首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Background, Aim and Scope Numerous herbicides and xenobiotic organic pollutants are detoxified in plants to glutathione conjugates. Following this enzyme catalyzed reaction, xenobiotic GS-conjugates are thought to be compartmentalized in the vacuole of plant cells. In the present study, evidence is presented for long range transport of these conjugates in plants, rather than storage in the vacuole. To our knowledge this is the first report about the unidirectional long range transport of xenobiotic conjugates in plants and the exudation of a glutathione conjugate from the root tips. This could mean that plants possess an excretion system for unwanted compounds which give them similar advantages as animals. Materials and Methods: Barley plants (Hordeum vulgare L. cv. Cherie) were grown in Petri dishes soaked with tap water in the greenhouse. - Fluorescence Microscopy. Monobromo- and Monochlorobimane, two model xenobiotics that are conjugated rapidly in plant cells with glutathione, hereby forming fluorescent metabolites, were used as markers for our experiments. Their transport in the root could be followed sensitively with very good temporal and spatial resolution. Roots of barley seedlings were cut under water and the end at which xenobiotics were applied was fixed in an aperture with a thin latex foil and transferred into a drop of water on a cover slide. The cover slide was fixed in a measuring chamber on the stage of an inverse fluorescence microscope (Zeiss Axiovert 100). - Spectrometric enzyme assay. Glutathione S-transferase (GST) activity was determined in the protein extracts following established methods. Aliquots of the enzyme extract were incubated with 1-chloro-2,4-dinitrobenzene (CDNB), or monochlorobimane. Controls lacking enzyme or GSH were measured. - Pitman chamber experiments. Ten days old barley plants or detached roots were inserted into special incubation chambers, either complete with tips or decapitated, as well as 10 days old barley plants without root tips. Compartment A was filled with a transport medium and GSH conjugate or L-cysteine conjugate. Compartments B and C contained sugar free media. Samples were taken from the root tip containing compartment C and the amount of conjugate transported was determined spectro-photometrically. Results: The transport in roots is unidirectional towards the root tips and leads to exsudation of the conjugates at rates between 20 and 200 nmol min-1. The microscopic studies have been complemented by transport studies in small root chambers and spectroscopic quantification of dinitrobenzene-conjugates. The latter experiments confirm the microscopic studies. Furthermore it was shown that glutathione conjugates are transported at higher rates than cysteine conjugates, despite of their higher molecular weights. This observation points to the existence of glutathione specific carriers and a specific role of glutathione in the root. Discussion: It can be assumed that long distance transport of glutathione conjugates within the plant proceeds like GSH or amino acid transport in both, phloem and xylem. The high velocity of this translocation of the GS-X is indicative of an active transport. For free glutathione, a rapid transport-system is essential because an accumulation of GSH in the root tip inhibits further uptake of sulfur. Taking into account that all described MRP transporters and also the GSH plasmalemma ATPases have side activities for glutathione derivatives and conjugates, co-transport of these xenobiotic metabolites seems credible. - On the other hand, when GS-B was applied to the root tips from the outside, no significant uptake was observed. Thus it can be concluded that only those conjugates can be transported in the xylem which are formed inside the root apex. Having left the root once, there seems to be no return into the root vessels, probably because of a lack of inward directed transporters. Conclusions: Plants seem to possess the capability to store glutathione conjugates in the vacuole, but under certain conditions, these metabolites might also undergo long range transport, predominantly into the plant root. The transport seems dependent on specific carriers and is unidirectional, this means that xenobiotic conjugates from the rhizosphere are not taken up again. The exudation of xenobiotic metabolites offers an opportunity to avoid the accumulation of such compounds in the plant. Recommendations and Perspectives: The role of glutathione and glutathione related metabolites in the rhizosphere has not been studied in any detail, and only scattered data are available on interactions between the plant root and rhizosphere bacteria that encounter such conjugates. The final fate of these compounds in the root zone has also not been addressed so far. It will be interesting to study effects of the exuded metabolites on the biology of rhizosphere bacteria and fungi.  相似文献   

2.
A facilitated transport study in supported liquid membranes (SLM) using the extraction reagents di-2-ethylexilfosphoric acid (D2HEPA), dinonylnaftalene sulfuric acid (DNNSA), and a novel complexing agent, trimethyl cis,cis-1,3,5-tripropyl-1,3,5 cyclohexenetricarboxilic acid (TTCHTCA) as carriers has been carried out. Organic solvents with different dielectric constants as diluents have been used to obtain the highest extraction and transport values. The results obtained have shown that, by using different organic phases (carrier and/or diluent), SLMs with different ion flux and transport ability can be obtained. The carrier concentration in the membrane and the chromium (III) [Cr(III)] ions concentration in aqueous phase have been varied to see the effect on transport of Cr(III) ions across the membrane. For the carriers D2HEPA and TTCHTCA, the transport of Cr(IlI), both in batch and in recirculation operation mode, has been studied. Very good results in terms of flux and transport have been obtained using TTCHTCA.  相似文献   

3.
Effect of ambient ozone and acid mist on aphid development   总被引:4,自引:0,他引:4  
The effect of ambient air with increased ozone concentrations and artificial acid mist on the population growth of two different aphid species was studied: Aphis fabae on Phaseolus vulgaris and Phyllaphis fagi on seedings of Fagus sylvatica. Whereas the ambient air inhibited growth of Aphis fabae, it stimulated population growth of Phyllaphis fagi. In Fagus, analysis of a phloem exudate revealed that the amino acid/sugar ratio was significantly increased by the ambient air compared to filtered air. In Phaseolus, no significant differences in amino acid or sugar content of the phloem exudate could be found. Acid mist inhibited population development in both aphid species; the strongest effect was observed in the first weeks after artificial infestation.  相似文献   

4.
A pilot scale experiment for humic acid-enhanced remediation of diesel fuel, described in Part 1 of this series, is numerically simulated in three dimensions. Groundwater flow, enhanced solubilization of the diesel source, and reactive transport of the dissolved contaminants and humic acid carrier are solved with a finite element Galerkin approach. The model (BIONAPL) is calibrated by comparing observed and simulated concentrations of seven diesel fuel components (BTEX and methyl-, dimethyl- and trimethylnaphthalene) over a 1500-day monitoring period. Data from supporting bench scale tests were used to estimate contaminant-carrier binding coefficients and to simulate two-site sorption of the carrier to the aquifer sand. The model accurately reproduced the humic acid-induced 10-fold increase in apparent solubility of trimethylnaphthalene. Solubility increases on the order of 2-5 were simulated for methylnaphthalene and dimethylnaphthalene, respectively. Under the experimental and simulated conditions, the residual 500-ml diesel source was almost completely dissolved and degraded within 5 years. Without humic acid flushing, the simulations show complete source dissolution would take about six times longer.  相似文献   

5.
Abstract

Hepatic S9 preparations from Aroclor 1254 induced rats and 3‐methylcholanthrene induced woodchucks were used to investigate, in vitro, the mutagenic potential of five amino acid conjugates of 2, 4‐Dichlorophenoxyacetic acid (alanine, aspartic acid, leucine, methionine and tryptophan). Five strains of Salmonella typhimurium (TA97, TA98, TA100, TA1535, TA1538) were utilized for this purpose. Dose‐response effects producing a two‐fold increase of revertants over spontaneous levels were not observed with either S9 preparation indicating that the amino acid conjugates are not promutagens in these assays.  相似文献   

6.
Hepatic S9 preparations from Aroclor 1254 induced rats and 3-methylcholanthrene induced woodchucks were used to investigate, in vitro, the mutagenic potential of five amino acid conjugates of 2,4-Dichlorophenoxyacetic acid (alanine, aspartic acid, leucine, methionine and tryptophan). Five strains of Salmonella typhimurium (TA97, TA98, TA100, TA1535, TA1538) were utilized for this purpose. Dose-response effects producing a two-fold increase of revertants over spontaneous levels were not observed with either S9 preparation indicating that the amino acid conjugates are not promutagens in these assays.  相似文献   

7.
The metabolism of Benzyl-U-14C-labeled Baythroid, a pyrethroid insecticide, performed in callus and suspension culture of tomatoes, cotton, apples, carrots, potatoes, peanuts, and wheat. The main part of the research was on tomato cell cultures. The main degradation products identified were glucose conjugates of 3-phenoxy-4-fluorobenzylalcohol, 3-phenoxy-4-fluorobenzoic acid and a more polar metabolite assumed to be a disaccharid conjugate of these compounds. In addition a carboxylic acid amide metabolite was formed from Baythroid by hydrolysis of its α-cyano group.  相似文献   

8.
为了提高厌氧发酵装置的效率,人们研究了各种各样的方法和措施,其中应用填料或载体使生物菌能够延长驻留期是其中的方法之一,开展载体筛选及其结构设计在厌氧发酵装置中的试验,有助于对此问题的深入研究以及将其成果应用于生产实践。通过静态载体筛选试验选择了玻璃纤维作为载体、PVC塑料管作为载体骨架制成的装置在动态序批式厌氧发酵装置中进行了试验。结果表明:此载体骨架结构对于牛粪动态厌氧发酵具有明显的提高产气效率、改变产气质量和促进有机物转化为挥发性脂肪酸的作用。  相似文献   

9.
Loblolly pine (Pinus taeda L.) seedlings were exposed to 0.120 micromol mol(-1) (ppm) ozone for 7 h per day, 5 days per week for 12 weeks. No visible damage resulted from this regime. A short-lived radioisotope of carbon ((11)C) was used to characterize changes in plant physiology caused by ozone, the first time this technique has been used for ozone exposure studies. In comparison to plants kept in charcoal-filtered air, pines exposed to ozone exhibited reductions in photosynthesis (16%), speed of phloem transport (11%), phloem photosynthate concentration (40%) and total carbon transport toward roots (45%). Photosynthate not transported to the roots appeared to accumulate in the stems. Primary branches of pines exposed to ozone were some 50-60% heavier than those of control pines. Ozone was thus shown to have a significant short-term impact on phloem transport processes that results in a shift in allocation of photosynthate favoring stems.  相似文献   

10.
As part of an exchange technology program between the government of Barbados and Environment Canada, methanolic and aqueous extracts from the flavonoid-rich Lamiaceae family were characterized using negative-ion electrospray mass spectrometry. The species investigated is part of the Caribbean Pharmacopoeia, and is used for a variety of health issues, including colds, flu, diabetes, and hypertension. The extracts were investigated for structural elucidation of phenolics, identification of chemical taxonomic profile, and evidence of bio-accumulator potential. The methanolic and aqueous leaf extracts of Plectranthus amboinicus yielded rosmarinic acid, ladanein, cirsimaritin, and other methoxylated flavonoids. This genus also shows a tendency to form conjugates with monosaccharides, including glucose, galactose, and rhamnose. The aqueous extract yielded four isomeric rhamnosides. The formation of conjugates by Plectranthus amboinicus is thus evidence of high bioaccumulator significance.  相似文献   

11.
Transport of silver nanoparticles (AgNPs) in soil   总被引:1,自引:0,他引:1  
Sagee O  Dror I  Berkowitz B 《Chemosphere》2012,88(5):670-675
The effect of soil properties on the transport of silver nanoparticles (AgNPs) was studied in a set of laboratory column experiments, using different combinations of size fractions of a Mediterranean sandy clay soil. The AgNPs with average size of ∼30 nm yielded a stable suspension in water with zeta potential of −39 mV. Early breakthrough of AgNPs in soil was observed in column transport experiments. AgNPs were found to have high mobility in soil with outlet relative concentrations ranging from 30% to 70%, depending on experimental conditions. AgNP mobility through the column decreased when the fraction of smaller soil aggregates was larger. The early breakthrough pattern was not observed for AgNPs in pure quartz columns nor for bromide tracer in soil columns, suggesting that early breakthrough is related to the nature of AgNP transport in natural soils. Micro-CT and image analysis used to investigate structural features of the soil, suggest that soil aggregate size strongly affects AgNP transport in natural soil. The retention of AgNPs in the soil column was reduced when humic acid was added to the leaching solution, while a lower flow rate (Darcy velocity of 0.17 cm/min versus 0.66 cm/min) resulted in higher retention of AgNPs in the soil. When soil residual chloride was exchanged by nitrate prior to column experiments, significantly improved mobility of AgNPs was observed in the soil column. These findings point to the importance of AgNP-soil chemical interactions as a retention mechanism, and demonstrate the need to employ natural soils rather than glass beads or quartz in representative experimental investigations.  相似文献   

12.
Stable colloidal particles can travel long distances in subsurface environments and carry particle-reactive contaminants with them to locations further than predicted by the conventional advective-dispersive transport equation. When such carriers exist in a saturated porous medium, the system can be idealized as consisting of three phases: an aqueous phase, a carrier phase, and a stationary solid matrix phase. However, when colloids are present in an unsaturated porous medium, the system representation should include one more phase, i.e. the air phase. In the work reported, a mathematical model was developed to describe the transport and fate of the colloidal particles and a non-volatile contaminant in unsaturated porous media. The model is based on mass balance equations in a four-phase porous medium. Colloid mass transfer mechanisms among aqueous, solid matrix, and air phases, and contaminant mass transfer between aqueous and colloid phases are represented by kinetic expressions. Governing equations are non-dimensionalized and solved to investigate colloid and contaminant transport in an unsaturated porous medium. A sensitivity analysis of the transport model was utilized to assess the effects of several parameters on model behavior. The colloid transport model matches successfully with experimental data of Wan and Wilson. The presence of air-water interface retards the colloid transport significantly counterbalancing the facilitating effect of colloids. However, the retardation of contaminant transport by colloids is highly dependent on the properties of the contaminant and the colloidal surface.  相似文献   

13.
A soil column leaching study was conducted on an acidic soil in order to assess the impact of lime-stabilized biosolid on the mobility of metallic pollutants (Cu, Ni, Pb and Zn). Column leaching experiments were conducted by injecting successively CaCl2, oxalic acid and ethylenediaminetetraacetic acid (EDTA) solutions through soil and biosolid-amended soil columns. The comparison of leaching curves showed that the transport of metals is mainly related to the dissolved organic carbon, pH and the nature of extractants. Metal mobility in the soil and biosolid-amended soils is higher with EDTA than with CaCl2 and oxalic acid extractions, indicating that metals are strongly bound to solid-phase components. The single application of lime-stabilized biosolid at a rate ranging from 15 to 30 t/ha tends to decrease the mobility of metals, while repeated applications (2?×?15 t/ha) increase metal leaching from soil. This result highlights the importance of monitoring the movement and concentrations of metals, especially in acid and sandy soils with shallow and smaller water bodies.  相似文献   

14.
Tagetes erecta has a high potential for cadmium (Cd) phytoremediation. Through several hydroponic experiments, characteristics of 108Cd distribution and accumulation were investigated in T. erecta with split -roots or removed xylem/phloem. The results showed that 108Cd transport from roots to aboveground tissues showed the homolateral transport phenomenon in split-root seedlings. 108Cd content of leaves on the +108Cd side and the −108Cd side was not significantly different, which implied that there was horizontal transport of 108Cd from the +108Cd side to the −108Cd side in cut-root seedlings. Like 108Cd transport, the transport of 70Zn was homolateral. Reduction of water consumption in the removed xylem treatment significantly decreased 108Cd accumulation; whereas, the removed phloem treatment had no significant effect on water consumption, but did decrease 108Cd accumulation in leaves of the seedlings. The removal of phloem significantly reduced distal leaf 108Cd content, which was significantly lower than that in the basal leaves in both the split-root and unsplit-root seedlings. Overall, the results presented in this study revealed that the root to aboveground cadmium translocation via phloem is as an important and common physiological process as xylem determination of the cadmium accumulation in stems and leaves of marigold seedlings.  相似文献   

15.
A mathematical model for the transport of hydrophobic organic contaminants in an aquifer under simplistic riverbank filtration conditions is developed. The model considers a situation where contaminants are present together with dissolved organic matter (DOM) and bacteria. The aquifer is conceptualized as a four-phase system: two mobile colloidal phases, an aqueous phase, and a stationary solid phase. An equilibrium approach is used to describe the interactions of contaminants with DOM, bacteria, and solid matrix. The model is composed of bacterial transport equation and contaminant transport equation. Numerical simulations are performed to examine the contaminant transport behavior in the presence of DOM and bacteria. The simulation results illustrate that contaminant transport is enhanced markedly in the presence of DOM and bacteria, and the impact of DOM on contaminant mobility is greater than that of bacteria under examined conditions. Sensitivity analysis demonstrates that the model is sensitive to changes of three lumped parameters: K+1 (total affinity of stationary solid phase to contaminants), K+2 (total affinity of DOM to contaminants), and K+3 (total affinity of bacteria to contaminants). In a situation where contaminants exist simultaneously with DOM and bacteria, contaminant transport is mainly affected by a ratio of K+1/K+2/K+3, which can vary with changes of equilibrium distribution coefficient of contaminants and/or colloidal concentrations. In riverbank filtration, the influence of DOM and bacteria on the transport behavior of contaminants should be accounted to accurately predict the contaminant mobility.  相似文献   

16.
Arsenic mobility in contaminated lake sediments   总被引:6,自引:0,他引:6  
An arsenic contaminated lake sediment near a landfill in Maine was used to characterize the geochemistry of arsenic and assess the influence of environmental conditions on its mobility. A kinetic model was developed to simulate the leaching ability of arsenic in lake sediments under different environmental conditions. The HM1D chemical transport model was used to model the column experiments and determine the rates of arsenic mobility from the sediment. Laboratory studies provided the information to construct a conceptual model to demonstrate the mobility of arsenic in the lake sediment. The leaching ability of arsenic in lake sediments greatly depends on the flow conditions of ground water and the geochemistry of the sediments. Large amounts of arsenic were tightly bound to the sediments. The amount of arsenic leaching out of the sediment to the water column was substantially decreased due to iron/arsenic co-precipitation at the water-sediment interface. Overall, it was found that arsenic greatly accumulated at the ground water/lake interface and it formed insoluble precipitates.  相似文献   

17.
Abstract

This study evaluated the role of water dispersible colloids with diverse physicochemical and mineralogical characteristics in facilitating the transport of metolachlor through macropores of intact soil columns. The soil columns represented upper solum horizons of an Alfisol in the Bluegrass region of Kentucky. Three different colloid suspensions tagged with metolachlor [2‐chloro‐N‐(2‐ethyl‐6‐methylphenyl)‐N‐(2‐methoxy‐l‐methylethyl)acetamide] were introduced at a constant flux into undisturbed soil columns. The eluents were collected and analyzed periodically for colloid and metolachlor concentrations. Colloid recovery in the eluents ranged from 54 to 90 %. The presence of colloids enhanced the transport of metolachlor by 22 to 70 % depending on the colloid type and mobility. Colloids with higher pH, organic carbon, cation exchange capacity (CEC), total exchangeable bases (TEB), surface area (SA), and electrophoretic mobility (EM), showed better mobility, greater affinity for interaction with the herbicide and, thus, greater potential to co‐transport metolachlor. In contrast, increased level of kaolinite, Fe, and Al inhibited metolachlor adsorption and transport. In spite of the increased transportability of metolachlor by the presence of soil colloids, the colloid bound herbicide portion accounted for a very small part of the observed increase. This suggests that surface site exclusion mechanisms and preferential sorption induced by the presence of colloids are more important than ion exchange phenomena in promoting herbicide mobility in subsurface environments.  相似文献   

18.
A coupled atmosphere–ocean general circulation model, ECHAM5-MPIOM, was used to study the multicompartmental cycling and long-range transport of persistent and semivolatile organics. Multiphase systems in air and ocean are covered by submodels for atmospheric aerosols, HAM, and marine biogeochemistry, HAMOCC5, respectively. The model, furthermore, encompasses 2D surface compartments, i.e. top soil, vegetation surfaces and sea-ice. The total environmental fate of γ-hexachlorocyclohexane (γ-HCH, lindane) and dichlorophenyltrichloroethane (DDT) in agriculture were studied.DDT is mostly present in the soils, the water-soluble γ-HCH in soils and ocean. DDT has the longest residence time in almost all compartments. Quasi-steady state with regard to substance accumulation is reached within a few years in air and vegetation surfaces. In seawater the partitioning to suspended and sinking particles contributes to the vertical transport of substances. On the global scale deep water formation is, however, found to be more efficient. Up to 30% of DDT but only less than 0.2% of γ-HCH in seawater are stored in particulate matter.On the time scale studied (1 decade) and on global scale substance transport in the environment is determined by the fast atmospheric circulation. The meridional transport mechanism, for both compounds, is significantly enhanced by multi-hopping. Net meridional transport in the ocean is effective only regionally, mostly by currents along the western boundaries of Africa and the Americas. The total environmental burdens of the substances experience a net northward migration from their source regions, which is more pronounced for DDT than for γ-HCH. Due to the application distribution, however, after 10 years of simulation 21% of the global environmental burden of γ-HCH and 12% of DDT have accumulated in the Arctic.  相似文献   

19.
An electromigration transport model for non-reactive ion transport in unsaturated soil was developed and tested against laboratory experiments. This model assumed the electric potential field was constant with respect to time, an assumption valid for highly buffered soil, or when the electrode electrolysis reactions are neutralized. The model also assumed constant moisture contents and temperature with respect to time, and that electroosmotic and hydraulic transport of water through the soil was negligible. A functional relationship between ionic mobility and the electrolyte concentration was estimated using the chemical activity coefficient. Tortuosity was calculated from a mathematical relationship fitted to the electrical conductivity of the bulk pore water and soil moisture data. The functional relationship between ionic mobility, pore-water concentration, and tortuosity as a function of moisture content allowed the model to predict ion transport in heterogeneous unsaturated soils. The model was tested against laboratory measurements assessing anionic electromigration as a function of moisture content. In the test cell, a strip of soil was spiked with red dye No 40 and monitored for a 24-h period while a 10-mA current was maintained between the electrodes. Electromigration velocities predicted by the electromigration transport model were in agreement with laboratory experimental results. Both laboratory-measured and model-predicted dye migration results indicated a maximum transport velocity at moisture contents less than saturation due to competing effects between current density and tortuosity as moisture content decreases.  相似文献   

20.
Based on the results from detailed structural and petrological characterisation and on up-scaled laboratory values for sorption and diffusion, blind predictions were made for the STT1 dipole tracer test performed in the Swedish Äspö Hard Rock Laboratory. The tracers used were nonsorbing, such as uranine and tritiated water, weakly sorbing 22Na+, 85Sr2+, 47Ca2+and more strongly sorbing 86Rb+, 133Ba2+, 137Cs+.Our model consists of two parts: (1) a flow part based on a 2D-streamtube formalism accounting for the natural background flow field and with an underlying homogeneous and isotropic transmissivity field and (2) a transport part in terms of the dual porosity medium approach which is linked to the flow part by the flow porosity.The calibration of the model was done using the data from one single uranine breakthrough (PDT3). The study clearly showed that matrix diffusion into a highly porous material, fault gouge, had to be included in our model evidenced by the characteristic shape of the breakthrough curve and in line with geological observations.After the disclosure of the measurements, it turned out that, in spite of the simplicity of our model, the prediction for the nonsorbing and weakly sorbing tracers was fairly good. The blind prediction for the more strongly sorbing tracers was in general less accurate. The reason for the good predictions is deemed to be the result of the choice of a model structure strongly based on geological observation. The breakthrough curves were inversely modelled to determine in situ values for the transport parameters and to draw consequences on the model structure applied. For good fits, only one additional fracture family in contact with cataclasite had to be taken into account, but no new transport mechanisms had to be invoked. The in situ values for the effective diffusion coefficient for fault gouge are a factor of 2–15 larger than the laboratory data. For cataclasite, both data sets have values comparable to laboratory data. The extracted Kd values for the weakly sorbing tracers are larger than Swedish laboratory data by a factor of 25–60, but agree within a factor of 3–5 for the more strongly sorbing nuclides. The reason for the inconsistency concerning Kds is the use of fresh granite in the laboratory studies, whereas tracers in the field experiments interact only with fracture fault gouge and to a lesser extent with cataclasite both being mineralogically very different (e.g. clay-bearing) from the intact wall rock.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号