HNO3, HCL and SO2 are in the order of 0.1–0.5 μm−3. For H2O2 the detection limit is 0.01 μm−3. The reproducibility is 5–10% at the level of ambient air concentrations. Comparison of this novel technique with existing methods gives satisfactory results. The compact set-up offers the possibility of field experiments without the need of extensive equipment.  相似文献   

16.
脉冲放电烟气脱硫脱硝技术研究进展   总被引:5,自引:0,他引:5  
综述了脉冲放电等离子体烟气脱硫脱硝技术的发展历史、研究现状、进展及其存在的问题。  相似文献   

17.
Sub-regional and sector level distribution of SO2 and NOx emissions inventories for India have been estimated for all the 466 Indian districts using base data for years 1990 and 1995. Although, national level emissions provide general guidelines for assessing mitigation alternatives, but significant regional and sectoral variability exist in Indian emissions. Districts reasonably capture this variability to a fine grid as 80% of these districts are smaller than 1°×1° resolution with 60% being smaller than even 1/2°×1/2°. Moreover, districts in India have well-established administrative and institutional mechanisms that would be useful for implementing and monitoring measures. District level emission estimates thus offer a finer regional scale inventory covering the combined interests of the scientific community and policy makers. The inventory assessment methodology adopted is similar to that prescribed by the Intergovernmental Panel on Climate Change (IPCC) for greenhouse gas (GHG) emissions. The sectoral decomposition at district level includes emissions from fossil fuel combustion, non-energy emissions from industrial activities and agriculture. Total SO2 and NOx emissions from India were 3542 and 2636 Gg, respectively (1990) and 4638 and 3462 Gg (1995) growing at annual rate of around 5.5%. The sectoral composition of SO2 emissions indicates a predominance of electric power generation sector (46%). Power and transport sector emissions equally dominate NOx emissions contributing nearly 30% each. However, majority of power plants are situated in predominantly rural districts while the latter are concentrated in large urban centers. Mitigation efforts for transport sector NOx emissions would therefore be higher. The district level analysis indicates diverse spatial distribution with the top 5% emitting districts contributing 46.5 and 33.3% of total national SO2 and NOx emissions, respectively. This skewed emission pattern, with a few districts, sectors and point sources emitting significant SO2 and NOx, offers mitigation flexibility to policy makers for cost-effective mitigation.  相似文献   

18.
脉冲放电烟气脱硫脱硝技术研究进展   总被引:1,自引:0,他引:1  
综述了脉冲放电等离子体烟气脱硫脱硝技术的发展历史、研究现状、进展及其存在的问题.  相似文献   

19.
为了对城市有机垃圾热解过程中NH3、H2S和HCl的析出特性进行研究,采用箱式气氛炉在500~800℃热解终温下进行热解实验。热解过程中产生的NH3、H2S和HCl分别用硼酸溶液、乙酸锌-乙酸钠溶液以及NaOH溶液吸收,并分别采用分光光度法和滴定法进行量化。实验结果表明:NH3-N、H2S-S和HCl-Cl的析出率随着温度的升高而增加,热解终温为500、600、700和800℃时,NH3-N的析出率分别为39%、40%、30%和44%,H2S-S的析出率分别为18%、22%、25%和26%,HCl-Cl的析出率分别为68%、71%、76%和85%;热解终温控制在700℃有利于减少NH3-N的析出,低温热解(500℃)有利于减少H2S和HCl的析出;热解炭中S和Cl的残留率随着热解终温的升高而降低,终温800℃时的残留率分别为41%和5%。  相似文献   

20.
Efforts to develop multipollutant control strategies have demonstrated that adding certain oxidants to different classes of Ca-based sorbents leads to a significant improvement in elemental Hg vapor (Hg0), SO2, and NOx removal from simulated flue gases. In the study presented here, two classes of Ca-based sorbents (hydrated limes and silicate compounds) were investigated. A number of oxidizing additives at different concentrations were used in the Ca-based sorbent production process. The Hg0, SO2, and NOx capture capacities of these oxidant-enriched sorbents were evaluated and compared to those of a commercially available activated carbon in bench-scale, fixed-bed, and fluid-bed systems. Calcium-based sorbents prepared with two oxidants, designated C and M, exhibited Hg0 sorption capacities (approximately 100 microg/g) comparable to that of the activated carbon; they showed far superior SO2 and NOx sorption capacities. Preliminary cost estimates for the process utilizing these novel sorbents indicate potential for substantial lowering of control costs, as compared with other processes currently used or considered for control of Hg0, SO2, and NOx emissions from coal-fired boilers. The implications of these findings toward development of multipollutant control technologies and planned pilot and field evaluations of more promising multipollutant sorbents are summarily discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号