首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
We have successfully synthesized the composites of two-phase g-C3N4 heterojunction photocatalysts by one-step method. And the reduced graphene oxide/two-phase g-C3N4 heterojunction photocatalyst was fabricated via a facile hydrothermal reduction method. The characterization results indicated that the two-phase g-C3N4 was integrated closely, and the common phenomenon of agglomeration for g-C3N4 was significantly reduced. Moreover, the oxidized graphene was reduced successfully in the composites and the graphene was overlaid on the surface or the interlayers of g-C3N4 heterojunction composite uniformly. In addition, we have carried out the photocatalytic activity experiments by H2 evolution and rhodamine B removal, tetracycline removal under the visible light irradiation. The results revealed that the composite has improved the separation efficiency a lot than the pure photocatalyst. The photocurrent test demonstrated that the recombination of electrons and holes were efficiently inhibited as well as enhanced the photocatalytic activity. The 0.4% rGO loaded samples, 0.4% rGOCN2, own the best performance. Its rate of H2 evolution was 15 times as high as that of the pure g-C3N4.  相似文献   

2.
Lanthanum-modified TiO2 photocatalysts (0.2–1.5 wt% La) were investigated in the methanol decomposition in an aqueous solution. The photocatalysts were prepared by the common sol-gel method followed by calcination. The structural (X-ray diffraction, Raman, X-ray photoelectron spectroscopy), textural (N2 physisorption), and optical properties (diffuse reflectance spectroscopy, photoelectrochemical measurements) of all synthetized nanomaterials were correlated with photocatalytic activity. Both pure TiO2 and La-doped TiO2 photocatalysts proved higher yields of hydrogen in comparison to photolysis. The photocatalyst with optimal amount of lanthanum (0.2 wt% La) showed almost two times higher amount of hydrogen produced at the same time as in the presence of pure TiO2. The photocatalytic activity increased with both increasing photocurrent response and decreasing amount of lattice and surface O species. It has been shown that both direct and indirect mechanisms of methanol photocatalytic oxidation participate in the production of hydrogen. Both direct and indirect mechanisms take part in the formation of hydrogen.  相似文献   

3.
Land use conversion and fertilization have been widely reported to be important managements affecting the exchanges of greenhouse gases between soil and atmosphere. For comprehensive assessment of methane (CH4) and nitrous oxide (N2O) fluxes from hilly red soil induced by land use conversion and fertilization, a 14-month continuous field measurement was conducted on the newly converted citrus orchard plots with fertilization (OF) and without fertilization (ONF) and the conventional paddy plots with fertilization (PF) and without fertilization (PNF). Our results showed that land use conversion from paddy to orchard reduced the CH4 fluxes at the expense of increasing the N2O fluxes. Furthermore, fertilization significantly decreased the CH4 fluxes from paddy soils in the second stage after conversion, but it failed to affect the CH4 fluxes from orchard soils, whereas fertilizer applied to orchard and paddy increased soil N2O emissions by 68 and 113.9 %, respectively. Thus, cumulative CH4 emissions from the OF were 100 % lower, and N2O emissions were 421 % higher than those from the PF. Although cumulative N2O emissions were stimulated in the newly converted orchard, the strong reduction of CH4 led to lower global warming potentials (GWPs) as compared to the paddy. Besides, fertilization in orchard increased GWPs but decreased GWPs of paddy soils. In addition, measurement of soil moisture, temperature, dissolved carbon contents (DOCs), and ammonia (NH4 +-N) and nitrate (NO3 ?-N) contents indicated a significant variation in soil properties and contributed to variations in soil CH4 and N2O fluxes. Results of this study suggest that land use conversion from paddy to orchard would benefit for reconciling greenhouse gas mitigation and citrus orchard cultivation would be a better agricultural system in the hilly red soils in terms of greenhouse gas emission. Moreover, selected fertilizer rate applied to paddy would lead to lower GWPs of CH4 and N2O. Nevertheless, more field measurements from newly converted orchard are highly needed to gain an insight into national and global accounting of CH4 and N2O emissions.  相似文献   

4.
The photocatalytic reduction of CO2 with H2O was investigated using Cu/TiO2 photocatalysts in aqueous solution. For this purpose, Cu/TiO2 photocatalysts (with 0.2, 0.9, 2, 4, and 6 wt.% of Cu) have been synthesized via sol-gel method. The photocatalysts were extensively characterized by means of inductively coupled plasma optical emission spectrometry (ICP-OES), N2 physisorption (BET), XRD, UV-vis DRS, FT-IR, Raman spectroscopy, TEM-EDX, and photoelectrochemical measurements. The as-prepared photocatalysts contain anatase as a major crystalline phase with a crystallite size around 13 nm. By increasing the amount of Cu, specific surface area and band gap energy decreased in addition to the formation of large agglomeration of CuO. Results revealed that the photocatalytic reduction of CO2 decreased in the presence of Cu/TiO2 in comparison to pure TiO2, which might be associated to the formation of CuO phase acting as a recombination center of generated electron-hole pair. Decreasing of photoactivity can also be connected with a very low position of conduction band of photocatalysts with high Cu content, which makes H2 production necessary for CO2 reduction more difficult.  相似文献   

5.
The simultaneous photocatalytic removal of nitrate from aqueous environment in presence of organic hole scavenger using TiO2 has long been explored. However, the use of unmodified TiO2 in such reaction resulted in non-performance or release of significant amount of undesirable reaction products in the process, a problem that triggered surface modification of TiO2 for enhanced photocatalytic performance. Previous studies focused on decreasing rate of charge carrier recombination and absorption of light in the visible region. Yet, increasing active sites and adsorption capacity by combining TiO2 with a high surface area adsorbent such as activated carbon (AC) remains unexploited. This study reports the potential of such modification in simultaneous removal of nitrates and oxalic acid in aqueous environment. The adsorptive behaviour of nitrate and oxalic acid on TiO2 and TiO2/AC composites were studied. The Langmuir adsorption coefficient for nitrate was four times greater than that of oxalic acid. However, the amount of oxalic acid adsorbed was about 10 times greater than the amount of nitrate taken up. Despite this advantage, the materials did not appear to produce more active photocatalysts for the simultaneous degradation of nitrate and oxalic acid. The photocatalytic activity of TiO2 and its carbon-based composites was improved by combination with Cu2O particles. Consequently, 2.5 Cu2O/TiO2 exhibited the maximum photocatalytic performance with 57.6 and 99.8% removal of nitrate and oxalic acid, respectively, while selectivity stood at 45.7, 12.4 and 41.9% for NH4+, NO2? and N2, respectively. For the carbon based, 2.5 Cu2O/TiO2-20AC showed removal of 12.7% nitrate and 80.3% oxalic acid and achieved 21.6, 0 and 78.4% selectivity for NH4+, NO2? and N2, respectively. Using the optimal AC loading (20 wt%) resulted in significant decrease in the selectivity for NH4+ with no formation of NO2?, which unveils that selectivity for N2 and low/no selectivity for undesirable products can be manipulated by controlling the rate of consumption of oxalic acid. In contract, no nitrate reduction was observed with Cu2O promoted TiO2-T and its TiO2-(T)-20AC, which may be connected to amorphous nature of TiO2-T and perhaps served as charge carrier trapping sites that impeded activity.  相似文献   

6.
Fe2O3 and CeO2 modified activated coke (AC) synthesized by the equivalent-volume impregnation were employed to remove elemental mercury (Hg0) from simulated flue gas at a low temperature. Effects of the mass ratio of Fe2O3 and CeO2, reaction temperature, and individual flue gas components including O2, NO, SO2, and H2O (g) on Hg0 removal efficiency of impregnated AC were investigated. The samples were characterized by Brunauer–Emmett–Teller (BET), X-ray diffraction (XRD), scanning electron microscopy (SEM), and X-ray photoelectron spectroscopy (XPS). Results showed that with optimal mass percentage of 3 % Fe2O3 and 3 % CeO2 on Fe3Ce3/AC, the Hg0 removal efficiency could reach an average of 88.29 % at 110 °C. Besides, it was observed that O2 and NO exhibited a promotional effect on Hg0 removal, H2O (g) exerted a suppressive effect, and SO2 showed an insignificant inhibition without O2 to some extent. The analysis of XPS indicated that the main species of mercury on used Fe3Ce3/AC was HgO, which implied that adsorption and catalytic oxidation were both included in Hg0 removal. Furthermore, the lattice oxygen, chemisorbed oxygen, and/or weakly bonded oxygen species made a contribution to Hg0 oxidation.  相似文献   

7.
The study is aimed at evaluating the potential of immobilized TiO2-based zeolite composite for solar-driven photocatalytic water treatment. In that purpose, TiO2-iron-exchanged zeolite (FeZ) composite was prepared using commercial Aeroxide TiO2 P25 and iron-exchanged zeolite of ZSM5 type, FeZ. The activity of TiO2-FeZ, immobilized on glass support, was evaluated under solar irradiation for removal of diclofenac (DCF) in water. TiO2-FeZ immobilized in a form of thin film was characterized for its morphology, structure, and composition using scanning electron microscopy/energy-dispersive x-ray spectroscopy (SEM/EDX). Diffuse reflectance spectroscopy (DRS) was used to determine potential changes in band gaps of prepared TiO2-FeZ in comparison to pure TiO2. The influence of pH, concentration of hydrogen peroxide, FeZ wt% within the composite, and photocatalyst dosage on DCF removal and conversion efficiency by solar/TiO2-FeZ/H2O2 process was investigated. TiO2-FeZ demonstrated higher photocatalytic activity than pure TiO2 under solar irradiation in acidic conditions and presence of H2O2.  相似文献   

8.
Considering the increasing incorporation of manufactured nano-material into consumer products, there is a concern about its potential impacts in biological wastewater treatment. In this study, the response of anaerobic sludge to the presence of Bi2WO6 nano-particles (NPs) was investigated in the anaerobic membrane bioreactor (AnMBR). As the concentration of Bi2WO6 in the reactor was controlled around 1 mg/L, there was no significant difference in effluent water quality or bacterial activities before and after NP exposure, partially due to the microbial-induced NP aggregation and stable complex formation. However, with the increasing dosage of Bi2WO6 from 5 to 40 mg/L, great influences on the AnMBR performance were observed, including the reduction of COD removal efficiency, inhibition of the mechanization step, increased production of soluble microbial products, and enhanced secretion of extracellular polymer substrates. Additional investigation with high-throughput sequencing was conducted, clearly demonstrating that Bi2WO6 NPs induced changes in the bacterial community.  相似文献   

9.

In recent years, using semiconductor photocatalysts for antibiotic contaminant degradation under visible light has become a hot topic. Herein, a novel and ingenious cadmium-doped graphite phase carbon nitride (Cd-g-C3N4) photocatalyst was successfully constructed via the thermal polymerization method. Experimental and characterization results revealed that cadmium (Cd) was well doped at the g-C3N4 surface and exhibited high intercontact with g-C3N4. Additionally, the introduction of cadmium significantly improved the photocatalytic activity, and the optimum degradation efficiency of tetracycline (TC) reached 98.1%, which was exceeded 2.0 times that of g-C3N4 (43.9%). Meanwhile, the Cd-doped sample presented a higher efficiency of electrical conductivity, light absorption property, and photogenerated electron-hole pair migration compared with g-C3N4. Additionally, the quenching experiments and electron spin-resonance tests exhibited that holes (h+), hydroxyl radicals (?OH), superoxide radicals (?O2?) were the main active species involved in TC degradation. The effects of various conditions on photocatalytic degradation, such as pH, initial TC concentrations, and catalyst dosage, were also researched. Finally, the degradation mechanism was elaborated in detail. This work gives a reasonable point to synthesizing high-efficiency and economic metal-doped photocatalysts.

  相似文献   

10.
More attention has been paid to the deterioration of water bodies polluted by drinking water treatment sludge (DWTS) in recent years. It is important to develop methods to effectively treat DWTS by avoiding secondary pollution. We report herein a novel investigation for recovery of Si and Fe from DWTS, which are used for the synthesis of two iron oxide@SiO2 composites for adsorption of reactive red X-3B (RRX-3B) and NaNO2. The results show that Fe3+ (acid-leaching) and Si4+ (basic-leaching) can be successfully recovered from roasted DWTS. Whether to dissolve Fe(OH)3 precipitation is the key point for obtaining Fe3O4 or γ-Fe2O3 particles using the solvothermal method. The magnetic characteristics of Fe3O4@SiO2 (390.0 m2 g?1) or Fe2O3@SiO2 (220.9 m2 g?1) are slightly influenced by the coated porous SiO2 layer. Peaks of Fe–O stretching vibration (580 cm?1) and asymmetric Si–O–Si stretching vibrations (1080 cm?1) of Fe3O4@SiO2 indicate the successful coating of a thin silica layer (20–150 nm). The adsorption capacity of RRX-3B and NaNO2 by Fe3O4@SiO2 is better than that of Fe2O3@SiO2, and both composites can be recycled through an external magnetic field. This method is an efficient and environmentally friendly method for recycling DWTS.  相似文献   

11.
This work aimed to optimize high-performance photocatalysts based on graphene oxide/titanium dioxide (GO/TiO2) nanocomposites for the effective degradation of aqueous pollutants. The catalytic activity was tested against the degradation of dichloroacetic acid (DCA), a by-product of disinfection processes that is present in many industrial wastewaters and effluents. GO/TiO2 photocatalysts were prepared using three different methods, hydrothermal, solvothermal, and mechanical, and varying the GO/TiO2 ratio in the range of 1 to 10%. Several techniques were applied to characterize the catalysts, and better coupling of GO and TiO2 was observed in the thermally synthesized composites. Although the results obtained for DCA degradation showed a coupled influence of the composite preparation method and its composition, promising results were obtained with the photocatalysts compared to the limited activity of conventional TiO2. In the best case, corresponding to the composite synthesized via hydrothermal method with 5% of GO/TiO2 weight ratio, an enhancement of 2.5 times of the photocatalytic degradation yield of DCA was obtained compared to bare TiO2, thus opening more efficient ways to promote the application of photocatalytic remediation technologies.  相似文献   

12.
曹春华  肖玲 《环境工程学报》2014,8(4):1482-1486
利用壳聚糖对金属离子的吸附和螯合作用,通过简单的液相沉淀-还原过程一步原位合成了交联壳聚糖/Cu2O复合粒子。X射线衍射(XRD)和红外(FT-IR)测试结果表明,壳聚糖与Cu2O纳米微粒能有效复合。以活性艳红X-3B溶液为模拟印染废水,采用Langmuir-Hinshelwood假一级方程模拟交联壳聚糖/Cu2O复合粒子光催化脱色反应的动力学行为,从动力学角度系统研究染料初始浓度、反应体系pH、催化剂用量和反应体系气氛等因素对复合粒子可见光催化脱色反应速率的影响。结果表明,当染料溶液浓度较低时,光催化过程可视为假一级反应。降低活性艳红X-3B初始浓度和pH,增加催化剂用量和反应体系的含O2量都可显著增加光解脱色反应速率常数。相同条件下,与纯Cu2O相比,交联壳聚糖/Cu2O复合粒子对X-3B呈现出更好的吸附性和更高的可见光催化活性。  相似文献   

13.
The catalysts such as Fe, Bi2O3, and Fe-doped Bi2O3 were synthesized for the sonophotocatalytic treatment of synthetic dye and real textile wastewater. The resultant catalysts were characterized for its size and uniform shape using x-ray diffractogram (XRD) and scanning electron microscopy (SEM) which signified the nanorod shape formed Bi2O3. The higher ultraviolet light absorbance capacity of the catalysts was also evident using diffuse reflectance spectroscopy (DRS). Initially, the effect of conventional parameters such as initial pH, gas bubbling (argon, oxygen, air and nitrogen) and oxidant addition (H2O2 and peroxymonosulfate) in the presence of sonolysis (22 and 37 kHz frequency) and photolysis (UV-C light) on 10 ppm Basic Brown 1 dye was studied. The results showed that highest decolorization of 62 % was attained for 3 g/L peroxymonosulfate under 37 kHz frequency sonolysis treatment. Secondly, with the catalyst study, highest of 46 % dye color removal was obtained with 4 g/L Fe under 37 kHz frequency sonolysis treatment. The sonophotocatalytic treatment of dye with Fe-doped Bi2O3 catalyst in combination with peroxymonosulfate showed highest color removal of 99 %. Finally, the sonophotocatalytic treatment of real textile wastewater in the presence of 3 g/L Fe-doped Bi2O3 and 6 g/L peroxymonosulfate reduced the total organic carbon (TOC) and chemical oxygen demand (COD) level to 77 and 91 %, respectively, in 180 min. The reported treatment process was found to treat the synthetic dye and real textile wastewater effectively.  相似文献   

14.

Supported Fe2O3/WO3 nanocomposites were fabricated by an original vapor phase approach, involving the chemical vapor deposition (CVD) of Fe2O3 on Ti sheets and the subsequent radio frequency (RF)-sputtering of WO3. Particular attention was dedicated to the control of the W/Fe ratio, in order to tailor the composition of the resulting materials. The target systems were analyzed by the joint use of complementary techniques, that is, X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM), energy dispersive X-ray spectroscopy (EDXS), X-ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and optical absorption spectroscopy. The results showed the uniform decoration of α-Fe2O3 (hematite) globular particles by tiny WO3 aggregates, whose content could be controlled by modulations of the sole sputtering time. The photocatalytic degradation of phenol in the liquid phase was selected as a test reaction for a preliminary investigation of the system behavior in wastewater treatment applications. The system activity under both UV and Vis light illumination may open doors for further material optimization in view of real-world end-uses.

  相似文献   

15.
Ag@TiO2 nanoparticles were synthesized by one pot synthesis method with postcalcination. These nanoparticles were tested for their photocatalytic efficacies in degradation of phenol both in free and immobilized forms under UV light irradiation through batch experiments. Ag@TiO2 nanoparticles were found to be the effective photocatalysts for degradation of phenol. The effects of factors such as pH, initial phenol concentration, and catalyst loading on phenol degradation were evaluated, and these factors were found to influence the process efficiency. The optimum values of these factors were determined to maximize the phenol degradation. The efficacy of the nanoparticles immobilized on cellulose acetate film was inferior to that of free nanoparticles in UV photocatalysis due to light penetration problem and diffusional limitations. The performance of fluidized bed photocatalytic reactor operated under batch with recycle mode was evaluated for UV photocatalysis with immobilized Ag@TiO2 nanoparticles. In the fluidized bed reactor, the percentage degradation of phenol was found to increase with the increase in catalyst loading.  相似文献   

16.

Introduction

Efficient immobilization of TiO2 nanoparticles on the surface of Mg2Al-LDH nanosheets was performed by delamination/restacking process.

Experimental part

The structural and textural properties of as-prepared nanocomposite were deeply analyzed using different solid-state characterization techniques such as: X-ray powder diffraction, Fourier transform infrared spectroscopy, and Raman spectroscopies, chemical analysis, X-ray photoelecton spectroscopy, N2 adsorption?Cdesorption, and electronic microscopy.

Results and discussion

The photocatalytic properties of immobilized TiO2 nanoparticles on Mg2Al were investigated using the photodegradation of two model pollutants: Orange II and 4-chlorophenol, and compared with pure colloidal TiO2 solution.

Conclusion

It appears that Orange II photodegradation was systematically faster and more efficient than 4-chlorophenol photodegradation regardless of the medium pH. Moreover under slightly basic conditions, even if the TiO2 photocatalytic efficiency decreases, photodegradation performed in presence of easily recovered TiO2/Mg2Al1.5 nanocomposite gives rise to comparable or better results than pure TiO2.  相似文献   

17.

In present study, an efficient ternary Ag/TiO2/mesoporous g-C3N4 (M-g-C3N4) photocatalyst was successfully synthesized through depositing Ag nanoparticles (NPs) on the surface of TiO2/M-g-C3N4 heterojunction. Ag/TiO2/M-g-C3N4 nanocomposite displayed the highest degradation efficiency for amoxicillin (AMX) compared to TiO2/M-g-C3N4 heterojunction, M-g-C3N4, and bulk-g-C3N4 (B-g-C3N4). The removal efficiency of AMX in real situation, surface water (SW), hospital wastewater (HW), and waste water treatment plant (WWTP) also were studied to illustrate the effectiveness of Ag/TiO2/M-g-C3N4 photocatalysts. The vulnerable atoms in AMX structure were revealed through DFT calculation. Additionally, the dominating active groups produced in time of the photocatalytic procedure were determined on account of free radical trapping experiments and ESR spectra. The mechanism of photocatalytic degradation was proposed and verified. The transfer of the electrons and the inhibition of the recombination of photogenerated electron-holes were enhanced effectively under the synergistic effect of the Ag NPs and TiO2. As a consequence, the catalytic activity of the composite was improved under visible light.

  相似文献   

18.

Purpose  

Degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) in soils by Fe3O4 nanoparticles combined with soil indigenous microbes was investigated, and the effects of Fe3O4 nanoparticles on soil microbial populations and enzyme activities were also studied.  相似文献   

19.
Li X  Zou X  Qu Z  Zhao Q  Wang L 《Chemosphere》2011,83(5):674-679
In this work, Ag-doping TiO2 nanotubes were prepared and employed as the photocatalyst for the degradation of toluene. The TiO2 nanotube powder was produced by the rapid-breakdown potentiostatic anodization of Ti foil in chloride-containing electrolytes, and then doped with Ag through an incipient wetness impregnation method. The samples were characterized by scanning electron microscope, high-resolution transmission electron microscopy, X-ray diffraction, surface photovoltage measurements, X-ray photoelectron spectroscopy and N2 adsorption. The nanotubular TiO2 photocatalysts showed an outer diameter of approximately 40 nm, fine mesoporous structure and high specific surface area. The photocatalytic activity of Ag-doping TiO2 nanotube powder was evaluated through photooxidation of gaseous toluene. The results indicated that the degradation efficiency of toluene could get 98% after 4 h reaction using the Ag-doping TiO2 nanotubes as the photocatalyst under UV light illumination, which was higher than that of the pure TiO2 nanotubes, Ag-doping P25 or P25. Benzaldehyde species could be observed during the photocatalytic oxidation monitored by in situ FTIR, and the formed benzaldehyde intermediate during reaction would be partially oxidized into CO2 and H2O.  相似文献   

20.
Liu DR  Jiang YS  Gao GM 《Chemosphere》2011,83(11):1546-1552
N-doped NaTaO3 compounds (NaTaO3−xNx) with nano-cubic morphology were successfully synthesized by one-step hydrothermal method and Methyl Orange (MO) was used as a model dye to evaluate their photocatalytic efficiency under visible-light irradiation. The as-prepared NaTaO3−xNx samples were characterized by various techniques, such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectra and GC-MS. The results indicate that NaTaO3−xNx displays a pure perovskite structure when the synthesis temperature is higher than 180 °C. Moreover, as observed by SEM images, the particles of resultant NaTaO3−xNx show cubic morphology with the edge length of 200-500 nm, which can be easily removed by filtration after photocatalytic reaction. Doping of N increases the photocatalytic activity of NaTaO3, and NaTaO2.953N0.047 shows the highest visible-light photocatalytic activity for the degradation of MO. Based on the experiment results, a possible mechanism of the photocatalysis over NaTaO3−xNx and the photodegradation pathway of MO were proposed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号