共查询到20条相似文献,搜索用时 15 毫秒
1.
Ernesto Salzano Francesco Cammarota Almerinda Di Benedetto Valeria Di Sarli 《Journal of Loss Prevention in the Process Industries》2012,25(3):443-447
The effects of enriching natural gas with hydrogen on local flame extinction, combustion instabilities and power output have been widely studied for both stationary and mobile systems. On the contrary, the issues of explosion safety for hydrogen–methane mixtures are still under investigation.In this work, experimental tests were performed in a 5 L closed cylindrical vessel for explosions of hydrogen–methane mixtures in stoichiometric air. Different compositions of hydrogen–methane were tested (from pure methane to pure hydrogen) at varying initial pressures (1, 3 and 6 bar).Results have allowed the quantification of the combined effects of both mixture composition (i.e., hydrogen content in the fuel) and initial pressure on maximum pressure, maximum rate of pressure rise and burning velocity. The measured burning velocities were also correlated by means of a Le Chatelier’s Rule-like formula. Good predictions have been obtained (at any initial pressure), except for mixtures with hydrogen molar content in the fuel higher than 50%. 相似文献
2.
With the terms “complex hybrid mixtures”, we mean mixtures made of two or more combustible dusts mixed with flammable gas or vapors in air (or another comburent).In this work, the flammability and explosion behavior of selected complex hybrid mixtures was studied. In particular, we investigated mixtures of nicotinic acid, lycopodium and methane. We performed explosion tests in the 20-L explosion vessel at different overall (nicotinic plus lycopodium) dust concentrations, nicotinic acid/lycopodium ratios, and methane concentrations.An exceptional behavior (in terms of unexpected values of rate of pressure rise and pressure) was found for the complex hybrid mixtures containing lycopodium and nicotinic acid in equal amounts. This mixture was found to be much more reactive than all the other dust mixtures, whatever the dust concentration and the methane content. 相似文献
3.
An experimental study of flame propagation, acceleration and transition to detonation in stoichiometric hydrogen–methane–air mixtures in 6 m long tube filled with obstacles located at different configurations was performed. The initial conditions of the hydrogen–methane–air mixtures were 1 atm and 293 K. Four different cases of obstacle blockage ratio (BR) 0.7, 0.6, 0.5 and 0.4 and three cases of obstacle spacing were used. The wave propagation was monitored by piezoelectric pressure transducers PCB. Pressure transducers were located at different positions along the channel to collect data concerning DDT and detonation development. Tested mixtures were ignited by a weak electric spark at one end of the tube. Detonation cell sizes were measured using smoked foil technique and analyzed with Matlab image processing toolbox. As a result of the experiments the deflagration and detonation regimes and velocities of flame propagation in the obstructed tube were determined. 相似文献
4.
Explosion characteristics of five alcohol–air (ethanol, 1-butanol, 1-pentanol, 2-pentanol and 3-pentanol) mixtures were experimentally conducted in an isochoric chamber over wide ranges of initial temperature and pressure. The effect of temperature and pressure on the different explosion behaviors among these alcohols with various structures were investigated. Results show that the peak explosion pressure is increased with the decrease of temperature and increase of pressure. Maximum rate of pressure rise is insensitive to the temperature variation while it significantly increases with the increase of initial pressure. Among the 1-, 2-, and 3-pentanol–air mixtures, 1-pentanol has the highest values in peak explosion pressure and maximum rate of pressure rise and 2-pentanol gives the lowest values at the initial pressure of 0.1 MPa. These differences tend to be decreased with the increase of initial pressure. Among the three primary alcohol–air (ethanol, 1-butanol and 1-pentanol) mixtures, a similar explosion behavior is presented at the lean mixture side because of the combined effect of adiabtic temperature and flame propagation speed. At the rich mixture side, 1-pentanol gives the highest values in peak explosion pressure and maximum rate of pressure rise and ethanol gives the lowest values. This phenomenon can be interpretated from the combining influence of heat release and heat loss, since the flame speeds of ethanol-, 1-butanol-, 1-pentanol–air mixtures are close at rich mixture side. 相似文献
5.
Xiaoping Wen Minggao Yu Zhichao Liu Guo Li Wentao Ji Maozhao Xie 《Journal of Loss Prevention in the Process Industries》2013,26(6):1335-1340
A vented chamber, with internal dimensions of 150 mm × 150 mm × 500 mm, is constructed in which the premixed methane–air deflagration flame, propagating away from the ignition source, interacts with obstacles along its path. Three obstacle configurations with different cross-wise positions are investigated. The cross-wise obstacle positions are found to have significant effects on deflagration characteristics, such as flame structure, flame front location, flame speed, and overpressure transients. The rate of flame acceleration, as the flame passes over the last obstacle, is the highest at the configuration with three centrally located obstacles, whereas the lowest is observed at the configuration with three obstacles mounted on one side of the chamber. Compared with the side configuration, the magnitude of overpressure generated increases by approximately 80% and 165% for the central and staggered configurations, respectively. Furthermore, flame propagation speeds and generated overpressures for both the central and staggered configurations are greater, which should to be avoided to reduce the risk associated with turbulent premixed deflagrations in practical processes. 相似文献
6.
Jiri Serafin Ales Bebcak Ales Bernatik Petr Lepik Miroslav Mynarz Martin Pitt 《Journal of Loss Prevention in the Process Industries》2013,26(1):209-214
A standard spherical apparatus for measuring explosion characteristics was modified to give increased and controlled turbulence within a dust–air mixture. This was intended to mimic the local effects which may occur during industrial dust explosions, particularly secondary ones which may develop in ducts or mine galleries where the initial explosion causes an increased air velocity and suspension of further quantities of dust.The results show that there may be a doubling of the maximum explosion pressure and of the rate of pressure rise during the explosion under more turbulent conditions. This is significant for modelling of dust explosions and suggests that explosion relief may be inadequate if this factor is not taken into consideration.The modified apparatus therefore gives a laboratory method for assessing the effect of turbulence in dust explosions. 相似文献
7.
Experiments were conducted in a 1 m3 vessel with a top vent to investigate the effect of methane concentration and ignition position on pressure buildup and flame behavior. Three pressure peaks (p1, p2, and Pext) and two types of pressure oscillations (Helmholtz and acoustic oscillations) were observed. The rupture of vent cover results in p1 that is insensitive to methane concentration and ignition position. Owing to the interaction between acoustic wave and the flame, p2 forms in the central and top ignition explosions when the methane–air mixture is near–stoichiometric. When the methane–air mixture is centrally ignited, p2 first increases and then decreases with an increase in the methane concentration. The external explosion-induced Pext is observed only in the bottom ignition explosions with an amplitude of several kilopascals. Under the current experimental conditions, flame–acoustic interaction leads to the most serious explosions in central ignition tests. Methane concentration and ignition position have little effect on the frequency of Helmholtz and acoustic oscillations; however, the Helmholtz oscillation lasts longer and first decreases and then increases as the methane concentration increases for top ignition cases. The ignition position significantly affects the Taylor instability of the flame front resulting from the Helmholtz oscillation. 相似文献
8.
The explosion characteristics of propane–diluent–air mixtures under various temperatures and pressures were investigated using a 20-L apparatus. The explosion limits of propane diluted with nitrogen or carbon dioxide were measured at high temperatures from 25 to 120 °C. The results showed that the upper explosion limit (UEL) increased, and the lower explosion limit (LEL) decreased with the rising temperature. The explosion limits of propane diluted with nitrogen or carbon dioxide were also measured at high pressures from 0.10 to 0.16 MPa. The results showed that the UEL increased, and the LEL almost remainedunchanged along with increased pressure. Under the same initial operating conditions, the concentration of nitrogen required to reach the minimum inerting concentration (MIC) point was higher than the concentration of carbon dioxide. Finally, the study investigated the limiting oxygen concentration (LOC) of propane under various initial temperatures, initial pressures, and inert gases. The LOC of propane decreased approximately linearly with increased temperature or pressure, and the LOC of propane dilution with carbon dioxide was greater than dilution with nitrogen from 25 to 120 °C or from 0.10 to 0.16 MPa, which indicated that the dilution effect of carbon dioxide was better than that of nitrogen. 相似文献
9.
Fabio Ferrero Ronald Meyer Martin Kluge Volkmar Schröder Tom Spoormaker 《Journal of Loss Prevention in the Process Industries》2013,26(4):759-765
The Ignition Temperature (IT) of stoichiometric tetrafluoroethylene–air mixtures on hot walls was determined in a 3-dm³-reactor. Tests at elevated pressure conditions were performed, namely at 5, 15 and 25 bar(a), showing a decrease of the IT with the initial pressure. Furthermore, the measured ignition temperatures of stoichiometric tetrafluoroethylene–air mixtures were lower than the ignition temperatures required for the decomposition pure tetrafluoroethylene (Minimum Ignition Temperature of Decomposition, MITD) reported in previous works.Equations from the Semenov thermal explosion theory on spontaneous ignition were used to identify approximate combustion kinetics of tetrafluoroethylene from the experimental results. The determined kinetics was used for the prediction of the IT of stoichiometric tetrafluoroethylene-air by simplified calculation methods. A very good agreement with the experimental results was observed. 相似文献
10.
The knowledge of the vapor–liquid two-phase diethyl ether (DEE)/air mixtures (mist) on the explosion parameters was an important basis of accident prevention. Two sets of vapor–liquid two-phase DEE/air mixtures of various concentrations were obtained with Sauter mean diameters of 12.89 and 22.90 μm. Experiments were conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at an ignition energy of 40.32 J and at an initial room temperature and pressure of 21 °C and 0.10 MPa, respectively. The effects of the concentration and particle size of DEE on the explosion pressure, the explosion temperature, and the lower and upper flammability limits were analyzed. Finally, a series of experiments was conducted on vapor–liquid two-phase DEE/air mixtures of various concentrations at various ignition energies. The minimum ignition energies were determined, and the results were discussed. The results were also compared against our previous work on the explosion characteristics of vapor–liquid two-phase n-hexane/air mixtures. 相似文献
11.
In this paper, large eddy simulation coupled with a turbulent flame speed cloure (TFC) subgrid combustion model has been utilized to simulate premixed methane–air deflagration in a semi-confined chamber with three obstacles mounted inside.The computational results are in good agreement with published experimental data, including flame structures, pressure time history and flame speed. The attention is focused on the flame flow field interaction, pressure dynamics, as well as the mechanism of obstacle-induced deflagration. It is found that there is a positive feedback mechanism established between the flame propagation and the flow field. The pressure time history can be divided into four stages and the pseudo-combustion concept is proposed to explain the pressure oscillation phenomenon. The obstacle-induction mechanism includes direct effect and indirect effect, but do not always occur at the same time. 相似文献
12.
To investigate the effects of cylinders placed parallel to the venting direction on the structural response of the vessel walls to an explosion, 25 batches of vented explosion tests were conducted in a 1 m3 rectangular vessel. Two types of structural response with different amplitudes and frequency distributions were observed and evaluated by comparing the vibration data with both the pressure data and high-speed videos. A low-amplitude structural response of approximately 150–250 m/s2, which increased slightly as VBR increased, was triggered by a combination of the initial flame propagation, external explosion, Helmholtz oscillations, and the Taylor instability. A high-amplitude structural response of approximately 9500 m/s2 was also observed, which decreased sharply as VBR increased. Additionally, the high amplitude response was never observed when more than two cylinders were present in the vessel. The high amplitude response was triggered due to the coupling between the acoustic wave, the flame, and the resonance of the vessel. The presence of obstacles did not increase the severity of the structural responses under the current experimental conditions. To the contrary, the presence of obstacles in the container attenuated or even inhibited the high-amplitude vibration of the container caused by the explosion. 相似文献
13.
《Process Safety and Environmental Protection》2014,92(3):193-198
High temperature flame fronts generated in methane–air explosions are one of the major hazards in underground coal mines. However, the distribution laws of the flame region in explosions of this type and the factors influencing such explosions have rarely been studied. In this work, the commercial software package AutoReaGas, a finite-volume computational code for fluid dynamics suitable for gas explosion and blast problems, was used to carry out numerical simulations of a series of methane–air explosion processes for various initial premixed methane–air regions and cross-sectional areas in full-scale coal tunnels. Based on the simulated results and related experiments, the mechanism of flame propagation beyond the initial premixed methane–air region and the main factors influencing the flame region were analyzed. The precursor shock wave and turbulence disturb the initial unburned methane–air mixture and the pure air in front of the flame. The pure air and unburned mixture subsequently move backward along the axial direction and mix partially. The enlargement of the region containing methane induces that the range of the methane–air flame greatly exceeds the initial premixed methane–air region. The flame speed beyond the initial region is nonzero but appreciably lower than that in the original premixed methane–air region. The length of the initial premixed methane–air region has substantial influence on the size of the flame region, with the latter increasing exponentially as the former increases. For realistic coal tunnels, the cross-sectional tunnel area is not an important influencing factor in the flame region. These conclusions provide a theoretical framework in which to analyze accident causes and effectively mitigate loss arising from the repetition of similar accidents. 相似文献
14.
Xiaoping Wen Minggao Yu Zhichao Liu Wence Sun 《Journal of Loss Prevention in the Process Industries》2012,25(4):730-738
In this paper, simulations of methane–air deflagration inside a semi-confined chamber with three solid obstacles have been carried out with large eddy simulation (LES) technique. Three sub-grid scale (SGS) combustion models, including power-law flame wrinkling model by Charlette et al., turbulent flame speed closure (TFC) model, and eddy dissipation model (EDM), are applied. All numerical results have been compared to literature experimental data. It is found that the power-law flame wrinkling model by Charlette et al. is able to better predict the generated pressure and other flame features, such as flame structure, position, speed and acceleration against measured data. Based on the power-law flame wrinkling model, the flame–vortex interaction during the deflagration progress is also investigated. The results obtained have demonstrated that higher turbulence levels, induced by obstacles, wrinkle the flame and then increase its surface area, the burning rates and the flame speed. 相似文献
15.
《Journal of Loss Prevention in the Process Industries》2000,13(3-5):397-409
A set of 34 experiments on vented hydrocarbon–air and hydrogen–air deflagrations in unobstructed enclosures of volume up to 4000 m3 was processed with use of the advanced lumped parameter approach. Reasonable compliance between calculated pressure–time curves and experimental pressure traces is demonstrated for different explosion conditions, including high, moderate, low and extremely low reduced overpressures in enclosures of different shape (Lmax:Lmin up to 6:1) with different type and position of the ignition source relative to the vent, for near-stoichiometric air mixtures of acetone, methane, natural gas and propane, as well as for lean and stoichiometric hydrogen–air mixtures. New data were obtained on flame stretch for vented deflagrations.The fundamental Le Chatelier–Brown principle analog for vented deflagrations has been considered in detail and its universality has been confirmed. The importance of this principle for explosion safety engineering has been emphasized and proved by examples.A correlation for prediction of the deflagration–outflow interaction number, χ/μ, on enclosure scale, Bradley number and vent release pressure is suggested for unobstructed enclosures and a wide range of explosion conditions. Fractal theory has been employed to verify the universality of the dependence revealed of the deflagration–outflow interaction number on enclosure scale.In spite of differences between the thermodynamic and kinetic parameters of hydrocarbon–air and hydrogen–air systems, they both obey the same general regularities for vented deflagrations, including the Le Chatelier–Brown principle analog and the correlation for deflagration–outflow interaction number. 相似文献
16.
J. Grune K. Sempert M. Kuznetsov T. Jordan 《Journal of Loss Prevention in the Process Industries》2013,26(6):1442-1451
This paper presents results of an experimental investigation on fast flame propagation and the deflagration-to-detonation transition (DDT) and following detonation propagation in a semi-confined flat layer filled with stratified hydrogen–air mixtures. The experiments were performed in a transparent, rectangular channel open from below. The combustion channel has a width of 0.3 m and a length of 2.5 m. The effective layer thickness in the channel was varied by using different linear hydrogen concentration gradients. The method to create quasi-linear hydrogen concentration gradients that differ in the range and slope is also presented. The ignited mixtures were accelerated quickly to sonic flame speed in the first obstructed part of the channel. The interaction of the fast flame propagation with different obstacle set-ups was studied in the second part of the channel. The experimental results show an initiation of DDT by one additional metal grid in the obstructed semi-confined flat layer. Detonation propagation and failed detonation propagation were observed in obstructed and unobstructed parts of the channel. 相似文献
17.
The main risk factors from methane explosion are the associated shock waves, flames, and harmful gases. Inert gases and inhibiting powders are commonly used to prevent and mitigate the damage caused by an explosion. In this study, three inhibitors (inert gas with 8.0 vol% CO2, 0.25 g/L Mg(OH)2 particles, and 0.25 g/L NH4H2PO4 particles) were prepared. Their inhibiting effects on methane explosions with various concentrations of methane were tested in a nearly spherical 20-L explosion vessel. Both single-component inhibitors and gas–particle mixtures can substantially suppress methane explosions with varying degrees of success. However, various inhibitors exhibited distinct reaction mechanisms for methane gas, which indicated that their inhibiting effects for methane explosion varied. To alleviate amplitude, the ranking of single-component inhibitors for both explosion pressure (Pex) and the rate of explosion pressure rise [(dP/dt)ex] was as follows: CO2, NH4H2PO4 particles, and Mg(OH)2 particles. In order of decreasing amplitude, the ranking of gas‒particle mixtures for both Pex and (dP/dt)ex was as follows: CO2–NH4H2PO4 mixture, CO2‒Mg(OH)2 mixture, and pure CO2. Overall, the optimal suppression effect was observed in the system with the CO2–NH4H2PO4 mixture, which exhibited an eminent synergistic effect on methane explosions. The amplitudes of Pex with methane concentrations of 7.0, 9.5, and 11.0 vol% decreased by 37.1%, 42.5%, and 98.6%, respectively, when using the CO2–NH4H2PO4 mixture. In addition, an antagonistic effect was observed with CO2‒Mg(OH)2 mixtures because MgO, which was generated by the thermal decomposition of Mg(OH)2, can chemically react with water vapor and CO2 to produce basic magnesium carbonate (xMgCO3·yMg(OH)2·zH2O), thereby reducing the CO2 concentration in a reaction system. This research revealed the inhibiting effects of gas‒particle mixtures (including CO2, Mg(OH)2 particles, and NH4H2PO4 particles) on methane explosions and provided primary experimental data. 相似文献
18.
An experimental system including pressure transducer, electric spark ignition device, data acquisition and control unit was set up to investigate methane–air explosions in a horizontal pipe closed at both ends with or without the presence of obstacles and deposited coal dust. The experimental results show that explosion characteristics depended on the methane content, on the layout of obstacles, and on the deposited coal dust. Pressure fluctuation with a frequency of 150 Hz appeared in its crest when the methane content was close to the stoichiometric ratio (9.5% methane percentage by volume). The pressure rise rate increased locally when a single obstacle was mounted in the pipe, but it had little effect on the pressure peak. Repeated obstacles mounted in the pipe caused the pressure to rise sharply, and the mean maximum explosion overpressure increased with the increase of the obstacle’s number. The amplitude of pressure fluctuation was reduced when deposited coal dust was paved in the bottom of the pipe. However, when repeated obstacles were arranged inside, the maximum overpressures were higher with coal dust deposited than pure gas explosions. 相似文献
19.
The effect of internal shape of obstacles on the deflagration of premixed methane–air (concentration of 10%) was experimentally investigated in a semi-confined steel pipeline (with a square cross section size of 80 mm × 80 mm and 4 m long). The obstacles used in this study were circular, square, triangular and gear-shaped (4-teeth, 6-teeth and 8-teeth) orifice plates with a blockage ratio of 75%, and the perimeter of the orifice was regarded as a criterion for determining the sharpness of the orifice plate. The overpressure history, flame intensity histories, flame front propagation speed, maximum flame intensity and peak explosion overpressure were analyzed. The explosion in the pipeline can be divided into two stages: initial explosion and secondary explosion. The secondary explosion is caused by recoiled flame. The perimeter is positively related to the intensity of the recoiled flame and the ability of orifice plate to suppress the explosion propagation. In addition, the increase in the perimeter will cause the acceleration of the flame passing through the orifice plate, while after the perimeter of the orifice reaches a certain value, the effect of the increase in perimeter on explosion excitation becomes no obvious. The overpressure (static pressure) downstream of the orifice plate is the result of the combined effect of explosion intensity and turbulence. The increase in perimeter leads to the increase in turbulence downstream of the orifice plate which in turn causes more explosion pressure to be converted into dynamic pressure. 相似文献
20.
This paper presents data on the limiting (minimum) concentrations of hydrogen in oxygen, in the presence of added helium, at elevated temperature and pressure related to the practical operational case. A 5 L explosion vessel, an ignition sub-system and a transient pressure measurement sub-system were used. Through a series of experiments carried out using this system, the limiting concentrations of hydrogen in oxygen and helium at different initial pressures and temperatures for the practical operational case were studied, and the influence of ignition energy and initial temperature on the limiting concentration of hydrogen in oxygen and helium was analyzed and discussed. The variation of ignition energy within the studied range is found to have a significant effect on the limiting concentration of hydrogen in oxygen and helium at lower initial temperature. However, when the ignition energy is higher than 32 mJ, the limiting hydrogen concentration remains almost changeless as the initial temperature increases from 21 °C to 90 °C. The limiting explosible concentration of hydrogen–oxygen–helium mixture decreases as the ignition energy increases when the initial temperature is lower. When the initial temperature is higher, the ignition energy has little effect on the limiting hydrogen concentration of hydrogen–oxygen–helium mixtures. When the initial temperature reaches 90 °C, the limiting hydrogen concentration remains almost changeless with an increase in ignition energy. The limiting explosible concentration of hydrogen in the mixtures, at the initial temperature of 21 °C and the ignition energy of 0.5 mJ, is 8.5% and that of oxygen is 11.25%. 相似文献