首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Photochemical advanced oxidation processes have been considered for the treatment of water and wastewater containing the herbicide atrazine (ATZ), a possible human carcinogen and endocrine disruptor. In this study, we investigated the effects of the photon emission rate and initial concentration on ATZ photolysis at 254 nm, an issue not usually detailed in literature. Moreover, the role of reactive oxygen species (ROS) is discussed. Photon emission rates in the range 0.87?×?1018–3.6?×?1018 photons L?1 s?1 and [ATZ]0?=?5 and 20 mg L?1 were used. The results showed more than 65 % of ATZ removal after 30 min. ATZ photolysis followed apparent first-order kinetics with k values and percent removals decreasing with increasing herbicide initial concentration. A fivefold linear increase in specific degradation rate constants with photon emission rate was observed. Also, regardless the presence of persistent degradation products, toxicity was efficiently removed after 60-min exposure to UV radiation. Experiments confirmed a noticeable contribution of singlet oxygen and radical species to atrazine degradation during photolysis. These results may help understand the behavior of atrazine in different UV-driven photochemical degradation treatment processes.  相似文献   

2.
The aim of the present work was to establish the kinetics for the degradation of doxycycline in the aquatic environment with a view to arriving at a kinetic model that can be used to predict the persistence of antibiotic with confidence. The degradation of doxycycline in both water and sediment phases of aquatic microcosm experiments, as well as in distilled water control experiments, was studied over a period of 90 days. An initial 21% loss due to adsorption by the sediment was observed in the microcosm experiment soon after charging. Biphasic zero-order linear rates of degradation, attributed to microbial degradation of the free and sediment or colloidal particle-adsorbed antibiotic, were observed for both water phase (2.3 × 10?2 and 4.5 × 10?3 μgg?1 day?1) and sediment phase (7.9 × 10?3 and 1.5 × 10?3 μgg?1 day?1) of the microcosm experiment. The covered distilled water control experiment exhibited a monophasic zero-order linear rate (1.9 × 10?3 μgg?1 day?1) attributed to hydrolysis, while the distilled water experiment exposed to natural light exhibited biphasic liner rates attributed to a combination of hydrolysis and photolysis (2.9 × 10?3 μgg?1 day?1) and to microbial degradation (9.8 × 10?3 μgg?1 day?1). A kinetic model that takes into account hydrolysis, photolysis, microbial degradation as well as sorption/desorption by colloidal and sediment particles is presented to account for the observed zero-order kinetics. The implications of the observed kinetics on the persistence of doxycycline in the aquatic environment are discussed.  相似文献   

3.
The decomposition of highly toxic chemical warfare agent, sulfur mustard (bis(2-chloroethyl) sulfide or HD), has been studied by homogeneous photolysis and heterogeneous photocatalytic degradation on titania nanoparticles. Direct photolysis degradation of HD with irradiation system was investigated. The photocatalytic degradation of HD was investigated in the presence of TiO2 nanoparticles and polyoxometalates embedded in titania nanoparticles in liquid phase at room temperature (33?±?2 °C). Degradation products during the treatment were identified by gas chromatography–mass spectrometry. Whereas apparent first-order kinetics of ultraviolet (UV) photolysis were slow (0.0091 min?1), the highest degradation rate is obtained in the presence of TiO2 nanoparticles as nanophotocatalyst. Simultaneous photolysis and photocatalysis under the full UV radiation leads to HD complete destruction in 3 h. No degradation products observed in the presence of nanophotocatalyst without irradiation in 3 h. It was found that up to 90 % of agent was decomposed under of UV irradiation without TiO2, in 6 h. The decontamination mechanisms are often quite complex and multiple mechanisms can be operable such as hydrolysis, oxidation, and elimination. By simultaneously carrying out photolysis and photocatalysis in hexane, we have succeeded in achieving faster HD decontamination after 90 min with low catalyst loading. TiO2 nanoparticles proved to be a superior photocatalyst under UV irradiation for HD decontamination.  相似文献   

4.
The paper presents results of the studies photodegradation, photooxidation, and oxidation of phenylarsonic acid (PAA) in aquatic solution. The water solutions, which consist of 2.7 g dm?3 phenylarsonic acid, were subjected to advance oxidation process (AOP) in UV, UV/H2O2, UV/O3, H2O2, and O3 systems under two pH conditions. Kinetic rate constants and half-life of phenylarsonic acid decomposition reaction are presented. The results from the study indicate that at pH 2 and 7, PAA degradation processes takes place in accordance with the pseudo first order kinetic reaction. The highest rate constants (10.45?×?10?3 and 20.12?×?10?3) and degradation efficiencies at pH 2 and 7 were obtained at UV/O3 processes. In solution, after processes, benzene, phenol, acetophenone, o-hydroxybiphenyl, p-hydroxybiphenyl, benzoic acid, benzaldehyde, and biphenyl were identified.  相似文献   

5.
In this study, photocatalytic (photo-Fenton and H2O2/UV) and dark Fenton processes were used to remove ethylenethiourea (ETU) from water. The experiments were conducted in a photo-reactor with an 80 W mercury vapor lamp. The mineralization of ETU was determined by total organic carbon analysis, and ETU degradation was qualitatively monitored by the reduction of UV absorbance at 232 nm. A higher mineralization efficiency was obtained by using the photo-peroxidation process (UV/H2O2). Approximately 77% of ETU was mineralized within 120 min of the reaction using [H2O2]0 = 400 mg L?1. The photo-Fenton process mineralized 70% of the ETU with [H2O2]0 = 800 mg L?1 and [Fe2+] = 400 mg L?1, and there is evidence that hydrogen peroxide was the limiting reagent in the reaction because it was rapidly consumed. Moreover, increasing the concentration of H2O2 from 800 mg L?1 to 1200 mg L?1 did not enhance the degradation of ETU. Kinetics studies revealed that the pseudo-second-order model best fit the experimental conditions. The k values for the UV/H2O2 and photo-Fenton processes were determined to be 6.2 × 10?4 mg L?1 min?1 and 7.7 × 10?4 mg L?1 min?1, respectively. The mineralization of ETU in the absence of hydrogen peroxide has led to the conclusion that ETU transformation products are susceptible to photolysis by UV light. These are promising results for further research. The processes that were investigated can be used to remove pesticide metabolites from drinking water sources and wastewater in developing countries.  相似文献   

6.
The influences of HCO3 ?, Cl?, and other components on the UV/TiO2 degradation of the antineoplastic agents ifosfamide (IFO) and cyclophosphamide (CP) were studied in this work. The results indicated that the presence of HCO3 ?, Cl?, NO3 ?, and SO4 2? in water bodies resulted in lower degradation efficiencies. The half-lives of IFO and CP were 1.2 and 1.1 min and increased 2.3–7.3 and 3.2–6.3 times, respectively, in the presence of the four anions (initial compound concentration = 100 μg/L, TiO2 loading =100 mg/L, anion concentration = 1000 mg/L, and pH = 8). Although the presence of HCO3 ? in the UV/TiO2/HCO3 ? system resulted in a lower degradation rate and less byproduct formation for IFO and CP, two newly identified byproducts, P11 (M.W. = 197) and P12 (M.W. = 101), were formed and detected, suggesting that additional pathways occurred during the reaction of ?CO3 ? in the system. The results also showed that ?CO3 ? likely induces a preferred ketonization pathway. Besides the inorganic anions HCO3 ?, Cl?, NO3 ?, and SO4 2?, the existence of dissolved organic matter in the water has a significant effect and inhibits CP degradation. Toxicity tests showed that higher toxicity occurred in the presence of HCO3 ? or Cl? during UV/TiO2 treatment and within 6 h of reaction time, implying that the effects of these two anions should not be ignored when photocatalytic treatment is applied to treat real wastewater.  相似文献   

7.
In this study, a SYBR green quantitative real-time PCR was developed to quantify and detect the Legionella spp. in various environmental water samples. The water samples were taken from watershed, water treatment plant, and thermal spring area in Taiwan. Legionella was detected in 13.6 % (24/176), and the detection rate for river water, raw drinking water, and thermal spring water was 10, 21.4, and 16.6 %, respectively. Using real-time PCR, concentration of Legionella spp. in detected samples ranged between 9.75?×?104 and 3.47?×?105?cells/L in river water, 6.92?×?104 and 4.29?×?105?cells/L in raw drinking water, and 5.71?×?104 and 2.12?×?106?cells/L for thermal spring water samples. The identified species included Legionella pneumophila (20.8 %), Legionella jordanis (4.2 %), Legionella nautarum (4.2 %), Legionella sp. (4.2 %), and uncultured Legionella sp. (66.6 %). The presence of L. pneumophila in aquatic environments suggested a potential public health threat that must be further examined.  相似文献   

8.

A theoretical and experimental study of bisphenol A (BPA) degradation by the UV/H2O2 process in water is presented. The effects of the H2O2 concentration and the specific rate of photon emission (EP,0) on BPA degradation were investigated. A kinetic model derived from a reaction sequence was employed to predict BPA and hydrogen peroxide concentrations over time using an annular photochemical reactor in batch recirculation mode. The local volumetric rate of photon absorption (LVRPA) inside the photoreactor was computed using a Line Source with Parallel Plane emission model (LSPP). From the proposed kinetic model and the experimental data, the second order rate constants of the reactions between hydroxyl radicals and the main reacting species (H2O2 and BPA) were estimated applying a nonlinear regression method. A good agreement between the kinetic model and experimental data, for a wide range of operating conditions, was obtained. For BPA, H2O2, and TOC concentrations, the calculated root means square errors (RMSE) were 2.3?×?10??2, 9.8?×?10??1, and 9.0?×?10??2 mmol L??1, respectively. The simplified kinetic model presented in this work can be directly applied to scaling-up and reactor design, since the estimated kinetic constants are independent of the reactor size, shape, and configuration. Further experiments were made by employing low BPA initial concentration (100 μg L??1) in water and real wastewater. A lower degradation rate of BPA was observed in the real wastewater, although the UV/H2O2 process has also been able to completely degrade the target pollutant in less than 1 h.

  相似文献   

9.
The aim of this study was to characterize the features of a Cd-, Pb-, and Zn-resistant endophytic fungus Lasiodiplodia sp. MXSF31 and to investigate the potential of MXSF31 to remove metals from contaminated water and soils. The endophytic fungus was isolated from the stem of Portulaca oleracea growing in metal-contaminated soils. The maximum biosorption capacities of MXSF31 were 3.0?×?103, 1.1?×?104, and 1.3?×?104 mg kg?1 for Cd, Pb, and Zn, respectively. The biosorption processes of Cd, Pb, and Zn by MXSF31 were well characterized with the pseudo-second-order kinetic model. The biosorption isotherm processes of Pb and Zn by the fungus were fitted better with the Langmuir model, while the biosorption processes of Cd was better fitted with the Freundlich model. The biosorption process of MXSF31 was attributed to the functional groups of hydroxyl, amino, carbonyl, and benzene ring on the cell wall. The active biomass of the strain removed more Cd, Pb, and Zn (4.6?×?104, 5.6?×?105, and 7.0?×?104 mg kg?1, respectively) than the dead biomass. The inoculation of MXSF31 increased the biomass of rape (Brassica napus L.), the translocation factor of Cd, and the extraction amount of Cd by rape in the Cd?+?Pb-contaminated soils. The results indicated that the endophytic fungus strain had the potential to remove heavy metals from water and soils contaminated by multiple heavy metals, and plants accumulating multiple metals might harbor diverse fungi suitable for bioremediation of contaminated media.  相似文献   

10.
A novel photocatalytic reactor for wastewater treatment was designed and constructed. The main part of the reactor was an aluminum tube in which 12 stainless steel circular baffles and four quartz tube were placed inside of the reactor like shell and tube heat exchangers. Four UV–C lamps were housed within the space of the quartz tubes. Surface of the baffles was coated with TiO2. A simple method was employed for TiO2 immobilization, while the characterization of the supported photocatalyst was based on the results obtained through performing some common analytical methods such as X-ray diffraction (XRD), scanning electron microscope (SEM), and BET. Phenol was selected as a model pollutant. A solution of a known initial concentration (20, 60, and 100 ppmv) was introduced to the reactor. The reactor also has a recycle flow to make turbulent flow inside of the reactor. The selected recycle flow rate was 7?×?10?5 m3.s?1, while the flow rate of feed was 2.53?×?10?7, 7.56?×?10?7, and 1.26?×?10?6 m3.s?1, respectively. To evaluate performance of the reactor, response surface methodology was employed. A four-factor three-level Box–Behnken design was developed to evaluate the reactor performance for degradation of phenol. Effects of phenol inlet concentration (20–100 ppmv), pH (3–9), liquid flow rate (2.53?×?10?7?1.26?×?10?6 m3.s?1), and TiO2 loading (8.8–17.6 g.m?2) were analyzed with this method. The adjusted R 2 value (0.9936) was in close agreement with that of corresponding R 2 value (0.9961). The maximum predicted degradation of phenol was 75.50 % at the optimum processing conditions (initial phenol concentration of 20 ppmv, pH?~?6.41, and flow rate of 2.53?×?10?7 m3.s?1 and catalyst loading of 17.6 g.m?2). Experimental degradation of phenol determined at the optimum conditions was 73.7 %. XRD patterns and SEM images at the optimum conditions revealed that crystal size is approximately 25 nm and TiO2 nanoparticles with visible agglomerates distribute densely and uniformly over the surface of stainless steel substrate. BET specific surface area of immobilized TiO2 was 47.2 and 45.8 m2 g?1 before and after the experiments, respectively. Reduction in TOC content, after steady state condition, showed that maximum phenol decomposition occurred at neutral condition (pH?~?6). Figure
The schematic view of the experimental set-up  相似文献   

11.
This study reports the synthesis and characterization of composite nitrogen and fluorine co-doped titanium dioxide (NF-TiO2) for the removal of contaminants of concern in wastewater under visible and solar light. Monodisperse anatase TiO2 nanoparticles of different sizes and Evonik P25 were assembled to immobilized NF-TiO2 by direct incorporation into the sol–gel or by the layer-by-layer technique. The composite films were characterized with X-ray diffraction, high-resolution transmission electron microscopy, environmental scanning electron microscopy, and porosimetry analysis. The photocatalytic degradation of atrazine, carbamazepine, and caffeine was evaluated in a synthetic water solution and in an effluent from a hybrid biological concentrator reactor (BCR). Minor aggregation and improved distribution of monodisperse titania particles was obtained with NF-TiO2-monodisperse (10 and 50 nm) from the layer-by-layer technique than with NF-TiO2?+?monodisperse TiO2 (300 nm) directly incorporated into the sol. The photocatalysts synthesized with the layer-by-layer method achieved significantly higher degradation rates in contrast with NF-TiO2-monodisperse titania (300 nm) and slightly faster values when compared with NF-TiO2-P25. Using NF-TiO2 layer-by-layer with monodisperse TiO2 (50 nm) under solar light irradiation, the respective degradation rates in synthetic water and BCR effluent were 14.6 and 9.5?×?10?3?min?1 for caffeine, 12.5 and 9.0?×?10?3?min?1 for carbamazepine, and 10.9 and 5.8?×?10?3?min?1 for atrazine. These results suggest that the layer-by-layer technique is a promising method for the synthesis of composite TiO2-based films compared to the direct addition of nanoparticles into the sol.  相似文献   

12.

In addition to direct photolysis studies, in this work the second-order reaction rate constants of pesticides imidacloprid (IMD) and ametryn (AMT) with hydroxyl radicals (HO), singlet oxygen (1O2), and triplet excited states of chromophoric dissolved organic matter (3CDOM*) were determined by kinetic competition under sunlight. IMD and AMT exhibited low photolysis quantum yields: (1.23?±?0.07)?×?10–2 and (7.99?±?1.61)?×?10–3 mol Einstein?1, respectively. In contrast, reactions with HO radicals and 3CDOM* dominate their degradation, with 1O2 exhibiting rates three to five orders of magnitude lower. The values of kIMD,HO● and kAMT,HO● were (3.51?±?0.06)?×?109 and (4.97?±?0.37)?×?109 L mol?1 s?1, respectively, while different rate constants were obtained using anthraquinone-2-sulfonate (AQ2S) or 4-carboxybenzophenone (CBBP) as CDOM proxies. For IMD this difference was significant, with kIMD,3AQ2S*?=?(1.02?±?0.08)?×?109 L mol?1 s?1 and kIMD,3CBBP*?=?(3.17?±?0.14)?×?108 L mol?1 s?1; on the contrary, the values found for AMT are close, kAMT,3AQ2S*?=?(8.13?±?0.35)?×?108 L mol?1 s?1 and kAMT,3CBBP*?=?(7.75?±?0.80)?×?108 L mol?1 s?1. Based on these results, mathematical simulations performed with the APEX model for typical levels of water constituents (NO3?, NO2?, CO32?, TOC, pH) indicate that the half-lives of these pesticides should vary between 24.1 and 18.8 days in the waters of the Paranapanema River (São Paulo, Brazil), which can therefore be impacted by intensive agricultural activity in the region.

  相似文献   

13.
The presence of dyes in water is undesirable due to the toxicological impact of their entrance into the food chain. Owing to the recalcitrant nature of dyes to biological oxidation, a tertiary treatment like adsorption is required. In the present study, unsaturated polyester resin (UPR) has been used as a sorbent in the treatment of dye-contaminated water. Different concentrations of Tropaeoline 000 containing water were treated with UPR. The preliminary investigations were carried out by batch adsorption to examine the effects of pH, adsorbate concentration, adsorbent dosage, contact time, and temperature. A plausible mechanism for the ongoing adsorption process and thermodynamic parameters have also been obtained from Langmuir and Freundlich adsorption isotherm models. Thermodynamic parameter showed that the sorption process of Tropaeoline 000 onto activated carbon (AC) and UPR were feasible, spontaneous, and endothermic under studied conditions. The estimated values for (ΔG) are ?10.48?×?103 and ?6.098?×?103 kJ mol?1 over AC and UPR at 303 K (30 °C), indicating towards a spontaneous process. The adsorption process followed pseudo-first-order model. The mass transfer property of the sorption process was studied using Lagergren pseudo-first-order kinetic models. The values of % removal and k ad for dye systems were calculated at different temperatures (303–323 K). The mechanism of the adsorption process was determined from the intraparticle diffusion model.  相似文献   

14.
Photocatalytic degradation of bisphenol A (BPA) in waters and wastewaters in the presence of titanium dioxide (TiO2) was performed under different conditions. Suspensions of the TiO2 were used to compare the degradation efficiency of BPA (20 mg L?1) in batch and compound parabolic collector (CPC) reactors. A TiO2 catalyst supported on glass spheres was prepared (sol–gel method) and used in a CPC solar pilot plant for the photodegradation of BPA (100 μg L?1). The influence of OH·, O2 ·?, and h + on the BPA degradation were evaluated. The radicals OH· and O2 ·? were proved to be the main species involved on BPA photodegradation. Total organic carbon (TOC) and carboxylic acids were determined to evaluate the BPA mineralization during the photodegradation process. Some toxicological effects of BPA and its photoproducts on Eisenia andrei earthworms were evaluated. The results show that the optimal concentration of suspended TiO2 to degrade BPA in batch or CPC reactors was 0.1 g L?1. According to biological tests, the BPA LC50 in 24 h for E. andrei was of 1.7?×?10?2 mg cm?2. The photocatalytic degradation of BPA mediated by TiO2 supported on glass spheres suffered strong influence of the water matrix. On real municipal wastewater treatment plant (MWWTP) secondary effluent, 30 % of BPA remains in solution; nevertheless, the method has the enormous advantage since it eliminates the need of catalyst removal step, reducing the cost of treatment.  相似文献   

15.
Abstract

The aim of this study was to produce Bacillus thuringiensis-based biopesticide using starch-producing industry wastewater (SIW) fortified with soybean medium and optimize the formulated product using different adjuvants. This study was necessary as low endotoxin concentration is obtained in formulated biopesticide when SIW alone is used as fermentation medium. The fermentation runs were conducted using SIW alone and SIW fortified with 25% soybean (w/v) medium in 2000?L and 150?L bioreactor, respectively. SIW supplemented with soybean medium showed an increase in cell count (from 1.95?×?108 to 1.65?×?109 CFU mL–1), spore synthesis (from 1.5?×?108 to 1.35?×?109 CFU mL–1) and endotoxin concentration (from 436 to 1170?μg mL–1) when compared to SIW medium alone. The fermented broth was concentrated using continuous centrifugation and adjuvants were added for biopesticide formulation in order to enhance its resistance against UV rays and rainfastness. Entomotoxicity of the formulation produced using fermented broth of SIW fortified with soybean (38,000?IU μL–1) was higher than that obtained by SIW medium alone (21,000?IU μL–1), commercial biopesticide Foray 76B (20,000?IU μL–1) and Btk sander’s (12,500?IU μL–1).  相似文献   

16.
The electrochemical degradation of the nonsteroidal anti-inflammatory drug ketoprofen in tap water has been studied using electro-Fenton (EF) and anodic oxidation (AO) processes with platinium (Pt) and boron-doped diamond (BDD) anodes and carbon felt cathode. Fast degradation of the parent drug molecule and its degradation intermediates leading to complete mineralization was achieved by BDD/carbon felt, Pt/carbon felt, and AO with BDD anode. The obtained results showed that oxidative degradation rate of ketoprofen and mineralization of its aqueous solution increased by increasing applied current. Degradation kinetics fitted well to a pseudo-first-order reaction. Absolute rate constant of the oxidation of ketoprofen by electrochemically generated hydroxyl radicals was determined to be (2.8?±?0.1)?×?109 M?1 s?1 by using competition kinetic method. Several reaction intermediates such as 3-hydroxybenzoic acid, pyrogallol, catechol, benzophenone, benzoic acid, and hydroquinone were identified by high-performance liquid chromatography (HPLC) analyses. The formation, identification, and evolution of short-chain aliphatic carboxylic acids like formic, acetic, oxalic, glycolic, and glyoxylic acids were monitored with ion exclusion chromatography. Based on the identified aromatic/cyclic intermediates and carboxylic acids as end products before mineralization, a plausible mineralization pathway was proposed. The evolution of the toxicity during treatments was also monitored using Microtox method, showing a faster detoxification with higher applied current values.  相似文献   

17.
In this work, the electrochemical degradation of the dye azure B in aqueous solutions was studied by electrochemical advanced oxidation processes (EAOPs), electro-Fenton, and anodic oxidation processes, using Pt/carbon-felt and boron-doped diamond (BDD)/carbon-felt cells with H2O2 electrogeneration. The higher oxidation power of the electro-Fenton (EF) process using BDD anode was demonstrated. The oxidative degradation of azure B by the electrochemically generated hydroxyl radicals (?OH) follows a pseudo-first-order kinetics. The apparent rate constants of the oxidation of azure B by ?OH were measured according to pseudo-first-order kinetic model. The absolute rate constant of azure B hydroxylation reaction was determined by competition kinetics method and found to be 1.19?×?109 M?1 s?1. It was found that the electrochemical degradation of the dye leads to the formation of aromatic by-products which are then oxidized to aliphatic carboxylic acids before their almost mineralization to CO2 and inorganic ions (sulfate, nitrate, and ammonium). The evolution of the TOC removal and time course of short-chain carboxylic acids during treatment were also investigated.  相似文献   

18.
The aqueous photodegradation of fluopyram was investigated under UV light (λ?≥?200 nm) and simulated sunlight irradiation (λ?≥?290 nm). The effect of solution pH, fulvic acids (FA), nitrate (NO3 ?), Fe (III) ions, and titanium dioxide (TiO2) on direct photolysis of fluopyram was explored. The results showed that fluopyram photodegradation was faster in neutral solution than that in acidic and alkaline solutions. The presence of FA, NO3 ?, Fe (III), and TiO2 slightly affected the photodegradation of fluopyram under UV irradiation, whereas the photodegradation rates of fluopyram with 5 mg L?1 Fe (III) and 500 mg L?1 TiO2 were about 7-fold and 13-fold faster than that without Fe (III) and TiO2 under simulated sunlight irradiation, respectively. Three typical products for direct photolysis of fluopyram have been isolated and characterized by liquid chromatography tandem mass spectrometry. These products resulted from the intramolecular elimination of HCl, hydroxyl-substitution, and hydrogen extraction. Based on the identified transformation products and evolution profile, a plausible degradation pathway for the direct photolysis of fluopyram in aqueous solution was proposed. In addition, acute toxicity assays using the Vibrio fischeri bacteria test indicated that the transformation products were more toxic than the parent compound.  相似文献   

19.
Experiments were conducted to assess the impact of citric acid (CA) and rhizosphere bacteria on metal uptake in Phragmites australis cultured in a spiked acid mine drainage (AMD) soil. Rhizosphere iron-oxidizing bacteria (Fe(II)OB) enhanced the formation of Fe plaque on roots, which decreased the uptake of Fe and Mn. CA inhibited the growth of Fe(II)OB, decreased the formation of metal plaque, raised the metal mobility in soil, and increased the accumulation of metals in all tissues of the reeds. The higher the CA dosage, the more metals accumulated into reeds. The total amount of metals in reeds increased from 7.8?±?0.5?×?10?6 mol plant?1 (Mn), 1.4?±?0.1?×?10?3 mol plant?1 (Fe), and 1.0?±?0.1?×?10?4 mol plant?1 (Al) in spiked soil without CA to 22.2?±?0.5?×?10?6 mol plant?1 (Mn), 3.5?±?0.06?×?10?3 mol plant?1 (Fe), and 5.0?±?0.2?×?10?4 mol plant?1 (Al) in soil added with 33.616 g C6H8O7·H2O for per kilogram soil. CA could be effective at enhancing the phytoremediation of metals from AMD-contaminated soil.  相似文献   

20.
Abstract

A study was undertaken to determine the effect of Cu(II) in degradation of methylparathion (o,o-dimethyl o, 4-nitrophenyl phosphoriotioate) in acid medium. Initial electrochemical characterization of Cu(II) and methylparathion was done in an aqueous medium at a pH range of 2–7. Cu(II) was studied in the presence of different anions and it was observed that its electroactivity depends on pH and is independent of the anion used. Methylparathion had two reduction signals at pH ≤ 6 and only one at pH > 6. The pesticide's transformation kinetic was then studied in the presence of Cu(II) in acid buffered aqueous medium at pH values of 2, 4, and 7. Paranitrophenol appeared as the only electroactive product at all three pH values. The reaction was first order and had k values of 5.2 × 10?3 s?1 at pH 2, 5.5 × 10?3 s?1 at pH 4 and 9.0 × 10?3 s?1 at pH 7. It is concluded that the principal degradation pathway of methylparathion in acid medium is a Cu(II) catalyzed hydrolysis reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号