首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha?1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.  相似文献   

2.
Abstract

Carpobrotus dimidiatus is an indigenous South African medicinal plant species from the Aizoaceae family that bears edible fruit that is consumed for nutritional value. In this study, the elemental distribution in C. dimidiatus fruit and growth soil from fifteen sites in KwaZulu-Natal (South Africa) was determined along with soil pH, soil organic matter and cation exchange capacity, to assess for nutritional value and the effect of soil quality on elemental uptake. The results showed elemental concentrations in fruit to be in decreasing order of Ca (6235–32755?mg kg?1) > Mg (2250–5262?mg kg?1) > Fe?>?Mn?>?Zn (20.9–50.6?mg kg?1) > Cu (3.83–20.6?mg kg?1) > Pb?>?Cr?>?Cd?>?As?~?Co?~?Ni?~?Se and no potential health risk due to metal toxicity from average consumption. For sites that had high levels of Cd and Pb, bioaccumulation occurred from atmospheric deposition. Concentrations of elements in soil were found to be in decreasing order of Fe (1059–63747?mg kg?1) > Ca (1048–41475?mg kg?1) > Mg?>?Mn (9.76–174?mg kg?1) > Cr (1.55–135?mg kg?1) > Zn (0.76–58.2?mg kg?1) > Se?>?Cu?>?Ni?>?Pb?>?Co?>?As?~?Cd with no evidence of heavy metal contamination. This study revealed that the plant inherently controlled uptake of essential elements according to physiological needs and that the concentrations of essential elements in the fruit could contribute positively to the diet.  相似文献   

3.
Little is known about the effects of applying composted urban wastes on the phytoavailability and distribution of iron (Fe) and manganese (Mn) among chemical fractions in soil. In order to study this concern several experiments in pots containing calcareous soil were carried out. The received treatments by adding separately two rates (20 and 80 Mg ha-1) of municipal solid waste (MSW) compost and/or municipal solid waste and sewage sludge (MSW-SS) co-compost. The cropping sequence was a lettuce crop followed by a barley crop. It was observed that treatments amended with composted urban wastes tended to promote slight increases in lettuce yield compared to the control. The highest Fe levels in lettuce were found when higher rates of MSW-SS co-compost were applied; these values were significant compared to those obtained in the other treatments. In all cases, the application of organic materials increased the concentration and uptake of Mn in lettuce compared to the control; however, these increases were significant only when higher rates of MSW compost were applied. The organic amendments had beneficial delayed effects on barley yields, showing, in most cases, significant increases compared to the control. In this context, treatments with MSW compost were found to be more effective than the equivalent treatments amended with MSW-SS co-compost. Compared to the control, composted urban wastes increased Fe concentration in straw and rachis, and decreased Fe concentration in barley grain. Similarly, a decreased concentration of Mn in the dry matter of barley crop grown in soils treated with composted urban wastes was observed.  相似文献   

4.
Abstract

A greenhouse experiment was conducted under simulated field conditions using large‐capacity plastic pots, filled each one with 25 kg of air‐dried calcareous soil. Besides the control, four treatments were prepared by applying separately two rates (20 and 80 Mg ha‐1) of municipal solid waste (MSW) compost, and co‐composted municipal solid waste and sewage sludge (MSW‐SS). Lettuce was planted and harvested 2.5 months later. The application of composted urban wastes tended to increase Cu concentration in lettuce with respect to the control, but it was only significant when the higher rate of MSW compost was applied. The control showed values of Zn concentration in plant within a deficient range. In general, composted urban wastes treatments had increased Zn concentration values, which were within the sufficiency range. Both treatments with MSW compost increased Cu and Zn uptake in comparison with MSW‐SS co‐compost treatments. At the postharvest, all composted urban wastes treatments increased significantly DTPA‐extractable Cu content in soil with respect to the control; it was also significant the increase in AAAc‐EDTA‐extractable Cu in soil produced by the addition of the higher rate of MSW compost. The application of composted urban wastes increased significantly DTPA‐extractable and AAAc‐EDTA‐extractable Zn contents in soil versus the control, except for the lower rate of MSW‐SS co‐compost. The values of DTPA‐extractable/total ratio for Cu and Zn were under 10%, except for the treatment applying the higher rate of MSW compost which promoted higher values. The values of AAAc‐EDTA‐extractable/total ratio for Cu were above 10% in all treatments including the control. This tendency was also observed in AAAc‐EDTA‐extractable/total ratio for Zn when applying both rates of MSW compost or the higher rate of MSW‐SS co‐compost.  相似文献   

5.
Abstract

A field study was conducted on a Lowell silty loam soil of 2.7% organic matter at the Kentucky State University Research Farm, Franklin County, Kentucky. Eighteen universal soil loss equation (USLE) standard plots (22 × 3.7 m each) were established on a 10% slope. Three soil management practices were used: (i) class-A biosolids (sewage sludge), (ii) yard waste compost, each mixed with native soil at a rate of 50 ton acre?1 on a dry-weight basis, and (iii) a no-mulch (NM) treatment (rototilled bare soil), used for comparison purposes. Devrinol 50-DF “napropamide” [N,N-diethyl-2-(1-naphthyloxy) propionamide]was applied as a preemergent herbicide, incorporated into the soil surface, and the plots were planted with 60-day-old sweet bell pepper seedlings. Napropamide residues one hour following spraying averaged 0.8, 0.4, and 0.3 μ g g? 1 dry soil in sewage sludge, yard waste compost, and no-mulch treatments, respectively. Surface runoff water, runoff sediment, and napropamide residues in runoff were significantly reduced by the compost and biosolid treatments. Yard waste compost treatments increased water infiltration and napropamide residues in the vadose zone compared to sewage sludge and NM treatments. Total pepper yields from yard waste compost amended soils (9187 lbs acre?1) was significantly higher (P < 0.05) than yield from either the soil amended with class-A biosolids (6984 lbs acre?1) or the no-mulch soil (7162 lbs acre ?1).  相似文献   

6.
Mining effluents are a potential source of toxic metals in the surrounding aquatic ecosystem and pose a potential health risk to humans from fish consumption. The objective of this paper is to assess the impact of the long-term Dabaoshan mining operation on heavy metal accumulation in different fish species. Heavy metal accumulation (lead (Pb), cadmium (Cd), zinc (Zn), and copper (Cu)) in four tissues (liver, muscle, intestine, and gills) of five carp species (Hypophthalmichthys molitrix, Ctenopharyngodon idellus, Megalobrama amblycephala, Aristichthys nobilis, and Carassius auratus auratus) from two fishponds exposed to effluent waters from Dabaoshan mine, South China. The bioaccumulation factor (BAF) and target hazard quotients were calculated to assess potential health risks to local residents through fish consumption. Levels of heavy metals varied depending on the analyzed tissues. C. auratus auratus accumulated the higher Pb, Cd, Zn, and Cu in the intestine compared with other fish species. Liver of all five species contained high concentrations of Pb, Cd, Zn, and Cu. The BAF for the studied metals showed a descending order of Cd?>?Zn?>?Cu?>?Pb for fishpond 1 and Zn?>?Cd?>?Cu?>?Pb for fishpond 2. Risk assessments suggested that potential human health risk may be present due to high Pb and Cd concentration in the muscle of some fish species exceeding the national and international limits, although the target hazard quotients were less than one.  相似文献   

7.
The total concentration of toxic elements (aluminum, cadmium, chromium and lead) and selected macro and micro elements (iron, manganese, copper and zinc) are reported in six leafy edible vegetation species, namely lettuce, spinach, cabbage, chards and green and red types of Amaranth herbs. Although spinach and chards had greater than 125 mv of iron, both the amaranthus herbs recorded > than 320 μ g g? 1 dry weight. In both the spinach and chard species, the Mn and Zn levels were appreciable recording > 225 μ g g? 1 and 150 μ g g? 1 dry weight, respectively. Aluminum concentrations were (in μ g g? 1 dry weight) lettuce (10), cabbage (11), spinach (167), chards (65), amaranthus green (293) and amaranthus red (233). All the micro and macro elements and the toxic elements (Ni, Cr, Cd and Pb) elements analyzed, were below the recommended maximum permitted levels (RMI) in vegetables. Further the elemental uptake and distribution of the nine elements, at three growth stages of the lettuce plant grown on soil bed under controlled conditions are detailed. In the soil, except for iron (16%), greater than 33% of the other cations were in exchangeable form. Generally in the lettuce plant, roots retained much of the iron (> 224 μ g g? 1) and aluminum (> 360 μ g g? 1), while leaves had less than 200 μ g g? 1 of iron and 165 μ g g? 1 of Al. Although the concentrations of elements marginally decreased with growth, the lettuce leaves had significant amounts of Mn (30 μ g g? 1), Zn (50 μ g g? 1) and Cu (3.6 μ g g? 1). Some presence of lead in leaves (2.0 μ g g? 1) was noticed, but all the toxic and other elements analyzed were well below the RMI values for the vegetables.  相似文献   

8.
Oxidative transformation of organic contaminants by manganese oxides was commonly investigated with pure MnO2 suspension, which deviates from the fact that natural manganese oxides are seldom present as a pure form in the natural environment. In this study, we prepared manganese oxide-coated sand (MOCS) and evaluated its oxidative capacity using bisphenol A (BPA) as the model compound. BPA was transformed by MOCS and the reaction followed an exponential decay model. The reaction was pH dependent and followed the order of pH 4.5?>?pH 5.5?>?pH 6.5?>?pH 7.5?>?pH 8.6?>?pH 9.6, indicating that acidic conditions facilitated BPA transformation while basic conditions disfavored the reaction. Coexisting metal ions exhibited inhibitory effects and followed the order of Fe3+ > Zn2+ > Cu2+ > Ca2+ > Mg2+ > Na+. Transformation of BPA by MOCS was much slower than that by pure MnO2 suspension. However, similar transformation products were identified in both studies, suggesting the same reaction pathways. This work suggests that the reactivity of MnO2 in the environment might be overestimated if extrapolating the result from the pure MnO2 suspension because natural MnO2 is mainly present as coating on the surface of soils and sediments.  相似文献   

9.
This study presents oxidative transformation of carbamazepine by synthetic manganese oxide (??-MnO2) as well as impact of variables including initial MnO2 loading, pH, coexisting metal ions, and humic acid (HA) on transformation. Manganese oxide (??-MnO2) was synthesized and stored in the form of suspension. The oxidative reactions were conducted in 50?mL polyethylene (PE) centrifuge tubes with constant pH maintained by buffers. The kinetic experiment was carried out in the solution of pH 2.72 containing 5.0?mg/L of carbamazepine and 130.5?mg/L of MnO2. Effects of initial MnO2 loading (0?C130.5?mg/L), pH (2.72?C8.58) and 0.01?M of coexisting solutes (metal ions and HA) on carbamazepine oxidation were also determined. Reaction kinetics indicated that carbamazepine was rapidly degraded in the first 5?min, and approximately 95?% of carbamazepine was eliminated within 60?min. The reaction exhibited pronounced pH dependence and increased with decreasing pH values. The transformation of carbamazepine was also accelerated with increasing MnO2 loadings. Coexisting metal ions competed with carbamazepine for reactive sites leading to reduced carbamazepine removal, and the inhibitive capacity followed the order of Mn2+?>?Fe3+?>?Ca2+????Mg2+. Presence of HA in aqueous solution caused a significant reduction on the magnitude of carbamazepine transformation. This study indicated that carbamazepine can be effectively degraded by ??-MnO2, and transformation efficiency was strongly dependent on reaction conditions. It suggests that amendment of soil with MnO2 be a potential alternative to solve carbamazepine pollution.  相似文献   

10.
Dimethoate [O, O-dimethyl-S-(N-methylcarbamoyl-methyl) phosphorodithioate] is a broad-spectrum systemic insecticide currently used worldwide and on many vegetables in Kentucky. Dimethoate is a hydrophilic compound (log KOW = 0.7) and has the potential of offsite movement from the application site into runoff and infiltration water. The dissipation patterns of dimethoate residues were studied on spring broccoli leaves and heads under field conditions. Following foliar application of Dimethoate 4E on broccoli foliage at the rate of 0.47 L acre?1, dimethoate residues were monitored in soil, runoff water collected down the land slope, and in infiltration water collected from the vadose zone. The study was conducted on a Lowell silty loam soil (pH 6.9) planted with broccoli under three soil management practices: (i) soil mixed with municipal sewage sludge, (ii) soil mixed with yard waste compost, and (iii) no-mulch rototilled bare soil. The main objective of this investigation was to study the effect of mixing native soil with municipal sewage sludge or yard waste compost, having considerable amounts of organic matter, on off-site movement of dimethoate residues into runoff and infiltration water following spring rainfall. The initial deposits of dimethoate were 6.2 and 21.4 μ g g?1 on broccoli heads and leaves, respectively. These residues dissipated rapidly and fell below the maximum residue limit of 2 μ g g?1 on the heads and leaves after 10 and 14 d, respectively, with half-lives of 5.7 d on broccoli heads and 3.9 d on the leaves. Dimethoate residues detected in top 15 cm of soil (due to droplet drift and wash off residues from broccoli foliage) one day (d) following spraying, were 30.5 ng g?1 dry soil in the sewage sludge treatment, and 46.1 and 134.5 ng g?1 dry soil in the yard waste and no mulch treatments, respectively. Water infiltration was greater from yard waste compost treatment than from no mulch treatment, however concentrations of dimethoate in the vadose zone of the three soil treatments did not differ.  相似文献   

11.
Abstract

The aim of the research was to evaluate the effect of consumption of selenium-enriched pork on selected health indicators of probands. The intake of feed mixture with increased organic selenium at the dose of 0.3?mg.kg?1 probably increases selenium concentration in MSM (musculus semimembranosus). In the pork enriched with organic selenium, the concentration was higher by 1.045?±?0.10?mg.kg?1 compared with the control group 0.701?±?0.05?mg.kg?1 at significance P?<?0.001. Sixteen participants in the experiment were represented by 8 men at the average age of 41.5?±?11.9?years and 8 women at the average age of 41.4?±?7.9?years. All the probands consumed meat enriched with selenium three times a week during one month. By consumption of the enriched pork, there was an increase of the selenium concentration in blood serum of probands traced with selenium increase from 73.19?±?15.68?μg.L?1 to 73.73?±?15.13?μg.L?1 (P?>?0.05). From the results we can see that consumption of enriched pork with selenium was significantly manifested in lowering of total cholesterol levels, which was associated with LDL cholesterol lowering (P?<?0.05). Differences among the HDL cholesterol and triglycerides samples were not significant.  相似文献   

12.
This study investigated the extent of arsenic (As) contamination in five common species of freshwater fish (northern snakehead [Channa argus], mandrarin fish [Siniperca chuatsi], largemouth bass [Lepomis macrochirous], bighead carp [Aristichthys nobilis] and grass carp [Ctenopharyngodon idellus]) and their associated fish pond sediments collected from 18 freshwater fish ponds around the Pearl River Delta (PRD). The total As concentrations detected in fish muscle and sediment in freshwater ponds around the PRD were 0.05–3.01 mg?kg?1 wet weight (w. wt) and 8.41–22.76 mg?kg?1 dry weight (d. wt), respectively. In addition, the As content was positively correlated (p?<?0.05) to total organic carbon (TOC) contents in sediments. Biota sediment accumulation factor (BSAF) showed that omnivorous fish and zooplankton accumulated higher concentrations of heavy metals from the sediment than carnivorous fish. In addition, feeding habits of fish also influence As accumulation in different fish species. In this study, two typical food chains of the aquaculture ponds were selected for investigation: (1) omnivorous food chain (zooplankton, grass carp and bighead carp) and (2) predatory food chain (zooplankton, mud carp and mandarin fish). Significant linear relationships were obtained between log As and δ 15N. The slope of the regression (?0.066 and ?0.078) of the log transformed As concentrations and δ 15N values, as biomagnifications power, indicated there was no magnification or diminution of As from lower trophic levels (zooplankton) to fish in the aquaculture ponds. Consumption of largemouth bass, northern snakehead and bighead carp might impose health risks of Hong Kong residents consuming these fish to the local population, due to the fact that its cancer risk (CR) value exceeded the upper limit of the acceptable risk levels (10?4) stipulated by the USEPA.  相似文献   

13.
The effect of seven heavy metals on the motility parameter of zebrafish sperm was tested in order to develop an in vitro toxicological test system as an alternative to live animal testing. In vitro test systems are currently preferred in ecotoxicology due to their practical and ethical advantages and fish sperm can be a suitable model. A number of studies had been carried out previously on this topic, but the described methods had not been standardized in numerous aspects (donor species, measured endpoint, etc.). In this study, heavy metals (mercury, arsenic, chromium, zinc, nickel, copper, cadmium) were used as reference toxicants with known toxicity to develop a standardized fish sperm in vitro assay. The tested concentrations were determined based on preliminary range finding tests. The endpoints were progressive motility (PMOT, %), curvilinear velocity (VCL, μm/s), and linearity (LIN, %) measured by a computer-assisted sperm analysis (CASA) system. According to our results, PMOT was the most sensitive of the three investigated parameters: dose-response curves were observed for each metal at relatively low concentrations. VCL values were less sensitive: higher concentrations were needed to observe changes. Of the three parameters, LIN was the least affected: dose-response relationship was observed only in the case of mercury (e.g., lowest observed effect concentration (LOEC) of Hg at 120 min: 1 mg/L for PMOT, 2.5 mg/L for VCL, 5 mg/L for LIN; LOEC of Cu at 120 min: 1 mg/L for PMOT, 5 mg/L for VCL, any for LIN). The order of toxicity as determined by PMOT was as follows: Hg2+?>?As3+?>?Cd2+?>?Cu2+?>?Zn2+?>?Cr3+?>?Ni2+. In conclusion, we found that PMOT of zebrafish sperm was an accurate and fast bioindicator of heavy metal load. Sperm analysis can be adopted to estimate the possible toxic effects of various chemicals in vitro. Future investigations should concentrate on the applicability of this assay to other contaminants (e.g., organic pollutants).  相似文献   

14.

As an ubiquitous carcinogen, polycyclic aromatic hydrocarbons (PAHs) are closely related to anthropogenic activities. The process of urbanization leads to the spatial interlacing of farmlands and urbanized zones. However, field evidence on the influence of urbanization on the accumulation of PAHs in crops of peri-urban farmlands is lacking. This study comparatively investigated the urbanization-driven levels, compositions, and sources of PAHs in 120 paired plant and soil samples collected from the Yangtze River Delta in China and their species-specific human intake risks. The concentrations of PAHs in crops and soils in the peri-urban areas were 2407.92 ng g?1 and 546.64 ng g?1, respectively, which are significantly higher than those in the rural areas. The PAHs in the root were highly relevant to those in the soils (R2?=?0.63, p?<?0.01), and the root bioconcentration factors were higher than 1.0, implying the contributions of root uptake to plant accumulations. However, the translocation factors in the peri-urban areas (1.57?±?0.33) were higher than those in the rural areas (1.19?±?0.14), indicating the enhanced influence through gaseous absorption. For the congeners, the 2- to 3-ring PAHs showed a higher plant accumulation potential than the 4- to 6-ring PAHs. Principal component analysis show that the PAHs in the peri-urban plants predominantly resulted from urbanization parameters, such as coal combustion, vehicle emissions, and biomass burning. The mean values of estimated dietary intake of PAHs from the consumption of peri-urban and rural crops were 9116 ng day?1 and 6601.83 ng day?1, respectively. The intake risks of different crops followed the order rice?>?cabbage?>?carrot?>?pea. Given the significant input of PAHs from urban to farmland, the influence of many anthropogenic pollutants arising from rapid urbanization should be considered when assessing the agricultural food safety.

Graphical abstract
  相似文献   

15.
The aim of our study is to determine microbial contamination, antibacterial and antioxidant activities of 14 pollen samples of Corylus avellana collected from different locations in Slovakia. Microbiological analysis was carried out in two steps: microbiological assays and studies of antibacterial activity of pollen extracts. The antimicrobial properties of pollen extracts were carried out with the disc-diffusion method. Methanol (70%), ethanol (70%) and distilled water were used for pollen extracts. Five strains of bacteria such as gram-negative (Salmonella enterica subsp. enterica CCM 3807, Escherichia coli CCM 2024, and Yersinia enterocolitica CCM 5671) and gram-positive (Staphylococcus aureus CCM 2461 and Bacillus thuringiensis CCM 19T) were tested. Antioxidant activity of pollen extracts was determined by the DPPH method. Bacterial analysis includes the determination of the total bacterial count ranged from 4.08 to 4.61 log CFU g?1, mesophilic aerobic bacteria ranged from 3.40 to 4.89 log CFU g?1, mesophilic anaerobic bacteria ranged from 3.20 to 4.52 log CFU g?1, coliform bacteria ranged from 3.30 to 4.55 log CFU g?1, yeasts and filamentous fungi ranged from 3.00 to 3.56 log CFU g?1. Microscopic filamentous fungi Aspergillus spp., Alternaria spp., Penicillium spp., Cladosporium spp., Rhizopus spp., and Paecylomyces spp. were isolated from hazelnut pollen. Yersinia enterocolitica was the most sensitive strain among ethanolic and methanolic pollen hazelnut extracts. Staphylococcus aureus was the most sensitive strain against aqueous hazelnut pollen extracts. We determined the following sensitivity against ethanol pollen extracts respectively: Yersinia enterocolitica?>?Salmonella enterica?>?Staphylococcus aureus?>?Bacillus thuringiensis?>?Escherichia coli. Methanol pollen extracts had shown following sensitivity: Yersinia enterocolitica?>?Salmonella enterica?>?Escherichia coli?>?Staphylococcus aureus?>?Bacillus thuringiensis. Aqueous extracts had shown the following sensitivity: Staphylococcus aureus?>?Salmonella enterica?>?Escherichia coli?>?Bacillus thuringiensis?>?Yersinia enterocolitica. Hazelnut pollen extracts have over 82% antioxidant capacity in samples from non-urban zones. An elevated level of antioxidant potential in the pollen is determined by its biological properties conditioned by biologically active substances. DPPH method allowed characterizing pollen as a source of antioxidants.  相似文献   

16.
This study focuses on the extent of zinc (Zn), copper (Cu), cadmium (Cd), cobalt (Co), manganese (Mn), lead (Pb), mercury (Hg), and arsenic (As) bioaccumulation in edible muscles of Caspian kutum (Rutilus frisii kutum), in both male and female sexes at Noor and Babolsar coastal regions from the southern basin of Caspian Sea. These values were compared with the WHO and the UNFAO safety standards regarding the amount of the abovementioned heavy metals in fish tissues (mg/kg ww). Results showed that the accumulation of these elements (except for Zn) was not significantly different between sexes of male and female in Babolsar coastal regions (P?>?0.05). In the other hand, accumulation of Hg and As at edible muscles of Caspian kutum has significant difference between two sexes of male and female in Noor coastal regions (P?<?0.05), the female had higher concentration than the male. Furthermore, it was not significantly correlated with sex and rivers in length and weight of fish (R 2?<?0.50; P?>?0.05). Based on the results, the concentration of heavy metals in the studied fish tissues proved to be significantly lower than international standards (P?<?0.05), so its consumption is not a threat to the health of consumers.  相似文献   

17.
The addition of organic matter in soil can modify the bioavailability of heavy metals. A greenhouse pot experiment was carried out using an edible plant species Eruca vesicaria L. Cavalieri grown on an artificially contaminated soil with Zn (665 mg?kg?1). In this study, the effect of compost at 20 t?ha?1 (C20) and at 60 t?ha?1 (C60), manure at 10 t?ha?1 (M10) and at 30 t?ha?1 (M30), and chemical fertilizers (NPK) on Zn fate in a soil–plant system was evaluated. At the end of the experiment, the main growth parameters and Zn content in plants were determined. In addition, Zn speciation in the soil was assessed using the original Community Bureau of Reference sequential extraction and diethylene triamine pentaacetic acid extraction. Zinc, though an essential element for plant growth, caused toxicity effects in plants grown on control and manure treatments, while in the compost treatments, plants showed no visual toxicity symptoms. The concentrations of Zn in roots were similar for all treatments, while significant differences were observed for shoots. In fact, in the compost treatments, plants showed the lowest Zn concentration in shoots. Zinc speciation seems not to be affected by the applied treatments. Indeed, Zn plant content and translocation to shoots seems to be affected. Compost amendments significantly reduced Zn content and translocation in comparison to other treatments.  相似文献   

18.
Perfluorinated alkyl substances (PFASs) are emerging persistent organic pollutants, which pose a threat to human health primarily by dietary exposure, especially through seafood. Bohai Sea (a semi-closed sea located north of China) is an important shellfish aquaculture area that is possibly highly-polluted with PFASs. In this study, we first evaluated contamination by PFASs in a total of 230 samples of marine shellfish from the Bohai Sea. Samples included five important shellfish species, collected from important aquaculture spots distributed around the Bohai Sea. Samples were analyzed by an ultra-fast liquid chromatography-tandem mass spectrometry method, which could simultaneously detect 23 PFASs in shellfish. Our research verified that PFASs have become a threat to the safety of shellfish products in this area. Furthermore, contamination by PFASs in shellfish changed depending on the components of PFASs, the species of shellfish, and the sampling sites. Many of the 23 target compounds contributed to the high detection ratio (>50%) as follows: perfluorooctanoic acid (PFOA)?>?perfluorononanoic acid?>?perfluorodecanesulfonic acid?>?perfluorooctanesulfonic acid (PFOS). Compared with other dominant components, PFOA not only had the highest detection percentage in shellfish samples (98.3%), but its detection level contributed to 87.2% of total PFASs concentrations, indicating that PFOA is the major threat to the safety of shellfish products. The highest level of PFAS was found in clams (62.5?ng?g?1 wet weight of PFOA). The concentration of total PFAS in different shellfish species showed the following trend: clams?>?mussels?>?scallops?>?whelks?>?oysters. The maximum concentration of total PFAS or PFOA was found in Shouguang. The total concentration of PFOS and its precursor were highest in Cangzhou, possibly due to local industrial activities. The results presented in this paper provide new data on the contamination of marine shellfish along the Bohai Sea coasts in China, and constitute a reference for future monitoring of contamination by emerging contaminants in Bohai coast.  相似文献   

19.
It had been reported that iron and manganese oxides in steel slag enhanced the production of humic acid (HA) from low-molecular-weight compounds, such as phenolic acids, amino acids, and saccharides. In the present study, this function of steel slag was applied to the composting of raw organic wastes (ROWs). The degree of humification of HAs is an important factor in evaluating compost quality. Thus, HAs were extracted from the prepared composts and the humification parameters were determined, in terms of elemental compositions, acidic functional group contents, molecular weights, spectroscopic parameters from UV–vis absorption and 13C NMR spectra. The timing for adding steel slag affected the degree of humification of HAs in the composts. The weight average molecular weight of a HA when slag was added initially (29 kDa) was significantly higher than when slag was added after elevating the temperature of the compost pile (17–18 kDa). These results show that ROWs are decomposed to low-molecular-weight compounds after the pile temperature is elevated and the presence of slag enhances the polycondensation of these compounds to produce HAs with a higher degree of humification. Because the slag used in the present study contained several-tens ng g?1 to several μg g?1 of toxic elements (B, Cu, Cr, and Zn), leaching tests for these elements from the prepared composts were carried out. Levels for leaching boron from composts prepared by adding slag (0.2–0.4 mg L?1) were obviously higher than the corresponding levels without slag (0.05 mg L?1).  相似文献   

20.
Application of greenwaste compost to brownfield land is increasingly common in soil and landscape restoration. Previous studies have demonstrated both beneficial and detrimental effects of this material on trace element mobility. A pot experiment with homogenised soil/compost investigated distribution and mobility of trace elements, two years after application of greenwaste compost mulch to shallow soils overlying a former alkali-works contaminated with Pb, Cu and As (∼900, 200 and 500 mg kg−1, respectively). Compost mulch increased organic carbon and Fe in soil pore water, which in turn increased As and Sb mobilization; this enhanced uptake by lettuce and sunflower. A very small proportion of the total soil trace element pool was in readily-exchangeable form (<0.01% As, <0.001% other trace elements), but the effect of compost on behaviour of metals was variable and ambiguous. It is concluded that greenwaste compost should be applied with caution to multi-element contaminated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号