首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Chamberlain SA  Holland JN 《Ecology》2008,89(5):1364-1374
Interspecific interactions are often mediated by the interplay between resource supply and consumer density. The supply of a resource and a consumer's density response to it may in turn yield context-dependent use of other resources. Such consumer-resource interactions occur not only for predator-prey and competitive interactions, but for mutualistic ones as well. For example, consumer-resource interactions between ants and extrafloral nectar (EFN) plants are often mutualistic, as EFN resources attract and reward ants which protect plants from herbivory. Yet, ants also commonly exploit floral resources, leading to antagonistic consumer-resource interactions by disrupting pollination and plant reproduction. EFN resources associated with mutualistic ant-plant interactions may also mediate antagonistic ant-flower interactions through the aggregative density response of ants on plants, which could either exacerbate ant-flower interactions or alternatively satiate and distract ants from floral resources. In this study, we examined how EFN resources mediate the density response of ants on senita cacti in the Sonoran Desert and their context-dependent use of floral resources. Removal of EFN resources reduced the aggregative density of ants on plants, both on hourly and daily time scales. Yet, the increased aggregative ant density on plants with EFN resources decreased rather than increased ant use of floral resources, including contacts with and time spent in flowers. Behavioral assays showed no confounding effect of floral deterrents on ant-flower interactions. Thus, ant use of floral resources depends on the supply of EFN resources, which mediates the potential for both mutualistic and antagonistic interactions by increasing the aggregative density of ants protecting plants, while concurrently distracting ants from floral resources. Nevertheless, only certain years and populations of study showed an increase in plant reproduction through herbivore protection or ant distraction from floral resources. Despite pronounced effects of EFN resources mediating the aggregative density of ants on plants and their context-dependent use of floral resources, consumer-resource interactions remained largely commensalistic.  相似文献   

3.
Protected areas are an important part of broader landscapes that are often used to preserve biodiversity or natural features. Some argue that protected areas may also help ensure provision of ecosystem services. However, the effect of protection on ecosystem services and whether protection affects the provision of ecosystem services is known only for a few services in a few types of landscapes. We sought to fill this gap by investigating the effect of watershed protection status and land use and land cover on biodiversity and the provision of ecosystem services. We compared the ecosystem services provided in and around streams in 4 watershed types: International Union for Conservation of Nature category II protected forests, unprotected forests, unprotected forests with recent timber harvesting, and unprotected areas with agriculture. We surveyed 28 streams distributed across these watershed types in Quebec, Canada, to quantify provisioning of clean water, carbon storage, recreation, wild foods, habitat quality, and terrestrial and aquatic biodiversity richness and abundance. The quantity and quality of ecosystem services and biodiversity were generally higher in sites with intact forest—whether protected or not—relative to those embedded in production landscapes with forestry or agriculture. Clean-water provision, carbon storage, habitat quality, and tree diversity were significantly higher in and around streams surrounded by forest. Recreation, wild foods, and aquatic biodiversity did not vary among watershed types. Although some services can be provided by both protected and unprotected areas, protection status may help secure the continued supply of services sensitive to changes in land use or land cover. Our findings provide needed information about the ecosystem service and biodiversity trade-offs and synergies that result from developing a watershed or from protecting it.  相似文献   

4.
Studies of the effects of cross-habitat resource subsidies have been a feature of food web ecology over the past decade. To date, most studies have focused on demonstrating the magnitude of a subsidy or documenting its effect in the recipient habitat. Ecologists have yet to develop a satisfactory framework for predicting the magnitude of these effects. We used 115 data sets from 32 studies to compare consumer responses to resource subsidies across recipient habitat type, trophic level, and functional group. Changes in consumer density or biomass in response to subsidies were inconsistent across habitats, trophic, and functional groups. Responses in stream cobble bar and coastline habitats were larger than in other habitats. Contrary to expectation, the magnitude of consumer response was not affected by recipient habitat productivity or the ratio of productivity between donor and recipient habitats. However, consumer response was significantly related to the ratio of subsidy resources to equivalent resources in the recipient habitat. Broad contrasts in productivity are modified by subsidy type, vector, and the physical and biotic characteristics of both donor and recipient habitats. For this reason, the ratio of subsidy to equivalent resources is a more useful tool for predicting the possible effect of a subsidy than coarser contrasts of in situ productivity. The commonness of subsidy effects suggests that many ecosystems need to be studied as open systems.  相似文献   

5.
This study examines secondary production and periphyton-invertebrate food web energetics at two sites in an industrially contaminated, nutrient-enriched stream. Secondary production data and data from the literature were used to calculate potential amounts of mercury transferred from periphyton to chironomid larvae and into terrestrial food webs with emerging adults. The nutritional quality of periphyton was characterized using energy content, chlorophyll a, protein, ash-free dry mass (AFDM), and percentage of organic matter. Chironomid larvae (Orthocladiinae: Cricotopus spp.) comprised 96% of all macroinvertebrates collected from stones at the two sites. Cricotopus production was extremely high: production was 59.5 g AFDM x m(-2) x yr(-1) at the site upstream of a 1-ha settling basin and 32.4 g AFDM x m(-2) x yr(-1) at the site below the basin. Apparent differences in annual secondary production were associated with reduced organic content (i.e., nutritional quality) of the periphyton matrix under different loading of total suspended solids. The periphyton matrix at both sites was contaminated with inorganic (Hg(II)) and methyl (MeHg) mercury. The amount of Hg(II) potentially ingested by Cricotopus was calculated to be 49 mg Hg(II) x m(-1) x yr(-1) at the upstream site and 19 mg Hg(II)x m(-2) x yr(-1) at the downstream site. Mercury ingestion by Cricotopus at the downstream site was calculated to be 2% of the estimated annual deposition of particulate-bound Hg(II) to the stream bed. Emergence of adult Cricotopus was calculated to remove 563 microg Hg(II)x m(-2) x yr(-1) from the stream at the upstream site and 117 microg Hg(II) x m(-2) x yr(-1) at the downstream site, which amounted to 4.1 g Hg(II)/yr for the 2.1-km reach of stream included in this study. The ratio of metal export in emergence production to surface area for the study stream was 10 to 10(3) times higher than ratios calculated for lakes using data from the literature. This study is the first well-documented example of extremely high aquatic insect production in an industrially contaminated, nutrient-enriched stream, and it highlights the application of production measurements to examine the role of aquatic insect production in the trophic transfer of energy and persistent contaminants in aquatic food webs and into terrestrial food webs.  相似文献   

6.
210Po and 210Pb have been measured systematically in whole animals, muscle and hepatopancreas of crustaceans and of molluscan cephalopods representative of a pelagic and benthic food chain. The same nuclides were also measured in liver, pyloric caecum, stomach contents and muscle of tuna. The concentration factors from sea water to whole animals were approximately constant along both food chains, being of the order of 104 for 210Po and 102 for 210Pb. The highest concentration factors were found in shrimp of the genus Sergestes. In muscle, the concentration factors were an order of magnitude less; in the hepatopancreas, they were an order of magnitude higher, reaching 106 in shrimp of the genus Sergestes. Such concentrations imply alpha-radiation doses of the order of 10 rem per year and more in this organ, which contains about 50 to 90% of the 210Po in the whole animal in the 11 species analyzed. A detailed study of the intracellular behaviour of 210Po in the hepatopancreas is clearly indicated. 210Po can be used as a sensitive natural tracer in biological systems. Thus, feeding Meganyctiphanes norvegica in the laboratory on food low in 210Po led to an approximate value of about 61/2 days for the biological half-life of 210Po in the hepatopancreas of this euphausiid. Furthermore, the data on 210Po and 210Pb in the cephalopod hepatopancreas allowed the time of conservation of frozen squid which had been bought at the market to be estimated.  相似文献   

7.
Summary Non-random mating by size (NRMS) plays a central role in the study of sexual selection and the evolution of mating systems. Theory suggests that NRMS should be influenced by conflicting demands (e.g., predation risk, hunger); few experimental studies, however, have addressed these effects. We used a factorial experiment to examine the influence of predatory green sunfish and food deprivation on NRMS in male and female stream water striders, Aquarius remigis. As predicted by theory, food deprivation decreased the large-male mating advantage. The influence of predation risk, however, went against existing theory; that is, risk increased the large male mating advantage. The degree of large-male mating advantage was negatively related to a measure of the rate of male harassment of females. A behavioral mechanism that can explain these patterns emphasizes the contrasting effects of different competing demands on male harassment rates, female resistance and the role of male size in overcoming female resistance. Females usually resist male mating attempts. Successful mating occurs when males overcome female resistance. If harassment rates (of females by males) are low, larger males have a mating advantage over smaller males perhaps because females resist heavily and thus only larger males can overcome female resistance. If, however, male harassment rates are very high, female resistance might be swamped; mating should then be more random with respect to male size. Food deprivation increases gerrid activity and thus increases harassment rates which should then reduce NRMS. In contrast, risk decreases gerrid activity, thus decreasing harassment rates and increasing NRMS. Females did not show significant NRMS. Females did, however, show a pattern of change in NRMS that is consistent with male choice for larger females. Correspondence to: A. Sih  相似文献   

8.
Illegal, unregulated, and unreported (IUU) fishing poses a major threat to effective management of marine resources, affecting biodiversity and communities dependent on these coastal resources. Spatiotemporal patterns of industrial fisheries in developing countries are often poorly understood, and global efforts to describe spatial patterns of fishing vessel activity are currently based on automatic identification system (AIS) data. However, AIS is often not a legal requirement on fishing vessels, likely resulting in underestimates of the scale and distribution of legal and illegal fishing activity, which could have significant ramifications for targeted enforcement efforts and the management of fisheries resources. To help address this knowledge gap, we analyzed 3 years of vessel monitoring system (VMS) data in partnership with the national fisheries department in the Republic of the Congo to describe the behavior of national and distant-water industrial fleets operating in these waters. We found that the spatial footprint of the industrial fisheries fleet encompassed over one-quarter of the Exclusive Economic Zone. On average, 73% of fishing activity took place on the continental shelf (waters shallower than 200 m). Our findings highlight that VMS is not acting as a deterrent or being effectively used as a proactive management tool. As much as 33% (13% on average) of fishing effort occurred in prohibited areas set aside to protect biodiversity, including artisanal fisheries resources, and the distant-water fleet responsible for as much as 84% of this illegal activity. Given the growth in industrial and distant-water fleets across the region, as well as low levels of management and enforcement, these findings highlight that there is an urgent need for the global community to help strengthen regional and national capacity to analyze national scale data sets if efforts to combat IUU fishing are to be effective.  相似文献   

9.
Marcarelli AM  Baxter CV  Mineau MM  Hall RO 《Ecology》2011,92(6):1215-1225
Although the study of resource subsidies has emerged as a key topic in both ecosystem and food web ecology, the dialogue over their role has been limited by separate approaches that emphasize either subsidy quantity or quality. Considering quantity and quality together may provide a simple, but previously unexplored, framework for identifying the mechanisms that govern the importance of subsidies for recipient food webs and ecosystems. Using a literature review of > 90 studies of open-water metabolism in lakes and streams, we show that high-flux, low-quality subsidies can drive freshwater ecosystem dynamics. Because most of these ecosystems are net heterotrophic, allochthonous inputs must subsidize respiration. Second, using a literature review of subsidy quality and use, we demonstrate that animals select for high-quality food resources in proportions greater than would be predicted based on food quantity, and regardless of allochthonous or autochthonous origin. This finding suggests that low-flux, high-quality subsidies may be selected for by animals, and in turn may disproportionately affect food web and ecosystem processes (e.g., animal production, trophic energy or organic matter flow, trophic cascades). We then synthesize and review approaches that evaluate the role of subsidies and explicitly merge ecosystem and food web perspectives by placing food web measurements in the context of ecosystem budgets, by comparing trophic and ecosystem production and fluxes, and by constructing flow food webs. These tools can and should be used to address future questions about subsidies, such as the relative importance of subsidies to different trophic levels and how subsidies may maintain or disrupt ecosystem stability and food web interactions.  相似文献   

10.
Allochthonous subsidies of organic material can profoundly influence population and community structure; however, the role of consumers in the processing of these inputs is less understood but may be closely linked to community and ecosystem function. Inputs of drift macrophytes subsidize sandy beach communities and food webs in many regions. We estimated feeding rates of dominant sandy beach consumers, the talitrid amphipods (Megalorchestia corniculata, in southern California, USA, and Talitrus saltator, in southern Galicia, Spain), and their impacts on drift macrophyte subsidies in field and laboratory experiments. Feeding rate varied with macrophyte type and, for T. saltator, air temperature. Size-specific feeding rates of talitrid amphipods were greatest on brown macroalgae (Macrocystis, Egregia, Saccorhiza and Fucus). Rates for large individuals of both species ranged from ∼40 mg wet wt individual−112 h−1 on brown macroalgae to negligible feeding by M. corniculata on a vascular plant (surfgrass). Amphipod growth rates were also greatest on Macrocystis and lowest on surfgrass, Phyllospadix. For a Californian beach with substantial inputs of macrophyte wrack (>70 kg wet wt m−1 month−1 in summer), we estimated that the population of talitrid amphipods could process an average of 55% of the palatable Macrocystis input. Our results indicate that talitrid amphipod populations can have a significant impact on drift macrophyte processing and fate and that the quantity and composition of drift macrophytes could, in turn, limit populations of beach consumers.  相似文献   

11.
ABSTRACT

This triple case study attempts, from the viewpoint of economic and environmental anthropology, to take into account and to assess pertinent cultural, political, institutional, and economic factors that have an impact on how the açaí value chain develops or restrains according to the given regulatory frameworks. Based on the common-pool resources approach (CPR), the study examines how institutional actors negotiate in a local/global (glocal) dynamic and how from these different scales, they contest and intertwine while pursuing use, access, and management strategies for the açaí production. The article aims to contribute with anthropological insights to the LULC research by underlining the agency of the subjects of land use and tenure policies in Amazonia; to enhance the prominence of local actors and to promote the cultural and economic value of their traditional practices and institutions.  相似文献   

12.
We used linear and multivariate models to examine the associations between geography, biodiversity, per capita economic output, national spending on conservation, governance, and cultural traits in 55 countries. Cultural traits and social metrics of modernization correlated positively with national spending on conservation. The global distribution of this spending culture was poorly aligned with the distribution of biodiversity. Specifically, biodiversity was greater in the tropics where cultures tended to spend relatively less on conservation and tended to have higher collectivism, formalized and hierarchical leadership, and weaker governance. Consequently, nations lacking social traits frequently associated with modernization, environmentalism, and conservation spending have the largest component of Earth's biodiversity. This has significant implications for setting policies and priorities for resource management given that biological diversity is rapidly disappearing and cultural traits change slowly. Therefore, we suggest natural resource management adapt to and use characteristics of existing social organization rather than wait for or promote social values associated with conservation spending. Supporting biocultural traditions, engaging leaders to increase conservation commitments, cross‐national efforts that complement attributes of cultures, and avoiding interference with nature may work best to conserve nature in collective and hierarchical societies. Spending in modernized nations may be a symbolic response to a symptom of economic development and environmental degradation, and here conservation actions need to ensure that biodiversity is not being lost.  相似文献   

13.
Catchment urbanization can alter physical, chemical, and biological attributes of stream ecosystems. In particular, changes in land use may affect the dynamics of organic matter decomposition, a measure of ecosystem function. We examined leaf-litter decomposition in 18 tributaries of the St. Johns River, Florida, USA. Land use in all 18 catchments ranged from 0% to 93% urban which translated to 0% to 66% total impervious area (TIA). Using a litter-bag technique, we measured mass loss, fungal biomass, and macroinvertebrate biomass for two leaf species (red maple [Acer rubrum] and sweetgum [Liquidambar styraciflua]). Rates of litter mass loss, which ranged from 0.01 to 0.05 per day for red maple and 0.006 to 0.018 per day for sweetgum, increased with impervious catchment area to levels of approximately 30-40% TIA and then decreased as impervious catchment area exceeded 40% TIA. Fungal biomass was also highest in streams draining catchments with intermediate levels of TIA. Macroinvertebrate biomass ranged from 17 to 354 mg/bag for red maple and from 15 to 399 mg/bag for sweetgum. Snail biomass and snail and total invertebrate richness were strongly related to breakdown rates among streams regardless of leaf species. Land-use and physical, chemical, and biological variables were highly intercorrelated. Principal-components analysis was therefore used to reduce the variables into several orthogonal axes. Using stepwise regression, we found that flow regime, snail biomass, snail and total invertebrate richness, and metal and nutrient content (which varied in a nonlinear manner with impervious surface area) were likely factors affecting litter breakdown rates in these streams.  相似文献   

14.
Hall SR  Leibold MA  Lytle DA  Smith VH 《Ecology》2007,88(5):1142-1152
The stoichiometric light:nutrient hypothesis (LNH) links the relative supplies of key resources with the nutrient content of tissues of producers. This resource-driven variation in producer stoichiometry, in turn, can mediate the efficiency of grazing. Typically, discussions of the LNH attribute this resource-stoichiometry link to bottom-up effects of light and phosphorus, which are mediated through producer physiology. Emphasis on bottom-up effects implies that grazers must consume food of quality solely determined by resource supply to ecosystems (i.e., they eat what they are served). Here, we expand upon this largely bottom-up interpretation with evidence from pond surveys, a mesocosm experiment, and a model. Data from shallow ponds showed the "LNH pattern" (positive correlation of an index of light : phosphorus supply with algal carbon : phosphorus content). However, algal carbon : phosphorus content also declined as zooplankton biomass increased in the ponds. The experiment and model confirmed that this latter correlation was partially caused by the various bottom-up and top-down roles of grazers: the LNH pattern emerged only in treatments with crustacean grazers, not those without them. Furthermore, model and experiment clarified that another bottom-up factor, natural covariation of nitrogen : phosphorus ratios with light : phosphorus supply (as seen in ponds), does not likely contribute to the LNH pattern. Finally, the experiment produced correlations between shifts in species composition of algae, partially driven by grazing effects of crustaceans, and algal stoichiometry. These shifts in species composition might shape stoichiometric response of producer assemblages to resource supply and grazing, but their consequences remain largely unexplored. Thus, this study accentuated the importance of grazing for the LNH; de-emphasized a potentially confounding, bottom-up factor (covarying nitrogen : phosphorus supply); and highlighted an avenue for future research for the LNH (grazer-mediated shifts in producer composition).  相似文献   

15.
本文综述了生态系统多样性在生物多样性保护中的意义及5个中心研究问题,即生物群落或生态系统关键种、生物多样性关键地区、生态系统多样性的持续性、受害生态系统的恢复生态学、生态系统多样性保护对策及保护途径。文章还分析和讨论当前国际上有关生态系统多样性保护的对策和实践。  相似文献   

16.
17.
Riparian forests regulate linkages between terrestrial and aquatic ecosystems, yet relationships among riparian forest development, stand structure, and stream habitats are poorly understood in many temperate deciduous forest systems. Our research has (1) described structural attributes associated with old-growth riparian forests and (2) assessed linkages between these characteristics and in-stream habitat structure. The 19 study sites were located along predominantly first- and second-order streams in northern hardwood-conifer forests in the Adirondack Mountains of New York (U.S.A.). Sites were classified as mature forest (6 sites), mature with remnant old-growth trees (3 sites), and old-growth (10 sites). Forest-structure attributes were measured over stream channels and at varying distances from each bank. In-stream habitat features such as large woody debris (LWD), pools, and boulders were measured in each stream reach. Forest structure was examined in relation to stand age using multivariate techniques, ANOVA, and linear regression. We investigated linkages between forest structure and stream characteristics using similar methods, preceded by information-theoretic modeling (AIC). Old-growth riparian forest structure is more complex than that found in mature forests and exhibits significantly greater accumulations of aboveground tree biomass, both living and dead. In-stream LWD volumes were significantly (alpha = 0.05) greater at old-growth sites (200 m3/ha) compared to mature sites (34 m3/ha) and were strongly related to the basal area of adjacent forests. In-stream large-log densities correlated strongly with debris-dam densities. AIC models that included large-log density, debris-dam density, boulder density, and bankfull width had the most support for predicting pool density. There were higher proportions of LWD-formed pools relative to boulder-formed pools at old-growth sites as compared to mature sites. Old-growth riparian forests provide in-stream habitat features that have not been widely recognized in eastern North America, representing a potential benefit from late-successional riparian forest management and conservation. Riparian management practices (including buffer delineation and restorative silvicultural approaches) that emphasize development and maintenance of late-successional characteristics are recommended where the associated in-stream effects are desired.  相似文献   

18.
Mussels (Mytilus californianus, M. galloprovincialis) and other organisms sloughed from offshore oil platforms provide a food subsidy to benthic consumers and alter underlying soft bottom habitat by creating hard substrate. The removal of overlying platforms eliminates this food subsidy, but large shell mounds remain. The distribution, abundance, and population characteristics of mobile macroinvertebrates differed among shell mounds beneath existing offshore oil platforms, shell mounds at the former sites of offshore oil platforms, and soft bottom. Predatory and omnivorous echinoderm and mollusk species were more abundant and generally larger on shell mounds under platforms than on shell mounds without platforms. Omnivorous and deposit feeding echinoderms were the most abundant macroinvertebrate taxa sampled on mound-only sites. The brown rock crab (Cancer antennarius), known to have a strong preference for hard substrate, was significantly more abundant on shell mounds, with or without platforms, than adjacent soft bottom sites. Results suggest that the effects of platform removal differed among benthic species according to trophic level, degree of mobility, and substrate preference. Although the shell mound habitat persists after removal of platform structures, species abundance and the composition of the associated benthic community is altered by removal of the platform structure.Communicated by P.W. Sammarco, Chauvin  相似文献   

19.

Bioaccumulation and trophic transfer of mercury (Hg) both in the natural marine ecosystem and the mariculture ecosystem were studied at Daya Bay, a subtropical bay in Southern China. Averaged Hg concentrations in sediment, phytoplankton, macrophyte, shrimp, crab, shellfish, planktivorous fish, carnivorous fish, farmed pompano, farmed snapper, compound feed and trash fish were 0.074, 0.054, 0.044, 0.098, 0.116, 0.171, 0.088, 0.121, 0.210, 0.125, 0.038 and 0.106 μg g−1 dw, respectively. These Hg levels were at the low–middle ends of the global range. Positive correlation between Hg concentrations in farmed fish and fish weights/sizes was observed, whereas no clear correlation between Hg concentrations and lipid contents was found. Hg concentrations followed macrophyte < phytoplankton < sediment < planktivorous fish < shrimp < crab < carnivorous fish < shellfish, and commercial feed < trash fish < farmed fish. Hg was biomagnified along the marine food chain in the ecosystem of Daya Bay. Hg levels in the farmed fish were higher than those in the wild fish primarily because of the higher Hg level in fish feed and the smaller size of marine wild fish.

  相似文献   

20.
Taxonomy is the foundation of biodiversity science because it furthers discovery of new species. Globally, there have never been so many people involved in naming species new to science. The number of new marine species described per decade has never been greater. Nevertheless, it is estimated that tens of thousands of marine species, and hundreds of thousands of terrestrial species, are yet to be discovered; many of which may already be in specimen collections. However, naming species is only a first step in documenting knowledge about their biology, biogeography, and ecology. Considering the threats to biodiversity, new knowledge of existing species and discovery of undescribed species and their subsequent study are urgently required. To accelerate this research, we recommend, and cite examples of, more and better communication: use of collaborative online databases; easier access to knowledge and specimens; production of taxonomic revisions and species identification guides; engagement of nonspecialists; and international collaboration. “Data‐sharing” should be abandoned in favor of mandated data publication by the conservation science community. Such a step requires support from peer reviewers, editors, journals, and conservation organizations. Online data publication infrastructures (e.g., Global Biodiversity Information Facility, Ocean Biogeographic Information System) illustrate gaps in biodiversity sampling and may provide common ground for long‐term international collaboration between scientists and conservation organizations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号