首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of grazing by feral horses on vegetation and dune topography at Assateague Island National Seashore were investigated using color-infrared imagery, lidar surveys, and field measurements. Five pairs of fenced and unfenced plots (300 m2) established in 1993 on sand flats and small dunes with similar elevation, topography, and vegetation cover were used for this study. Color-infrared imagery from 1998 and field measurements from 2001 indicated that there was a significant difference in vegetation cover between the fenced and unfenced plot-pairs over the study period. Fenced plots contained a higher percentage of vegetation cover that was dominated by American beachgrass (Ammophila breviligulata). Lidar surveys from 1997, 1999, and 2000 showed that there were significant differences in elevation and topography between fenced and unfenced plot-pairs. Fenced plots were, on average, 0.63 m higher than unfenced plots, whereas unfenced plots had generally decreased in elevation after establishment in 1993. Results demonstrate that feral horse grazing has had a significant impact on dune formation and has contributed to the erosion of dunes at Assateague Island. The findings suggest that unless the size of the feral horse population is reduced, grazing will continue to foster unnaturally high rates of dune erosion into the future. In order to maintain the natural processes that historically occurred on barrier islands, much larger fenced exclosures would be required to prevent horse grazing.  相似文献   

2.
An erosion-based land classification system for military installations   总被引:3,自引:0,他引:3  
The universal soil loss equation (USLE) has been integrated with a geographic information system known as the geographical resources analysis support system (GRASS) to create a land classification system for use by military trainers and land managers to minimize the environmental impacts of military training activities. The USLE provides an estimate of current average annual sheet and rill erosion based upon factors representing climate, soil erodibility, topography, cover, and conservation support practices. The erosion estimate is compared to erosion tolerance values to produce an expression of the current erosion status. An index of inherent site erodibility is also achieved through manipulation of the USLE. Based on published soil surveys, satellite imagery, and ground-truth vegetation transects, data layers are created within GRASS for each of the component factors of the USLE. Appropriate mathematical operations are performed with the data layers, and color-coded maps are produced that represent the erosion status and erodibility index for each 50-m × 50-m area of soil surface. These maps aid military trainers and land managers in scheduling appropriate kinds and intensities of military training activities.  相似文献   

3.
ABSTRACT: Land cover and land use change have long been known to influence the chemical, physical, and biological characteristics of streams. This study makes use of land cover maps derived from fine resolution satellite imagery and an extensive stream quality dataset to determine the relationship between small watershed health rankings and land cover composition and configuration. Landscape metrics were derived from digital impervious surface area (ISA), tree cover (percent), and agricultural crop maps within Montgomery County, Maryland. Watershed rankings were developed by state and county collaborators (MD‐DNR and MCDEP) using extensive biological and chemical measurements. In stepwise logistic regression models the factors accounting for the most variation in stream health ranking were the percent ISA, followed by the percent of tree cover. Riparian buffer zone tree cover was also a significant predictor. Of the metrics that considered the spatial configuration of the landscape, a contagion index and the percent of ISA in the flow path from the ISA to the stream were also found to be significant predictors of stream health. Despite limited ability to characterize landscape configuration or narrow riparian buffer zone vegetation with coarser resolution imagery (from Landsat), model results were not significantly different from those based on the use of fine‐resolution ISA information, suggesting that broader area applications of the approach are possible. The results indicate that management practices designed to improve stream water quality should focus on the amount of ISA and tree cover in both the watershed and within the buffer zone.  相似文献   

4.
Grassland vegetation can provide visual cover for terrestrial vertebrates. The most commonly used method to assess visual cover is the Robel pole. We test the use of digital photography as a more accurate and repeatable method. We assessed the digital photography method on four forage grassland species (Pseudoroegneria spicata, Festuca campestris, Poa pratensis, Achnatherum richardsonii). Digital photos of 2-dimensional cutout silhouettes of three bird species sharp-tailed grouse, western meadowlark and savannah sparrow were used to model the impact of clipping (i.e., grazing) on visual cover. In addition, photos of artificial voles were used to model litter on cover available to small mammals. Nine sites were sampled and data were analyzed by the dominant grass species in each study plot. Regression analysis showed that digital photos (r2 = 0.62) were a better predictor than the Robel pole (r2 = 0.26) for assessment of cover. Clipping heights showed that clipping at less than 15 cm left the silhouettes 50% exposed. Digital photo analysis revealed that visual cover was affected by the type of grass species, with F. campestris > P. pratensis > A. richardsonii > P. spicata. Biomass and litter were both positively related to cover for small mammals.  相似文献   

5.
Military training activities disturb ground and vegetation cover of landscapes and increases potential soil erosion. To monitor the dynamics of soil erosion, there is an important need for an optimal sampling design in which determining the optimal spatial resolutions in terms of size of sample plots used for the collection of ground data and the size of pixels for mapping. Given a sample size, an optimal spatial resolution should be cost-efficient in both sampling costs and map accuracy. This study presents a spatial variability-based method for that purpose and compared it with the traditional methods in a study area in which a soil erosion cover factor was sampled and mapped with multiple plot sizes and multi-sensor images. The results showed that the optimal spatial resolutions obtained using the spatial variability-based method were 12 and 20m for years 1999 and 2000, respectively, and were consistent with those using the traditional methods. Moreover, the most appropriate spatial resolutions using the high-resolution images were also consistent with those using ground sample data, which provides a potential to use the high-resolution images instead of ground data to determine the optimal spatial resolutions before sampling. The most appropriate spatial resolutions above were then verified in terms of cost-efficiency which was defined as the product of sampling cost and map error using ordinary kriging without images and sequential Gaussian co-simulation with images to generate maps.  相似文献   

6.
Wyoming’s Green Mountain Common Allotment is public land providing livestock forage, wildlife habitat, and unfenced solitude, amid other ecological services. It is also the center of ongoing debate over USDI Bureau of Land Management’s (BLM) adjudication of land uses. Monitoring resource use is a BLM responsibility, but conventional monitoring is inadequate for the vast areas encompassed in this and other public-land units. New monitoring methods are needed that will reduce monitoring costs. An understanding of data-set relationships among old and new methods is also needed. This study compared two conventional methods with two remote sensing methods using images captured from two meters and 100 meters above ground level from a camera stand (a ground, image-based method) and a light airplane (an aerial, image-based method). Image analysis used SamplePoint or VegMeasure software. Aerial methods allowed for increased sampling intensity at low cost relative to the time and travel required by ground methods. Costs to acquire the aerial imagery and measure ground cover on 162 aerial samples representing 9000 ha were less than $3000. The four highest correlations among data sets for bare ground—the ground-cover characteristic yielding the highest correlations (r)—ranged from 0.76 to 0.85 and included ground with ground, ground with aerial, and aerial with aerial data-set associations. We conclude that our aerial surveys are a cost-effective monitoring method, that ground with aerial data-set correlations can be equal to, or greater than those among ground-based data sets, and that bare ground should continue to be investigated and tested for use as a key indicator of rangeland health.  相似文献   

7.
Cost-efficient sample designs for collection of ground data and accurate mapping of variables are required to monitor natural resources and environmental and ecological systems. In this study, a sample design and mapping method was developed by integrating stratification, model updating, and cokriging with Landsat Thematic Mapper (TM) imagery. This method is based on the spatial autocorrelation of variables and the spatial cross-correlation among them. It can lead to sample designs with variable grid spacing, where sampling distances between plots vary depending on spatial variability of the variables from location to location. This has potential cost-efficiencies in terms of sample design and mapping. This method is also applicable for mapping in the case in which no ground data can be collected in some parts of a study area because of the high cost. The method was validated in a case study in which a ground and vegetation cover factor was sampled and mapped for monitoring soil erosion. The results showed that when the sample obtained with three strata using the developed method was used for sampling and mapping the cover factor, the sampling cost was greatly decreased, although the error of the map was slightly increased compared to that without stratification; that is, the sample cost-efficiency quantified by the product of cost and error was greatly increased. The increase of cost-efficiency was more obvious when the cover factor values of the plots within the no-significant-change stratum were updated by a model developed using the previous observations instead of remeasuring them in the field.  相似文献   

8.
Detailed maps of soil C are needed to guide sustainable soil uses and management decisions. The quality of soil C maps of Italian Mediterranean areas may be improved and the sampling density reduced using secondary data related to the nature of the ecosystem. The current study was conducted to determine: (i) the improvements obtainable in mapping soil C over a Mediterranean island by using ecosystem features and (ii) the effect of different sampling densities on the map accuracy. This work relied on field sampling (n=164) of soil properties measured over the island of Pianosa (Central Italy). Statistical analysis assessing the relationship between soil properties and ecosystem features revealed that the conceptual model of ecosystems defined on the basis of environmental features such as vegetation cover, land use, and soil type was mainly related to the variation of soil organic carbon (OC) content and to the type of Mediterranean environment. The distribution of ecosystems was used to improve the accuracy of soil OC maps obtainable by a simple interpolation approach (ordinary kriging). Substantial improvement was obtained by: (i) stratification into ecosystem types and (ii) applying locally calibrated regressions to satellite imagery that introduced both inter-ecosystem and intra-ecosystem information linked to vegetation features. This study showed that interpolation methods using information on ecosystem distribution can produce accurate maps of soil OC in Mediterranean environments, mostly because of the linkage between soil OC and vegetation types, which are spatially fragmented and heterogeneous.  相似文献   

9.
Controlling nonpoint-source sediment pollution is a common goal of riparian management, but there is little quantitative information about factors affecting performance of rangeland riparian buffers. This study evaluated the influence of vegetation characteristics, buffer width, slope, and stubble height on sediment retention in a Montana foothills meadow. Three vegetation types (sedge wetland, rush transition, bunchgrass upland) were compared using twenty-six 6- x 2-m plots spanning 2 to 20% slopes. Plots were clipped moderately (10-15 cm stubble) or severely (2-5 cm stubble). Sediment (silt + fine sand) was added to simulated overland runoff 6, 2, or 1 m above the bottom of each plot. Runoff was sampled at 15-s to > 5-min intervals until sediment concentrations approached background levels. Sediment retention was affected strongly by buffer width and moderately by vegetation type and slope, but was not affected by stubble height. Mean sediment retention ranged from 63 to > 99% for different combinations of buffer width and vegetation type, with 94 to 99% retention in 6-m-wide buffers regardless of vegetation type or slope. Results suggest that rangeland riparian buffers should be at least 6 m wide, with dense vegetation, to be effective and reliable. Narrower widths, steep slopes, and sparse vegetation increase risk of sediment delivery to streams. Vegetation characteristics such as biomass, cover, or density are more appropriate than stubble height for judging capacity to remove sediment from overland runoff, though stubble height may indirectly indicate livestock impacts that can affect buffer performance.  相似文献   

10.
The recent greening of the Sahel region and increase in vegetation cover around pastoral settlements previously described as “man-made deserts”, have raised important questions on the permanency of land degradation associated with the over-exploitation of woody plants. Evidence presented is mostly on increased wetness, while management by local communities has received limited attention. This study evaluated changes in woody vegetation cover around the settlements of Kargi and Korr in northern Kenya, using satellite imagery (1986/2000), ecological ground surveys and interviews with local elders, in order to understand long-term changes in vegetation cover and the role of local community in vegetation dynamics. At both settlements, there were increments in vegetation cover and reduction in the extent of bare ground between 1986 and 2000. At Kargi settlement, there were more tree seedlings in the centre of settlement than further away. Mature tree class was more abundant in the centre of Korr than outside the settlement. The success of the regeneration and recovery of tree cover was attributed to the actions of vegetation management initiative including stringent measures by the local Environmental Management Committees. This study provides good evidence that local partnership is important for sustainable management of resources especially in rural areas where the effectiveness of government initiative is lacking.  相似文献   

11.
Phosphorus removal in vegetated filter strips   总被引:5,自引:0,他引:5  
Vegetated filter strips (VFS) are used recently for removal, at or near the source, of sediment and sediment-bound chemicals from cropland runoff. Vegetation within the flowpath increases water infiltration and decreases water turbulence, thus enhancing pollutant removal by sedimentation within filter media and infiltration through the filter surface. Field experiments have been conducted to examine the efficiency of vegetated filter strips for phosphorus removal from cropland runoff with 20 filters with varying length (2 to 15 m), slope (2.3 and 5%), and vegetated cover, including bare-soil plots as control. Artificial runoff used in this study had an average phosphorus concentration of 2.37 mg L(-1) and a sediment concentration of 2700 mg L(-1). The average phosphorus trapping efficiency of all vegetated filters was 61% and ranged from 31% in a 2-m filter to 89% in a 15-m filter. Filter length has been found to be the predominant factor affecting P trapping in VFS. The rate of inflow, type of vegetation, and density of vegetation coverage had secondary influences on P removal. Short filters (2 and 5 m), which are somewhat effective in sediment removal, are much less effective in P removal. Increasing the filter length beyond 15 m is ineffective in enhancing sediment removal but is expected to further enhance P removal. Sediment deposition, infiltration, and plant adsorption are the primary mechanisms for phosphorus trapping in VFS.  相似文献   

12.
This article presents the methods and results of visual interpretation of NOAA AVHRR imagery for mapping flood areas in Bangladesh. Color composites of channels 1 and 2 for 18 August 1987 and 10, 15, and 24 September 1988 were interpreted visually for delineating flood boundaries. On such imagery flood areas appear in dark tones and are separated from land (light tones) owing to the absorption of near infrared by water and its reflectance by land and non-waterbodies. Visual interpretation was aided by the use of ground information, such as physiographic and river maps, previous flood maps, newspaper reports, and other published and unpublished documents on the 1987 and 1988 floods. Interpreted flood areas on selected images ranged from 31% to 43% of the total area of Bangladesh. Visual interpretation overestimated flood areas by 5%–10%, compared to the digitally analyzed data. The main advantage of visual analysis lies in the cost effectiveness of AVHRR photographic products, which make them more accessible than the digital image analysis of computer-compatible tapes.  相似文献   

13.
Cover crops are a management option to reduce NO3 leaching under cereal grain production. A 2-yr field lysimeter study was established in Uppsala, Sweden, to evaluate the effect of a perennial ryegrass (Lolium perenne L.) cover crop interseeded in barley (Hordeum vulgare L.) on NO3-N leaching and availability of N to the main crop. Barley and ryegrass or barley alone were seeded in mid-May 1992, in lysimeters (03-m diam. x 1.2-m depth) of an undisturbed, well-drained, sandy loam soil. Fertilizer N was applied at the same time as labeled l5NH415NO3 (10 atom % 15N) at a rate of 100 kg N ha(-1). In 1993, barley was reseeded in May in the lysimeters but with nonlabeled NH4NO3 and no cover crop (previous year's cover crop incorporated just prior to seeding). Barley yields and total and fertilizer N uptake in Year 1 (1992) were unaffected by cover crop. Total aboveground N uptake by the ryegrass was 28 kg ha(-1) at the time of incorporation the following spring. Recovery of fertilizer-derived N in May 1993 was about 100%; 53% in soil, 46% in barley, <2% in ryegrass, and negligible amounts in leachate. In May 1994, the corresponding figures were: 32% in soil, <3% in barley, and, again, negligible amounts in leachate. The cover crop reduced concentrations of NO3-N in the leachate considerably (<5 mg L(-1), compared with 10 to 18 mg L(-1) without cover crop) at most sampling times from November 1992 to April 1994, and reduced the total amount of NO3-N leached (22 compared with 8 kg ha(-1)).  相似文献   

14.
15.
Smith, Monica Lipscomb, Weiqi Zhou, Mary Cadenasso, Morgan Grove, and Lawrence E. Band, 2010. Evaluation of the National Land Cover Database for Hydrologic Applications in Urban and Suburban Baltimore, Maryland. Journal of the American Water Resources Association (JAWRA) 46(2):429-442. DOI: 10.1111/j.1752-1688.2009.00412.x Abstract: We compared the National Land Cover Database (NLCD) 2001 land cover, impervious, and canopy data products to land cover data derived from 0.6-m resolution three-band digital imagery and ancillary data. We conducted this comparison at the 1 km2, 9 km2, and gauged watershed scales within the Baltimore Ecosystem Study to determine the usefulness and limitations of the NLCD in heterogeneous urban to exurban environments for the determination of land-cover information for hydrological applications. Although the NLCD canopy and impervious data are significantly correlated with the high-resolution land-cover dataset, both layers exhibit bias at <10 and >70% cover. The ratio of total impervious area and connected impervious area differs along the range of percent imperviousness – at low percent imperviousness, the NLCD is a better predictor of pavement alone, whereas at higher percent imperviousness, buildings and pavement together more resemble NLCD impervious estimates. The land-cover composition and range for each NLCD urban land category (developed open space, low-intensity, medium-intensity, and high-intensity developed) is more variable in areas of low-intensity development. Fine-vegetation land-cover/lawn area is incorporated in a large number of land use categories with no ability to extract this land cover from the NLCD. These findings reveal that the NLCD may yield important biases in urban, suburban, and exurban hydrologic analyses where land cover is characterized by fine-scale spatial heterogeneity.  相似文献   

16.
ABSTRACT: Multivariate analyses and correlations revealed strong relations between watershed and riparian‐corridor land cover, and reach‐scale habitat versus fish and macroinvertebrate assemblages in 38 warmwater streams in eastern Wisconsin. Watersheds were dominated by agricultural use, and ranged in size from 9 to 71 km2 Watershed land cover was summarized from satellite‐derived data for the area outside a 30‐m buffer. Riparian land cover was interpreted from digital orthophotos within 10‐, 10‐to 20‐, and 20‐to 30‐m buffers. Reach‐scale habitat, fish, and macroinvertebrates were collected in 1998 and biotic indices calculated. Correlations between land cover, habitat, and stream‐quality indicators revealed significant relations at the watershed, riparian‐corridor, and reach scales. At the watershed scale, fish diversity, intolerant fish and EPT species increased, and Hilsenhoff biotic index (HBI) decreased as percent forest increased. At the riparian‐corridor scale, EPT species decreased and HBI increased as riparian vegetation became more fragmented. For the reach, EPT species decreased with embeddedness. Multivariate analyses further indicated that riparian (percent agriculture, grassland, urban and forest, and fragmentation of vegetation), watershed (percent forest) and reach‐scale characteristics (embeddedness) were the most important variables influencing fish (IBI, density, diversity, number, and percent tolerant and insectivorous species) and macroinvertebrate (HBI and EPT) communities.  相似文献   

17.
Two soybean field experiments were conducted during 1979 to investigate the effects of different row-spacing patterns (1.0 m vs 0.5 m, and 1.0 m vs broadcast) on population levels of selected herbivorous and beneficial arthropods. Sweepnet sampling was used in both experiments, and the ground-cloth shake method was also used in the 1.0-m vs 0.5-m study. Sweepnet results suggested that both herbivorous and beneficial arthropods tended to be more abundant in narrow row-spacings. However, there were exceptions among both groups, with some species (for example, bean leaf beetle) being more abundant in the conventional row-spacing in one experiment, and with several other species (for example, bigeyed bugs) showing no significant differences. Also, ground-cloth data for lepidopteran larvae showed trends opposite to those from sweepnet data in the 1,0-m vs 0.5-m experiment. Results clearly illustrate the importance of sampling methodology in the interpretation of soybean row-spacing research.  相似文献   

18.
Depletion of vegetation by overgrazing in arid environments has long-lasting effects on the environmental quality over extended geographic areas. An adequate inspection of habitat changes requires scaled up procedures that would allow assessing end-points of environmental status in broad areas that would be based on processes occurring at the plant canopy level. Our purpose was to find indicators of land degradation–conservation status for use in land monitoring programs and in planning management practices that would be amenable to further up-scaling for use with remotely sensed imagery. In several sites of the Patagonian Monte differing in the impact of grazing management, we evaluated vegetation attributes at three spatial scales. At the population scale, we found that the severity of grazing impact was characterized by the reduction of the palatable grass, P. ligularis, outside and inside shrub canopies. At the vegetation patch scale, we found that land degradation by domestic herbivore impact was characterized by changes in attributes of patch shape (radius, height, internal canopy cover) and patch abundance. At the plant community scale, we found that the structure of the plant canopy as described using Fourier analysis of cover data changed after long-term grazing impact consistently with the modifications in plant population and patch structures. We present a conceptual multiscale scenario of structural changes triggered by domestic herbivore impact, and quantitative indicators of plant structure and processes useful to develop management strategies of the Patagonian-Monte that would conserve its natural habitats. The developed end-points are also amenable for use in land conservation assessment through remotely sensed imagery.  相似文献   

19.
Landscape change alters the visual scale of agricultural landscapes, as production units get larger and strips of taller vegetation are removed between smaller units. Visual scale, defined as the perceptual units reflecting the experience of landscape rooms, visibility and openness, is considered a key factor shaping landscape preference. The visual expression of landscapes affects people in many ways; aesthetic appreciation, health and well being. In order to understand how landscape changes alter the visual scale of landscapes, and hence its effect on human beings, it is important to establish efficient and practical ways of measuring visual scale and its relation to landscape preferences. This paper presents an empirical test of the ability to predict landscape preference of two photo-based indicators of visual scale; percentage open land in the view and size of landscape rooms. A preference survey was conducted with two groups of respondents; a student group from the Norwegian University of Life Sciences (UMB) and a public group. The student group was chosen to represent future landscape professionals. Photos of landscapes varying in the expression of visual scale were shown to survey respondents, who were asked to give scores according to how much they liked the landscapes. Both indicators were found to be predictors of preference for the student group, but not for the public group. The results demonstrate that student preferences do not reflect the landscape preferences of the wider public. The different appreciation of visual scale in the landscape of future landscape professionals and the public implies that experts wanting to reflect preferences of the wider public should be cautious when evaluating the visual impact of landscape change.  相似文献   

20.
The effects of prescribed burning on forage abundance and suitability for elk (Cervus elaphus) during the snow-free season was evaluated in east-central Banff National Park, Canada. Six coniferous forest and mixed shrub-herb plant communities (n=144 plots), and 5223ha of burned (n=131) vegetation <12 years old were sampled using a stratified semi-random design. Sampling units represented various combinations of vegetation, terrain conditions, and stand ages that were derived from digital biophysical data, with plant communities the basic unit of analysis. Burning coniferous forest stands reduced woody biomass, and increased herbaceous forage from 146 to 790 kg/ha. Increases commonly occurred in the percent cover of hairy wild rye (Leymus innovatus (Beal) Pigler) and fireweed (Chamerion angustifolium (L.) Holub.). The herbaceous components of mixed shrub-herb communities increased from 336-747 kg/ha to 517-1104 kg/ha in response to burning (P<0.025, Mann-Whitney U-test). Browse biomass (mostly Salix spp. and Betula nana L.) increased >or=220% (P相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号