首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An experimental program was conducted to evaluate the accuracy of some current methods for predicting the flammability of gas mixtures containing hydrogen and flammable or nonflammable volatile organic compounds (VOCs) in air. The specific VOCs tested were toluene, 1,2-dichloroethane, 2-butanone, and carbon tetrachloride. The lower flammability limits (LFLs) of gas mixtures containing equal molar quantities of the components were determined in a 19.4-l laboratory flammability chamber using a strong spark ignition source and a pressure criterion for flammability. All but one of the LFL values for the individual components were in agreement with earlier literature values. However, the LFL of 1,2-dichloroethane was found to be significantly lower than the range of values reported for previous determinations in smaller chambers. Two methods for calculating the LFL of mixtures were considered. The Group Factor (atomic) Contribution Method was determined to be generally more accurate than the LeChatelier Method for estimating the LFL of the gas mixtures reported here, although the LeChatelier Method was usually more conservative. The Group Factor Method predicted higher values (nonconservative) for the LFLs of several mixtures than were experimentally measured. For the case of a mixture of hydrogen and carbon tetrachloride, the Group Method estimation of the LFL was seriously in error.  相似文献   

2.
Flammability limits of binary mixtures of dimethyl ether with five kinds of diluent gases were measured by ASHRAE method at room temperature. The five diluent gases are nitrogen, carbon dioxide, chlorodifluoromethane (HCFC-22), 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1,1,2,3,3,3-heptafluoropropane (HFC-227ea). The experimental results were correlated with the extended Le Chatelier's formula. It was found that the experimental results were well reproduced by the formula. In addition, flammability limits of binary mixtures of dimethyl ether with nitrogen and carbon dioxide were compared with the estimated values based on the adiabatic flame temperature method. The experimental results were found to be in satisfactory agreement with the estimated values.  相似文献   

3.
通过FLUENT软件对化学计量浓度下的等热当量的氢气和丙烷在某公路隧道内的爆炸过程进行了数值模拟,对比分析了2者的反应速率和隧道内的压力场变化。结果表明:隧道内爆炸过程中氢气反应速率比丙烷的快,爆炸发生后50 ms内的平均反应速率是丙烷的7倍;氢气爆炸产生的超压较大,最大可达451 kPa,爆炸产生的压力波迅速传播,在隧道内上下来回反射,强度逐渐减弱;丙烷爆炸产生的压力波在隧道内整体表现为向上传播,在爆炸发生150 ms内强度逐渐增大。在此种情况下,2种气体的爆炸均能够对隧道内人员造成严重伤害。  相似文献   

4.
The flammability envelope was experimentally determined up to the point of vapor saturation for four flammable liquids: methanol, ethanol, acetonitrile, and toluene. The experimental apparatus consisted of a 20-L spherical chamber with a centrally located 10 J fuse wire igniter. The liquid was injected and vaporized into the chamber via a septum and a precision syringe. Nitrogen and oxygen were mixed from pure components using a precision pressure gauge. Pressure versus time data were measured for each ignition test. Flammability was defined as any ignition resulting in an increase in pressure of 7% over the initial pressure, as per ASTM E 918–83. All data were obtained at an initial temperature of 298 K and 1 atm. The experimental values of the LFL agreed well with published values. Limiting oxygen concentrations (LOC) were also determined—although these were somewhat lower than published values.The calculated adiabatic flame temperature (CAFT) method was used to model the data using a threshold temperature of 1200 K. A reasonable fit of the flammability envelope was obtained, although this could be improved with a higher threshold temperature.  相似文献   

5.
The effect of carbon dioxide (CO2) concentration on the ignition behaviour of hydrocarbon and CO2 gas mixtures is examined in both jets and confined explosions. Results from explosion tests are presented using a 20 l explosion sphere and an 8 m long section of 1.04 m diameter pipeline. Experiments to assess the flame stability and ignition probability in free-jets are reported for a range of different release velocities. An empirically-based flammability factor model for free-jets is also presented and results are compared to ignition probability measurements previously reported in the literature and those resulting from the present tests.The results help to understand how CO2 changes the severity of fires and explosions resulting from hydrocarbon releases. They also demonstrate that it is possible to ignite gas mixtures when the mean concentration is outside the flammable range. This information may be useful for risk assessments of offshore platforms involved in carbon sequestration or enhanced oil recovery, or in assessing the hazards posed by poorly-inerted hydrocarbon processing plant.  相似文献   

6.
为研究矿井火区中一氧化碳(CO)、氢气(H_2)、乙烯(C_2H_4)和乙烷(C_2H_6)等其他可燃气体对甲烷(CH_4)爆炸特性的影响,利用可视球形气体爆炸系统开展了多元可燃气体爆炸压力特性试验,观察并分析了峰值爆炸压力、最大爆炸压力上升速率及其相应时间。通过高速摄影系统拍摄了视窗范围内爆炸火焰传播图像,基于边缘检测方法确定了火焰前锋位置,继而得到最大火焰传播速度。分析了以氢气为主要成分的其他可燃气体对低浓度CH_4-空气混合物压力特性和火焰传播行为的影响。结果表明,多元可燃气体的存在增加了低浓度CH_4-空气混合物的爆炸危险性。随混合气体体积分数增加,低浓度CH_4-空气混合物的峰值爆炸压力、最大爆炸压力上升速率和最大火焰传播速度非线性增加;此外,到达峰值爆炸压力、最大爆炸压力上升速率的时间显著缩短。  相似文献   

7.
In this study, direct visualization of flow and flame from the ignition of methane/air and propane/air mixtures near the UFL at elevated pressures of up to 2.0 MPa were obtained with a test cell comprised of double-sided plexiglass and a containment vessel with double-sided glass. These visualizations allowed direct observations of ignition and flame near UFL at elevated pressures. Two distinctive features were observed in ignition at elevated pressures that differ from those under ambient pressure: the hot igniter formed a convective plume, rather than a convection cell; and the flame initiated from the top of the test cell and propagated downwards, rather than directly from the igniter. Both these distinctive features are characteristics of convection at high Rayleigh number accompanied with increased gas density at elevated pressures. Our study also shows that visualization of the formation of planar flame provides the most objective criterion for defining flammability limits at elevated pressures.  相似文献   

8.
The investigation of the ignition conditions of kerosene vapors in the air contained in an aircraft fuel tank contributes to the definition of onboard safety requirements. Civil and military kerosene are characterized by specification. The specification of civil aviation kerosene is based upon usage requirements and property limits. while military kerosene is primarily controlled by specific chemical composition. Characterization of the flammability properties is a first step for the establishment of aircraft safety conditions. Flash point, vapor pressure, gas chromatography analysis, and flammability properties of the kerosene used by the French Military aviation (F-34 and F-35 kerosene) are compared with the flammability properties of civil kerosene. The empirical law established by the Federal Aviation Administration (FAA) in 1998, expressing the ignition energy in terms of fuel, temperature, flash point and altitude is modified and expressed in terms of fuel temperature, flash point and pressure.  相似文献   

9.
Multi-component gas mixture explosion accidents occur and recur frequently, while the safety issues of multi-component gas mixture explosion for hydrogen–methane mixtures have rarely been addressed.Numerical simulation study on the confined and vented explosion characteristics of methane-hydrogen mixture in stoichiometric air was conducted both in the 5 L vessel and the 64 m3 chamber, involving different mixture compositions and initial pressures. Based on the results and analysis, it is shown that the addition of hydrogen has a negative effect on the explosion pressure of methane-hydrogen mixture at adiabatic condition. While in the vented explosion, the addition of the hydrogen has a significant positive effect on the explosion hazard degree. Additionally, the addition of hydrogen can induce a faster reactivity and enhance the sensitivity of the mixture by reducing the explosion time and increasing the rate of pressure rise both in confined and vented explosion. Both the maximum pressure and the maximum rate of pressure rise increase with initial pressure as a linear function, and also rise with the increase of hydrogen content in fuel. The increase in the maximum rate of pressure rise is slight when hydrogen ratio is lower than 0.5, however, it become significant when hydrogen ratio is higher than 0.5. The maximum rate of pressure rise for stoichiometric hydrogen-air is about 10 times the one of stoichiometric methane-air.Furthermore, the vent plays an important role to relief pressure, causing the decrease in explosion pressure and rate of pressure rise, while it can greatly enhance the flame speed, which will extend the hazard range and induce secondary fire damages. Additionally it appears that the addition of hydrogen has a significant increasing effect on the flame speed. The propagation of flame speed in confined explosion can be divided into two stages, increase stage and decrease stage, higher hydrogen content, higher slope. But in the vented explosion, the flame speed keeps increasing with the distance from the ignition point.  相似文献   

10.
An experimental study has been conducted to investigate the effects of hydrogen addition on the fundamental propagation characteristics of methane/air premixed flames at different equivalence ratios in a venting duct. The hydrogen fraction in the methane–hydrogen mixture was varied from 0 to 1 at equivalence ratios of 0.8, 1.0 and 1.2. The results indicate that the tendency towards flame instability increased with the fraction of hydrogen, and the premixed hydrogen/methane flame underwent a complex shape change with the increasing hydrogen fraction. The tulip flame only formed when the fraction of hydrogen ranged from 0 to 50% at an equivalence ratio of 0.8. It was also found that the flame front speed and the overpressure increased significantly with the hydrogen fraction. For all equivalence ratios, the stoichiometric flame (Φ = 1.0) has the shortest time of flame propagation and the maximum overpressure.  相似文献   

11.
Explosions of hybrid mixtures, i.e. mixtures containing more than one combustible phase, are not well understood. Most studies in this area involve mixtures of common dusts and gases, such as coal and methane, or polyethylene and ethylene. The present work focuses on explosions of carbon black particles, i.e. almost pure carbon with a very low content of volatiles: this makes the process of explosion less intense. However, addition of some quantities of combustible gases (here: propane) may sustain combustion processes. Another important issue is the fact that the carbon black particles are smaller in size than most dusts encountered in the process industry. The experiments were carried out in a 20-L explosion vessel and the analysis of the results focuses on the maximum explosion pressures and the maximum rates of pressure rise as a function of carbon black and propane concentrations. In addition, some samples of unburnt dust were collected and analysed with a scanning electron microscope and with thermo-gravimetric analysis.  相似文献   

12.
几种地板燃烧性能的实验研究   总被引:4,自引:0,他引:4  
马哲  舒中俊  薛刚  贾源 《火灾科学》2005,14(3):132-136
地板的燃烧性能对室内火灾的发展蔓延及火灾危害都有重要的影响,本文使用锥形量热仪对市场上常见几种地板(实木地板、竹制地板和复合地板)的燃烧性能进行试验研究。实验结果表明,地板的热释放速率具有两个峰,相同辐射功率下,竹地板和实木地板的比消光面积分别比复合地板高29.3%、42.5%,竹制地板点燃时间较小,复合地板火灾危险性要小于竹制地板和实木地板。  相似文献   

13.
Two types of flammability limits have been measured for various dusts in the Fike 1-m3 (1000-L) chamber and in the Pittsburgh Research Laboratory (PRL) 20-L chamber. The first limit is the minimum explosible concentration (MEC), which was measured at several ignition energies. In addition to the three dusts studied previously (bituminous coal, anthracite coal, and gilsonite), this work continues the effort by adding three additional dusts: RoRo93, lycopodium, and iron powder. These materials were chosen to extend the testing to non-coal materials as well as to a metallic dust. The new MEC data corroborate the previous observations that very strong ignitors can overdrive the ignition in the smaller 20-L chamber. Recommendations are given in regard to appropriate ignition energies to be used in the two chambers. The study also considered the other limiting component, oxygen. Limiting oxygen concentration (LOC) testing was performed in the same 20-L and 1-m3 vessels for gilsonite, bituminous coal, RoRo93, and aluminum dusts. The objective was to establish the protocol for testing at different volumes. A limited investigation was made into overdriving in the 20-L vessel. The LOC results tended to show slightly lower results for the smaller test volume. The results indicated that overdriving could occur and that ignition energies of 2.5 kJ in the 20-L vessel would yield comparable results to those in the 1-m3 vessel using 10.0 kJ. The studies also illustrate the importance of dust concentration on LOC determinations.  相似文献   

14.
Ionic liquids (ILs) are known as room temperature molten salts, which are considered green replacement to traditional organic solvents. The fire hazards of traditional organic solvents mainly depend on the combustibility of their vapors, thus ILs are generally regarded as nonflammable owing to their low volatility. However, recent studies show that ILs may combust due to the potential hazards of thermal decomposition, indicating the issue of fire and explosion of ILs are eager to be evaluated during the applications. In this study, the fire and explosion hazards of IL 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([C6mim][NTf2]) are explored in different aspects. The traditional definition of the flammability for the common organic solvent is not thoroughly applicable to [C6mim][NTf2] due to the low volatility. Furthermore, the common definition of reactivity for traditional organic solvents also fails to apply, because the decomposition reaction is indeed an endothermic reaction. However, the auto-ignition of some decomposition products will result in fire and explosion hazards for [C6mim][NTf2]. Therefore the application of such data in safety purposes should be very careful.  相似文献   

15.
Ionic liquid (IL) mixtures are promising because they can optimize the involved properties according to industrial needs. It has already been demonstrated that IL flammability is due mainly to IL decomposition generating flammable substances. Four different ILs, 1-Butylimidazolium tetrafluoroborate ([BIM][BF4]), 1-butylimidazolium nitrate ([BIM][NO3]), 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM][BF4]), and 1-butyl-3-methylimidazolium nitrate ([BMIM][NO3]), were selected as the parent salts to form the different imidazolium-based IL binary mixtures. These mixtures were tested via isothermal thermogravimetric analyzer (TGA) at different temperatures (120, 150, 180, 210, and 240 °C), then tested by the flash point analyzer after isothermal heating pretreatment at the above temperatures. Results show that the mixtures' flash point values decrease with the heating temperature increase. Vaporization of the IL mixtures’ decomposition products results in a higher concentration of flammable gases and a flash point decrease, which lead to the flammability hazard increasing. Moreover, results show that the flash points of the studied binary imidazolium IL mixtures are more similar to those of the more unstable IL in their parent ILs. Also, the flammability hazard of IL binary mixtures may obviously increase under the high temperature environment for a long time.  相似文献   

16.
A modelling strategy has been developed for consequence analysis of medium and large scale gaseous detonation. The model is based on the solution of Euler equations with one-step chemistry. The Van Leer flux limited method which is a total variation diminishing scheme is used for shock capturing. Preliminary calculations were firstly conducted for small domains with fine grids which resolve the wave, relatively coarse grids which have less than 10 grids across the wave and coarse grids in which the minimum grid size is larger than the wave thickness to ensure that the reaction scheme has been properly tuned to capture the correct detonation pressure, temperature and velocity in the resolutions used in the different cases. The model was firstly tested against a medium scale detonation test in a shock tube with U-bends. Reasonably good agreement is achieved on detonation pressure and mean shock wave velocities at different measuring segments of the tube. Following the validation, the detonation of a hypothetical planar propane-air cloud is simulated. The predictions uncovered some interesting features of such large scale detonation phenomena which are of significance in the safety context, especially for accidental investigations. The findings from the present analysis are in line with the forensic evidence on damages in some historic accidents and challenges previous analysis of a major accident in which forensic evidence suggested localised detonation but was considered as the consequence of fire storms by the investigation team.  相似文献   

17.
The explosion and deflagration-to-detonation transition (DDT) in epoxy propane (E.P.) vapor/air mixture clouds under weak ignition conditions has been studied in an experimental tube of diameter 199 mm and length 29.6 m. E.P. vapor clouds were formed by injecting liquid E.P. into the experimental tube and evaporating of the fine E.P. droplets. The dimension and the evaporating process of the E.P. droplet were measured and analyzed. The E.P. vapor/air mixture clouds were ignited by an electric spark with an ignition energy of 40 J. The characteristics and the stages of the DDT process in the E.P. vapor/air mixtures have been studied and analyzed. A self-sustained detonation wave formed, as was evident from the existence of a transverse wave and a cellular structure. Moreover, a retonation wave formed during the DDT process in the E.P. vapor/air mixture. The influence of the E.P. vapor concentration on the DDT process has been studied. The minimum E.P. vapor concentration for the occurrence of the DDT in the E.P. vapor/air mixture has been evaluated and the variation of DDT distance with E.P. vapor concentration has been analyzed.  相似文献   

18.
选用甲基乙烯基硅橡胶(MVMQ)和十六烷基三甲基溴化铵(C16BrN)改性的蒙脱土(OMMT)纳米复合材料为原料,以氢氧化镁/微胶囊化红磷(MH/MRP)为阻燃剂,以气相法白炭黑为补强剂,用熔融共混法制备了无卤阻燃MVMQ纳米复合材料。笔者采用XRD表征制备的MVMQ/OMMT纳米复合物的结构,用机械性能测试研究气相法白炭黑和OMMT对MVMQ的协效补强作用,通过极限氧指数、UL94 V垂直燃烧法、环境扫描电镜(ESEM)和热重分析(TG)等分析测试手段研究其燃烧性能和热性能,结合材料宏观燃烧性能的改变,推断OMMT和MH/MRP对MVMQ的阻燃作用机理。  相似文献   

19.
为实现烃类火灾事故的光谱辨识,对丙烷火焰燃烧初期过程中的光谱特性进行实验研究,利用拉曼光谱仪等设备采集、提取丙烷扩散火焰光谱数据。分析燃烧初期OH~*,C2~*,CH~*,H2O分子谱带范围及特征峰值分布特性,揭示谱带光谱特征强弱的主要原因,阐述沿火焰轴向与径向C2~*,CH~*以及H2O分子光谱峰值强度的分布特性。研究结果表明:丙烷火焰特征光谱主要分布在可见光与近红外波段,250~380 nm的近紫外波段光谱强度较弱。C2~*的509.4,512.8,810.5 nm特征谱带,CH~*的431.4 nm谱带以及H2O分子的586.2,652.2 nm处振动-转动谱带可作为丙烷火焰燃烧的关键特征光谱,为烃类火灾的早期识别与防控提供光谱实验依据。  相似文献   

20.
采用CFD软件Fluent对有无水幕作用情况下丙烷泄漏扩散过程进行了数值模拟,探讨了上喷锥形水幕对丙烷扩散的影响,得到了不同情况下丙烷体积分数场、速度场分布,并在此基础上讨论了锥形水幕稀释丙烷泄漏扩散的机理.结果表明:无水幕情况下气体扩散稳定无湍流;水幕开启初期会形成较强的上升气流,随后在水幕周围较大范围造成逆时针流场,当水幕成型后,逆时针流场开始偏转,最终形成复杂的湍流流场;一部分丙烷被上升气流带到水幕上方与空气混合,另一部分丙烷穿过水幕或在湍流扰动下绕到水幕后方与后方空气混合稀释后向出口处扩散;开启水幕后,地面处丙烷体积分数下降非常明显,高处丙烷体积分数略有增加.分析得出锥形水幕稀释丙烷气云扩散机理:上喷锥形水幕在水幕附近形成较强湍流,加快空气流通速率,吸卷更多的空气到水幕处,与水幕处泄漏气体混合,同时湍流加强了周围流场流通速率,防止气体积聚,从而达到稀释气体的目的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号