首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
A protocol has been proposed for testing seats for whiplash protection, however injury criteria have not yet been chosen. Assuming that whiplash symptoms arise from non-physiological motions of vertebral segments, we determined the ability of proposed criteria to predict peak individual vertebral displacements. Twenty-eight volunteers were subjected to rear impacts while seated in a car seat with head restraint, mounted onto a sled. Accelerometers were used to record head and torso accelerations. The volunteer data was used as a basis for testing post-mortem human specimens (PMHS). The seat was replaced by a platform onto which was mounted each of 11 cervico-thoracic spines. An instrumented headform was mounted to the upper end of the spine. The head restraint, head-to-restraint geometry, sled, and impact pulse remained the same. Head and T1 accelerations were measured and individual vertebral sagittal (XZ) plane rotations and translations were obtained from high speed video. Proposed injury criteria (NIC, Nkm, Nte, Nd) were tested for their ability to predict average, total, and peak intervertebral displacements. PMHS specimens had chest and head X (horizontal) and Z (vertical) linear accelerations similar to volunteers whose heads hit the head restraint. The best predictors were: Nd shear and peak intervertebral posterior translation (r(2) = 0.80), Nd extension and peak extension angle (r(2) = 0.70), and Nd distraction and peak distraction (r(2) = 0.51). Therefore consideration should be given to a displacement based injury criteria such as Nd in assessment of whiplash protection devices.  相似文献   

2.
Abstract

Objective: Emergency braking can potentially generate precrash occupant motion that may influence the effectiveness of restraints in the subsequent crash, particularly for rear-seated occupants who may be less aware of the impending crash. With the advent of automated emergency braking (AEB), the mechanism by which braking is achieved is changing, potentially altering precrash occupant motion. Further, due to anatomical and biomechanical differences across ages, kinematic differences between AEB and manual emergency braking (MEB) may vary between child and adult occupants. Therefore, the objective of this study was to quantify differences in rear-seated adult and pediatric kinematics and muscle activity during AEB and MEB scenarios.

Methods: Vehicle maneuvers were performed in a recent model year sedan traveling at 50?km/h. MEB (acceleration ~1?g) was achieved by the driver pressing the brake pedal with maximum effort. AEB (acceleration ~0.8?g) was triggered by the vehicle system. Inertial and Global Positioning System data were collected. Seventeen male participants aged 10–33 were restrained in the rear right passenger seat and experienced each maneuver twice. The subjects’ kinematics were recorded with an 8-camera 3D motion capture system. Electromyography (EMG) recorded muscle activity. Head and trunk displacements, raw and normalized by seated height, and peak head and trunk velocity were compared across age and between maneuvers. Mean EMG was calculated to interpret kinematic findings.

Results: Head and trunk displacement and peak velocity were greater in MEB than in AEB in both raw and normalized data (P?≤?.01). No effect of age was observed (P?≥?.21). Peak head and trunk velocities were greater in repetition 1 than in repetition 2 (P?≤?.006) in MEB but not in AEB. Sternocleidomastoid (SCM) mean EMG was greater in MEB compared to AEB, and muscle activity increased in repetition 2 in MEB.

Conclusions: Across all ages, head and trunk excursions were greater in MEB than AEB, despite increased muscle activity in MEB. This observation may suggest an ineffective attempt to brace the head or a startle reflex. The increased excursion in MEB compared to AEB may be attributed to differences in the acceleration pulses between the 2 scenarios. These results suggest that AEB systems can use specific deceleration profiles that have potential to reduce occupant motion across diverse age groups compared to sudden maximum emergency braking applied manually.  相似文献   

3.
Objective: To conduct near-side moving deformable barrier (MDB) and pole tests with postmortem human subjects (PMHS) in full-scale modern vehicles, document and score injuries, and examine the potential for angled chest loading in these tests to serve as a data set for dummy biofidelity evaluations and computational modeling.

Methods: Two PMHS (outboard left front and rear seat occupants) for MDB and one PMHS (outboard left front seat occupant) for pole tests were used. Both tests used sedan-type vehicles from same manufacturer with side airbags. Pretest x-ray and computed tomography (CT) images were obtained. Three-point belt-restrained surrogates were positioned in respective outboard seats. Accelerometers were secured to T1, T6, and T12 spines; sternum and pelvis; seat tracks; floor; center of gravity; and MDB. Load cells were used on the pole. Biomechanical data were gathered at 20 kHz. Outboard and inboard high-speed cameras were used for kinematics. X-rays and CT images were taken and autopsy was done following the test. The Abbreviated Injury Scale (AIS) 2005 scoring scheme was used to score injuries.

Results: MDB test: male (front seat) and female (rear seat) PMHS occupant demographics: 52 and 57 years, 177 and 166 cm stature, 78 and 65 kg total body mass. Demographics of the PMHS occupant in the pole test: male, 26 years, 179 cm stature, and 84 kg total body mass. Front seat PMHS in MDB test: 6 near-side rib fractures (AIS = 3): 160–265 mm vertically from suprasternal notch and 40–80 mm circumferentially from center of sternum. Left rear seat PMHS responded with multiple bilateral rib fractures: 9 on the near side and 5 on the contralateral side (AIS = 3). One rib fractured twice. On the near and contralateral sides, fractures were 30–210 and 20–105 mm vertically from the suprasternal notch and 90–200 and 55–135 mm circumferentially from the center of sternum. A fracture of the left intertrochanteric crest occurred (AIS = 3). Pole test PMHS had one near-side third rib fracture. Thoracic accelerations of the 2 occupants were different in the MDB test. Though both occupants sustained positive and negative x-accelerations to the sternum, peak magnitudes and relative changes were greater for the rear than the front seat occupant. Magnitudes of the thoracic and sternum accelerations were lower in the pole test.

Conclusions: This is the first study to use PMHS occupants in MDB and pole tests in the same recent model year vehicles with side airbag and head curtain restraints. Injuries to the unilateral thorax for the front seat PMHS in contrast to the bilateral thorax and hip for the rear seat occupant in the MDB test indicate the effects of impact on the seating location and restraint system. Posterolateral locations of fractures to the front seat PMHS are attributed to constrained kinematics of occupant interaction with torso side airbag restraint system. Angled loading to the rear seat occupant from coupled sagittal and coronal accelerations of the sternum representing anterior thorax loading contributed to bilateral fractures. Inward bending initiated by the distal femur complex resulting in adduction of ipsilateral lower extremity resulted in intertrochanteric fracture to the rear seat occupant. These results serve as a data set for evaluating the biofidelity of the WorldSID and federalized side impact dummies and assist in validating human body computational models, which are increasingly used in crashworthiness studies.  相似文献   

4.
Objective: Whiplash-associated disorder (WAD), commonly denoted whiplash injury, is a worldwide problem. These injuries occur at relatively low changes of velocity (typically <25 km/h) in impacts from all directions. Rear impacts, however, are the most common in the injury statistics. Females have a 1.5–3 times higher risk of whiplash injury than males.

?Improved seat design is the prevailing means of increasing the protection of whiplash injury for occupants in rear impacts. Since 1997, more advanced whiplash protection systems have been introduced on the market, the Saab Active Head Restraint (SAHR) being one of the most prominent. The SAHR—which is height adjustable—is mounted to a pressure plate in the seatback by means of a spring-resisted link mechanism.

?Nevertheless, studies have shown that seats equipped with reactive head restraints (such as the SAHR) have a very high injury-reducing effect for males (~60–70%) but very low or no reduction effect for females. One influencing factor could be the position of the head restraint relative to the head, because a number of studies have reported that adjustable head restraints often are incorrectly positioned by drivers.

?The aim was to investigate how female and male Saab drivers adjust the seat in the car they drive the most.

Methods: The seated positions of drivers in stationary conditions have been investigated in a total of 76 volunteers (34 females, 42 males) who participated in the study. Inclusion criteria incorporated driving a Saab 9–3 on a regularly basis.

Results: The majority of the volunteers (89%) adjusted the head restraint to any of the 3 uppermost positions and as many as 59% in the top position.

?The average vertical distance between the top of the head and the top of the head restraint (offset) increase linearly with increasing statures, from an average of ?26 mm (head below the head restraint) for small females to an average of 82 mm (head above the head restraint) for large males. On average, the offset was 23 mm for females, which is within a satisfactory range and in accordance with recommendations; the corresponding value for males was 72 mm.

?The backset tended to be shorter among female volunteers (on average 27 mm) compared to the male volunteers (on average 44 mm). Moreover, the backset tended to increase with increasing statures.

Conclusions: Incorrect adjustment of the head restraint cannot explain the large differences found between the sexes in the effectiveness of the SAHR system.  相似文献   

5.
ABSTRACT

Objective: This study analyzed the influence of reference sensor inputs from anthropomorphic test devices (ATDs) versus postmortem human subjects (PMHSs) on simulations of frontal blunt impacts to the advanced combat helmet (ACH).

Methods: A rigid-arm pendulum was used to generate frontal impacts to ACHs mounted on ATDs and PMHS. An appropriately sized ACH was selected according to standard fitting guidelines. The National Operating Committee on Standards for Athletic Equipment (NOCSAE) head was selected for ATD tests due to shape features that enabled a realistic helmet fit. A custom procedure was used to mount a reference sensor internally near the center of gravity (CG) of the PMHS. Reference sensor data from the head CG were used as inputs for the Simulated Injury Monitor (SIMon). Brain responses were assessed with the cumulative strain damage measure set at 10%, or CSDM(10).

Results: Compared to ATD tests, PMHS tests produced 18.7% higher peak linear accelerations and 5.2% higher peak angular velocities. Average times to peak for linear accelerations were relatively similar between ATDs (5.5?ms) and PMHSs (5.8?ms). However, times to peak for angular velocities were higher by a factor of up to 3.4 for PMHSs compared to ATDs. Values for were also higher by a factor of up to 13.1 when PMHS inputs were used for SIMon.

Conclusions: The preliminary findings of this work indicate that small differences in ATD versus PMHS head kinematics could lead to large differences in strain-derived brain injury metrics such as CSDM.  相似文献   

6.
Seat performance in retaining an occupant, transferring energy, and controlling neck responses is often questioned after severe rear crashes when fatal or disabling injury occur. It is argued that a stiffer seat would have improved occupant kinematics. However, there are many factors in occupant interactions with the seat. This study evaluates four different seat types in 26 and 32 mph (42 and 51 km/h), rear crash delta Vs. Two seats were yielding with k = 20 kN/m occupant load per displacement. One represented a 1970s yielding seat with j = 3.4°/kN frame rotation per occupant load, and 3 kN maximum load (660 Nm moment), and the other a high retention seat phased into production since 1997 with j = 1.4°/kN, and 10 kN maximum load (2200 Nm). Two seats were stiff with k = 40 kN/m. One represented a 1990s foreign benchmark with j = 1.8°/kN and a 7.7 kN maximum load (1700 Nm), and the other an all belts to seat (ABTS) with j = 1.0°/kN and 20 kN maximum load (4400 Nm). The crash was a constant acceleration of 11.8 g, or 14.5 g for 100 ms. Occupant interactions with the seat were modeled using a torso mass, flexible neck and head mass. By analysis of the equations of motion, the initial change in seatback angle (Δθ) is proportional to jk(y ? x), the product jk and the differential motion between the vehicle (seat cushion) and occupant. The transition from 1970s–80s yielding seats to stronger seats of the 1990s involved an increase in k stiffness; however, the jk property did not change as frame structures became stronger. The yielding seats of the 1970s had jk = 68°/m, while the stiff foreign benchmark seat had jk = 72°/m. The foreign benchmark rotated about the same as the 1970s seat up to 50 ms in the severe rear crashes. While it was substantially stronger, it produced higher loads on the occupant, and the higher loads increased seatback rotations and neck responses. The ABTS seat had the lowest rotations but also caused high neck responses because of the greater loads on the torso. Neck displacement (d) is initially proportional to (k/mT) ∫∫ y, seat stiffness times the second integral of vehicle displacement divided by torso mass. As seat stiffness increases, head-torso acceleration, velocity, and neck displacement increase. This study shows that the jk seat property determines the initial seatback rotation in rear crashes. If a stronger seat has a higher stiffness, it rotates at higher loads on the occupant, reducing the overall benefit of the stronger frame, while increasing neck responses related to whiplash or neck extension prior to subsequent impacts. The aim of seat designs should be to reduce jk, provide pocketing of the pelvis, and give head-neck support for the best protection in severe rear crashes. For low-speed crashes, a low k is important to reduce early neck responses related to whiplash.  相似文献   

7.
Whiplash has increased over the past two decades. This study compares occupant dynamics with three different seat types (two yielding and one stiff) in rear crashes. Responses up to head restraint contact are used to describe possible reasons for the increase in whiplash as seat stiffness increased in the 1980s and 1990s. Three exemplar seats were defined by seat stiffness (k) and frame rotation stiffness (j) under occupant load. The stiff seat had k=40 kN/m and j=1.8 degrees /kN representing a foreign benchmark. One yielding seat had k=20 kN/m and j=1.4 degrees /kN simulating a high-retention seat. The other had k=20 kN/m and j=3.4 degrees /kN simulating a typical yielding seat of the 1980s and 1990s. Constant vehicle acceleration for 100 ms gave delta-V of 6, 10, 16, 24, and 35 km/h. The one-dimensional model included a torso mass loading the seatback, head motion through a flexible neck, and head restraint drop and rearward displacement with seatback rotation. Neck displacement was greatest with the stiff seat due to higher loads on the torso. It peaked at 10 km/h rear delta-V and was lower in higher-severity crashes. It averaged 32% more than neck displacements with the 1980s yielding seat. The high-retention seat had 67% lower neck displacements than the stiff seat because of yielding into the seatback, earlier head restraint contact and less seatback rotation, which involved 16 mm drop in head restraint height due to seatback rotation in the 16 km/h rear delta-V. This was significantly lower than 47 mm with the foreign benchmark and 73 mm with the 1980s yielding seat. Early in the crash, neck responses are proportional to ky/mT, seat stiffness times vehicle displacement divided by torso mass, so neck responses increase with seat stiffness. The trend toward stiffer seats increased neck responses over the yielding seats of the 1980s and 1990s, which offers one explanation for the increase in whiplash over the past two decades. This is a result of not enough seat suspension compliance as stronger seat frames were introduced. As seat stiffness has increased, so have neck displacements and the Neck Injury Criterion (NIC). High-retention seats reduce neck biomechanical responses by allowing the occupant to displace into the seatback at relatively low torso loads until head restraint contact and then transferring crash energy. High-retention seats resolve the historic debate between stiff (rigid) and yielding seats by providing both a strong frame (low j) for occupant retention and yielding suspension (low k) to reduce whiplash.  相似文献   

8.
Seat performance in retaining an occupant, transferring energy, and controlling neck responses is often questioned after severe rear crashes when fatal or disabling injury occur. It is argued that a stiffer seat would have improved occupant kinematics. However, there are many factors in occupant interactions with the seat. This study evaluates four different seat types in 26 and 32 mph (42 and 51 km/h), rear crash delta Vs. Two seats were yielding with k = 20 kN/m occupant load per displacement. One represented a 1970s yielding seat with j = 3.4 degrees /kN frame rotation per occupant load, and 3 kN maximum load (660 Nm moment), and the other a high retention seat phased into production since 1997 with j = 1.4 degrees /kN, and 10 kN maximum load (2200 Nm). Two seats were stiff with k = 40 kN/m. One represented a 1990s foreign benchmark with j = 1.8 degrees /kN and a 7.7 kN maximum load (1700 Nm), and the other an all belts to seat (ABTS) with j = 1.0 degrees /kN and 20 kN maximum load (4400 Nm). The crash was a constant acceleration of 11.8 g, or 14.5 g for 100 ms. Occupant interactions with the seat were modeled using a torso mass, flexible neck and head mass. By analysis of the equations of motion, the initial change in seatback angle (Deltatheta) is proportional to jk(y - x), the product jk and the differential motion between the vehicle (seat cushion) and occupant. The transition from 1970s-80s yielding seats to stronger seats of the 1990s involved an increase in k stiffness; however, the jk property did not change as frame structures became stronger. The yielding seats of the 1970s had jk = 68 degrees /m, while the stiff foreign benchmark seat had jk = 72 degrees /m. The foreign benchmark rotated about the same as the 1970s seat up to 50 ms in the severe rear crashes. While it was substantially stronger, it produced higher loads on the occupant, and the higher loads increased seatback rotations and neck responses. The ABTS seat had the lowest rotations but also caused high neck responses because of the greater loads on the torso. Neck displacement (d) is initially proportional to (k/m(T)) integral integral y, seat stiffness times the second integral of vehicle displacement divided by torso mass. As seat stiffness increases, head-torso acceleration, velocity, and neck displacement increase. This study shows that the jk seat property determines the initial seatback rotation in rear crashes. If a stronger seat has a higher stiffness, it rotates at higher loads on the occupant, reducing the overall benefit of the stronger frame, while increasing neck responses related to whiplash or neck extension prior to subsequent impacts. The aim of seat designs should be to reduce jk, provide pocketing of the pelvis, and give head-neck support for the best protection in severe rear crashes. For low-speed crashes, a low k is important to reduce early neck responses related to whiplash.  相似文献   

9.
Automobile insurance claims were examined to determine the rates of neck injuries in rear-end crashes for vehicles with and without redesigned head restraints, redesigned seats, or both. Results indicate that the improved geometric fit of head restraints observed in many newer vehicle models are reducing the risk of whiplash injury substantially among female drivers (about 37% in the Ford Taurus and Mercury Sable), but have very little effect among male drivers. New seat designs, such as active head restraints that move upward and closer to drivers' heads during a rear impact, give added benefit, producing about a 43% reduction in whiplash injury claims (55% reduction among female drivers). Estimated effects of Volvo's Whiplash Injury Prevention System and Toyota's Whiplash Injury Lessening design were based on smaller samples and were not statistically significant.  相似文献   

10.
OBJECTIVE: To quantify the dynamic loads and intervertebral motions throughout the cervical spine during simulated rear impacts. METHODS: Using a biofidelic whole cervical spine model with muscle force replication and surrogate head and bench-top mini-sled, impacts were simulated at 3.5, 5, 6.5, and 8 g horizontal accelerations of the T1 vertebra. Inverse dynamics was used to calculate the dynamic cervical spine loads at the centers of mass of the head and vertebrae (C1-T1). The average peak loads and intervertebral motions were statistically compared (P < 0.05) throughout the cervical spine. RESULTS: Load and motion peaks generally increased with increasing impact acceleration. The average extension moment peaks at the lower cervical spine, reaching 40.7 Nm at C7-T1, significantly exceeded the moment peaks at the upper and middle cervical spine. The highest average axial tension peak of 276.9 N was observed at the head, significantly greater than at C4 through T1. The average axial compression peaks, reaching 223.2 N at C5, were significantly greater at C4 through T1, as compared to head-C1. The highest average posterior shear force peak of 269.5 N was observed at T1. CONCLUSION: During whiplash, the cervical spine is subjected to not only bending moments, but also axial and shear forces. These combined loads caused both intervertebral rotations and translations.  相似文献   

11.
Objective: This study compared biomechanical responses of a normally seated Hybrid III dummy on conventional and all belts to seat (ABTS) seats in 40.2 km/h (25 mph) rear sled tests. It determined the difference in performance with modern (≥2000 MY) seats compared to older (<2000 MY) seats and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position. The testing included 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS seats. The dummy was fully instrumented, including head accelerations, upper and lower neck 6-axis load cells, chest acceleration, thoracic and lumbar spine load cells, and pelvis accelerations. The peak responses were normalized by injury assessment reference values (IARVs) to assess injury risks. Statistical analysis was conducted using Student's t test. High-speed video documented occupant kinematics.

Results: Biomechanical responses were lower with modern (≥2000 MY) seats than older (<2000 MY) designs. The lower neck extension moment was 32.5 ± 9.7% of IARV in modern seats compared to 62.8 ± 31.6% in older seats (P =.01). Overall, there was a 34% reduction in the comparable biomechanical responses with modern seats. Biomechanical responses were lower with modern seats than ABTS seats. The lower neck extension moment was 41.4 ± 7.8% with all MY ABTS seats compared to 32.5 ± 9.7% in modern seats (P =.07). Overall, the ABTS seats had 13% higher biomechanical responses than the modern seats.

Conclusions: Modern (≥2000 MY) design seats have lower biomechanical responses in 40.2 km/h rear sled tests than older (<2000 MY) designs and ABTS designs. The improved performance is consistent with an increase in seat strength combined with improved occupant kinematics through pocketing of the occupant into the seatback, higher and more forward head restraint, and other design changes. The methods and data presented here provide a basis for standardized testing of seats. However, a complete understanding of seat safety requires consideration of out-of-position (OOP) occupants in high-speed impacts and consideration of the much more common, low-speed rear impacts.  相似文献   


12.
Objective: This study analyzed thoracic and lumbar spine responses with in-position and out-of-position (OOP) seated dummies in 40.2 km/h (25 mph) rear sled tests with conventional and all-belts-to-seat (ABTS) seats. Occupant kinematics and spinal responses were determined with modern (≥2000 MY), older (<2000 MY), and ABTS seats.

Methods: The seats were fixed in a sled buck subjected to a 40.2 km/h (25 mph) rear sled test. The pulse was a 15 g double-peak acceleration with 150 ms duration. The 50th percentile Hybrid III was lap–shoulder belted in the FMVSS 208 design position or OOP, including leaning forward and leaning inboard and forward. There were 26 in-position tests with 11 <2000 MY, 8 ≥2000 MY, and 7 ABTS and 14 OOP tests with 6 conventional and 8 ABTS seats. The dummy was fully instrumented. This study addressed the thoracic and lumbar spine responses. Injury assessment reference values are not approved for the thoracic and lumbar spine. Conservative thresholds exist. The peak responses were normalized by a threshold to compare responses. High-speed video documented occupant kinematics.

Results: The extension moments were higher in the thoracic than lumbar spine in the in-position tests. For <2000 MY seats, the thoracic extension moment was 76.8 ± 14.6% of threshold and the lumbar extension moment was 50.5 ± 17.9%. For the ≥2000 MY seats, the thoracic extension moment was 54.2 ± 26.6% of threshold and the lumbar extension moment was 49.8 ± 27.7%. ABTS seats provided similar thoracic and lumbar responses. Modern seat designs lowered thoracic and lumbar responses. For example, the 1996 Taurus had ?1,696 N anterior lumbar shear force and ?205.2 Nm extension moment. There was ?1,184 N lumbar compression force and 1,512 N tension. In contrast, the 2015 F-150 had ?500 N shear force and ?49.7 Nm extension moment. There was ?839 N lumbar compression force and 535 N tension. On average, the 2015 F-150 had 40% lower lumbar spine responses than the 1996 Taurus. The OOP tests had similar peak lumbar responses; however, they occurred later due to the forward lean of the dummy.

Conclusions: The design and performance of seats have significantly changed over the past 20 years. Modern seats use a perimeter frame allowing the occupant to pocket into the seatback. Higher and more forward head restraints allow a stronger frame because the head, neck, and torso are more uniformly supported with the seat more upright in severe rear impacts. The overall effect has been a reduction in thoracic and lumbar loads and risks for injury.  相似文献   

13.
This study aimed to examine the effects of visual display terminal (VDT) viewing angle on human postural angle and muscular activity. The participants’ neck, thoracic bending, and trunk inclination angles; and the activity of sternocleidomastoid, trapezius, splenius capitis, and erector spinae at 5 viewing angles (+40°, +20°,0°, –20°, and –40°) of a VDT screen were collected for 1 min. This study showed that neck and thoracic bending angles increased with viewing angle, while viewing angle did not significantly affect trunk inclination angle. In addition, the activity of trapezius and erector spinae increased when viewing a higher or lower VDT screen height compared with viewing a horizontal VDT screen height; however, the activity of splenius capitis decreased with viewing angle.  相似文献   

14.
15.
OBJECTIVE: Intervertebral Neck Injury Criterion (IV-NIC) hypothesizes that dynamic three-dimensional intervertebral motion beyond physiological limit may cause multiplanar soft-tissue injury. Present goals, using biofidelic whole human cervical spine model with muscle force replication and surrogate head in head-turned rear impacts, were to: (1) correlate IV-NIC with multiplanar injury, (2) determine IV-NIC injury threshold at each intervertebral level, and (3) determine time and mode of dynamic intervertebral motion that caused injury. METHODS: Impacts were simulated at 3.5, 5, 6.5, and 8 g horizontal accelerations of T1 vertebra (n = 6; average age: 80.2 years; four male, two female donors). IV-NIC was defined at each intervertebral level and in each motion plane as dynamic intervertebral rotation divided by physiological limit. Three-plane pre- and post-impact flexibility testing measured soft-tissue injury; that is significant increase in neutral zone (NZ) or range of motion (RoM) at any intervertebral level, above baseline. IV-NIC injury threshold was average IV-NIC peak at injury onset. RESULTS: IV-NIC extension peaks correlated best with multiplanar injuries (P < 0.001): extension RoM (R = 0.55) and NZ (R = 0.42), total axial rotation RoM (R = 0.42) and NZ (R = 0.41), and total lateral bending NZ (R = 0.39). IV-NIC injury thresholds ranged between 1.1 at C0-C1 and C3-C4 to 2.9 at C7-T1. IV-NIC injury threshold times were attained between 83.4 and 150.1 ms following impact. CONCLUSIONS: Correlation between IV-NIC and multiplanar injuries demonstrated that three-plane intervertebral instability was primarily caused by dynamic extension beyond the physiological limit during head-turned rear impacts.  相似文献   

16.
OBJECTIVE: The objective of this study was to quantify the occupant response variability due to differences in vehicle and seat design in low-speed rear-end collisions. METHODS: Occupant response variability was quantified using a BioRID dummy exposed to rear-end collisions in 20 different vehicles. Vehicles were rolled rearward into a rigid barrier at 8 km/h and the dynamic responses of the vehicle and dummy were measured with the head restraint adjusted to the up most position. In vehicles not damaged by this collision, additional tests were conducted with the head restraint down and at different impact speeds. RESULTS: Despite a coefficient of variation (COV) of less than 2% for the impact speed of the initial 8 km/h tests, the vehicle response parameters (speed change, acceleration, restitution, bumper force) had COVs of 7 to 23% and the dummy response parameters (head and T1 kinematics, neck loads, NIC, N(ij) and N(km)) had COVs of 14 to 52%. In five vehicles tested multiple times, a head restraint in the down position significantly increased the peak magnitude of many dummy kinematic and kinetic response parameters. Peak head kinematics and neck kinetics generally varied linearly with head restraint back set and height, although the neck reaction moment reversed and increased considerably if the dummy's head wrapped onto the top of the head restraint. CONCLUSIONS: The results of this study support the proposition that the vehicle, seat, and head restraint are a safety system and that the design of vehicle bumpers and seats/head restraint should be considered together to maximize the potential reduction in whiplash injuries.  相似文献   

17.
Abstract

Objective: The introduction of integrated safety technologies in new car models calls for an improved understanding of the human occupant response in precrash situations. The aim of this article is to extensively study occupant muscle activation in vehicle maneuvers potentially occurring in precrash situations with different seat belt configurations.

Methods: Front seat male passengers wearing a 3-point seat belt with either standard or pre-pretensioning functionality were exposed to multiple autonomously carried out lane change and lane change with braking maneuvers while traveling at 73?km/h. This article focuses on muscle activation data (surface electromyography [EMG] normalized using maximum voluntary contraction [MVC] data) obtained from 38 muscles in the neck, upper extremities, the torso, and lower extremities. The raw EMG data were filtered, rectified, and smoothed. All muscle activations were presented in corridors of mean?±?one standard deviation. Separate Wilcoxon signed ranks tests were performed on volunteers’ muscle activation onset and amplitude considering 2 paired samples with the belt configuration as an independent factor.

Results: In normal driving conditions prior to any of the evasive maneuvers, activity levels were low (<2% MVC) in all muscles except for the lumbar extensors (3–5.5% MVC). During the lane change maneuver, selective muscles were activated and these activations restricted the sideway motions due to inertial loading. Averaged muscle activity, predominantly in the neck, lumbar extensor, and abdominal muscles, increased up to 24% MVC soon after the vehicle accelerated in lateral direction for all volunteers. Differences in activation time and amplitude between muscles in the right and left sides of the body were observed relative to the vehicle’s lateral motion. For specific muscles, lane changes with the pre-pretensioner belt were associated with earlier muscle activation onsets and significantly smaller activation amplitudes than for the standard belt (P?<?.05).

Conclusions: Applying a pre-pretensioner belt affected muscle activations; that is, amplitude and onset time. The present muscle activation data complement the results in a preceding publication, the volunteers’ kinematics and the boundary conditions from the same data set. An effect of belt configuration was also seen on previously published volunteers’ kinematics with lower lateral and forward displacements for head and upper torso using the pre-pretensioner belt versus the standard belt. The data provided in this article can be used for validation and further improvement of active human body models with active musculature in both sagittal and lateral loading scenarios intended for simulation of some evasive maneuvers that potentially occur prior to a crash.  相似文献   

18.
为探究井下支护作业人员颈部肌肉疲劳受伸张和屈曲角度变化的影响,采用表面肌电法(sEMG)实验模拟测量7种点位角度下,颈部夹肌、斜方肌以及胸锁乳突肌在不同作业频率时的疲劳情况,以积分肌电值(iEMG)及中值频率(MF)评价各肌肉疲劳程度。研究结果表明:低频实验中随点位角度的增大,颈部屈曲活动时,胸锁乳突肌疲劳变化明显,iEMG疲劳前后差值最大为1.55,MF下降率最大为0.60;颈部伸展活动时,夹肌疲劳变化明显,iEMG疲劳前后差值最大为1.59,MF下降率最大为0.59;斜方肌未表现出明显疲劳变化规律。高频实验相较低频实验疲劳发生速度加快,疲劳积累程度显著提升,颈部活动主要肌肉疲劳发生时间由16~19 min提前至13~17 min,各肌肉MF下降速度为低频实验的1~1.55倍。  相似文献   

19.
Objective: To evaluate the influence of forward-facing child restraint systems’ (FFCRSs) side impact structure, such as side wings, on the head kinematics and response of a restrained, far- or center-seated 3-year-old anthropomorphic test device (ATD) in oblique sled tests.

Methods: Sled tests were conducted utilizing an FFCRS with large side wings and with the side wings removed. The CRS were attached via LATCH on 2 different vehicle seat fixtures—a small SUV rear bench seat and minivan rear bucket seat—secured to the sled carriage at 20° from lateral. Four tests were conducted on each vehicle seat fixture, 2 for each FFCRS configuration. A Q3s dummy was positioned in FFCRS according to the CRS owner's manual and FMVSS 213 procedures. The tests were conducted using the proposed FMVSS 213 side impact pulse. Three-dimensional motion cameras collected head excursion data. Relevant data collected during testing included the ATD head excursions, head accelerations, LATCH belt loads, and neck loads.

Results: Results indicate that side wings have little influence on head excursions and ATD response. The median lateral head excursion was 435 mm with side wings and 443 mm without side wings. The primary differences in head response were observed between the 2 vehicle seat fixtures due to the vehicle seat head restraint design. The bench seat integrated head restraint forced a tether routing path over the head restraint. Due to the lateral crash forces, the tether moved laterally off the head restraint reducing tension and increasing head excursion (477 mm median). In contrast, when the tether was routed through the bucket seat's adjustable head restraint, it maintained a tight attachment and helped control head excursion (393 mm median).

Conclusion: This testing illustrated relevant side impact crash circumstances where side wings do not provide the desired head containment for a 3-year-old ATD seated far-side or center in FFCRS. The head appears to roll out of the FFCRS even in the presence of side wings, which may expose the occupant to potential head impact injuries. We postulate that in a center or far-side seating configuration, the absence of door structure immediately adjacent to the CRS facilitates the rotation and tipping of the FFCRS toward the impact side and the roll-out of the head around the side wing structure. Results suggest that other prevention measures, in the form of alternative side impact structure design, FFCRS vehicle attachment, or shared protection between the FFCRS and the vehicle, may be necessary to protect children in oblique side impact crashes.  相似文献   

20.
The most important tool for testing seat-systems in rear impacts is a crash test dummy. However, investigators have noted limitations of the most commonly used dummy, the Hybrid III. The BioRID I is a step closer to a biofidelic crash test dummy, but it is not user-friendly and the straightening of the thoracic spine kyphosis is smaller than that 220of humans. To reduce these problems, a new BioRID prototype was developed, the P3. It has new neck muscle substitutes, a softer thoracic spine and a softer rubber torso than does the BioRID I.

The BioRID P3 was compared with volunteer test data in a rigid and a standard seal without head restraints. The dummy kinematic performance, pressure distribution between subject and seatback, neck loads and accelerations were compared with those of ten volunteers and a Hybrid III. The BioRID P3 provided repeatable test results and its response was very similar to that of the average volunteer in rear impacts at Δv = 9 km/h.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号