首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The recovery of waste substances is important not only for the prevention of environmental issues, but also for the rational utilization of natural resources. Hydrolysis reaction in sub-critical water is a promising method for the treatment of organic wastes and has been attracting worldwide attention. In this paper, sub-critical water hydrolysis was employed as a method for producing amino acids, reducing sugars, bio-oil and gas fuels from biomass wastes. The current statuses of these useful chemicals production from biomass wastes by hydrolysis in sub-critical water were reviewed. The review indicates that sub-critical water hydrolysis can be an efficient process for recovering useful chemicals from biomass wastes. This method is renewable, sustainable, efficient, and safe for the environment.  相似文献   

2.
Zinc- and lead-containing wastes are often mixed with construction and demolition wastes in many factories, generating abundant of heavy metal-enriched hazardous waste. In the present study, a novel integrated process of air classification, alkaline leaching, and water washing dechlorination was proposed for the efficient recycling of Zinc (Zn) resources. The first air classification process was realized via venturi tube, wherein the content of Zn could increase by 20 wt.%. After that, the product underwent an alkaline leaching process. Results showed that Zn recovery rate increased with fine particle sizes, and a 65% recovery rate was obtained under the following conditions of 5 mol/L NaOH, liquid/solid 10:1, and leaching time 1 h. Finally, water washing associated with microwave and ultrasonic treatments could remove over 85% of Cl and other water-soluble salts. All the results indicated that the integrated method had an excellent recovery rate for Zn resources from construction and demolition wastes.  相似文献   

3.
Studies of the kinetics of sulfur dioxide (SO2)- and oxygen (O2)-induced degradation of aqueous monoethanolamine (MEA) during the absorption of carbon dioxide (CO2) from flue gases derived from coal- or natural gas-fired power plants were conducted as a function of temperature and the liquid phase concentrations of MEA, O2, SO2 and CO2. The kinetic data were based on the initial rate which shows the propensity for amine degradation and obtained under a range of conditions typical of the CO2 absorption process (3–7 kmol/m3 MEA, 6% O2, 0–196 ppm SO2, 0–0.55 CO2 loading, and 328–393 K temperature). The results showed that an increase in temperature and the concentrations of MEA, O2 and SO2 resulted in a higher MEA degradation rate. An increase in CO2 concentration gave the opposite effect. A semi-empirical model based on the initial rate, ?rMEA = {6.74 × 109 e?(29,403/RT)[MEA]0.02([O]2.91 + [SO2]3.52)}/{1 + 1.18[CO2]0.18} was developed to fit the experimental data. With the higher order of reaction, SO2 has a higher propensity to cause MEA to degrade than O2. Unlike previous models, this model shows an improvement in that any of the parameters (i.e. O2, SO2, and CO2) can be removed without affecting the usability of the model.  相似文献   

4.
Researches on the removal of dicofol catalyzed by immobilized cellulase were conducted. Factors, such as acidity, temperature, enzyme activity, and initial concentration of dicofol, which could influence the removal were studied. The optimal pH for dicofol removal by immobilized cellulase was approximately 4–7, broader than that for free enzymes. The removal efficiencies for immobilized and free cellulase both decreased with increasing initial concentration of dicofol. The Km for immobilized cellulase was slightly lower than that of free cellulase, suggesting that substrate affinity may be enhanced by immobilization. The optimum temperatures for immobilized and free cellulase were 45 °C and 50 °C. The removal reaction for immobilized cellulase was found to be a first-order reaction. The activation energy was 64.3 kJ mol−1. The continuous oxidation of dicofol carried out in the static system of immobilized cellulase showed that the removal efficiency of immobilized cellulase remained after six cycles of operation. Thus, the catalytic efficiency of cellulase was improved greatly. As evidenced by infrared and gas chromatography–mass spectrometry data, the mechanism of reaction might involve an attack by the OH free radical of cellulase at a weak location of the dicofol molecule, resulting in the removal of three chlorine atoms from dicofol, thus oxygenizing dicofol and producing 4,4′-dichloro-dibenzophenone.  相似文献   

5.
In this study, the optimum conditions of dissolution of calcinated bone in HCl solutions with different concentrations are investigated. Recovery of phosphate from calcinated bone by dissolution with hydrochloric acid solutions was investigated in a batch reactor, it was observed that a 32% hydrochloric acid solution can dissolve the calcinated bone effectively. Using the Taguchi fractional design method, it was found that the optimum process conditions, at which 67.2% P2O5 dissolution was reached, were as follows: Reaction temperature: 318 K, solid-to-liquid ratio: 1/5 (g ml−1), acid concentrations:32 (% w/v), stirring speed:400 min−1 and reaction time: 60 min.  相似文献   

6.
In some high-fertility, high-stocking-density grazing systems, nitrate (NO(3)) leaching can be great, and ground water NO(3)-N concentrations can exceed maximum contaminant levels. To reduce high N leaching losses and concentrations, alternative management practices need to be used. At the North Appalachian Experimental Watershed near Coshocton, OH, two management practices were studied with regard to reducing NO(3)-N concentrations in ground water. This was following a fertilized, rotational grazing management practice from which ground water NO(3)-N concentrations exceeded maximum contaminant levels. Using four small watersheds (each approximately 1 ha), rotational grazing of a grass forage without N fertilizer being applied and unfertilized grass forage removed as hay were used as alternative management practices to the previous fertilized pastures. Ground water was sampled at spring developments, which drained the watershed areas, over a 7-yr period. Peak ground water NO(3)-N concentrations before the 7-yr study period ranged from 13 to 25.5 mg L(-1). Ground water NO(3)-N concentrations progressively decreased under each watershed and both management practices. Following five years of the alternative management practices, ground water NO(3)-N concentrations ranged from 2.1 to 3.9 mg L(-1). Both grazing and haying, without N fertilizer being applied to the forage, were similarly effective in reducing the NO(3)-N levels in ground water. This research shows two management practices that can be effective in reducing high NO(3)-N concentrations resulting from high-fertility, high-stocking-density grazing systems, including an option to continue grazing.  相似文献   

7.
Reclamation of wastes contaminated by copper,lead, and zinc   总被引:18,自引:0,他引:18  
Waste materials containing toxic levels of copper, lead, and zinc, such as mine and smelter wastes, present difficult conditions for the establishment of vegetation. This article reviews the many attempts which have been made to reclaim these wastes. Inert wastes from mining and quarrying operations, such as slate quarry waste and certain colliery shales, seem to be good materials for reclaiming wastes contaminated by copper, lead, and zinc. Organic wastes, such as sewage sludge and domestic refuse, may provide only a temporary visual improvement and stabilization of the toxic materials.Nontolerant plant materials may often be planted directly on modern waste materials, which are less toxic than they were in the past. However, tolerant plant materials are needed for revegetating waste materials produced by early and more primitive extraction methods.  相似文献   

8.
The tradeoffs between the regulation of soil erosion, provision of fresh water, and climate regulation associated with new Pinus radiata forests in New Zealand are explored using national models. These three ecosystem services for which there is strong demand are monetised as commodities (avoided soil erosion is NZ $1 per tonne; water is NZ $1 per cubic metre; and sequestered carbon is assumed to be NZ?$73 per tonne). This permits their summation on a spatial basis to produce a national map of the net benefit of these ecosystem services. Net benefit is spatially variable depending primarily on the relative mix of forest growth rates and demand for irrigation water. New P.?radiata forests (once mature) generally reduce mass-movement erosion by an order of magnitude. This provides significant benefits for erosion control where there are high natural rates of erosion. Benefits are especially large in catchments where high sedimentation is increasing flood risk and degrading aquatic ecosystems. The generally high growth rates of P.?radiata in New Zealand (8.5 tonnesCha(-1)yr(-1) on average for existing forest) add significant environmental benefits of carbon sinks to climate regulation. However, the reduction of water yield associated with new forests (between 30% and 50%) can neutralise these benefits in catchments where there is demand for irrigation water, such as the eastern foothills of the Southern Alps and the tussock grasslands in the South Island.  相似文献   

9.
Five types of commercially available activated carbons (ACs) were coated with TiO2 nanoparticles prepared using a sol–gel method. Color and trace organics remaining in the actual treated effluent were adsorbed by TiO2 coated ACs. The absorbed organic compounds were then decomposed using a photocatalytic process, and the ACs were regenerated for reuse. The efficiency of the process was assessed by the characterization of true color and A254 (the organics absorption at the wavelength of 254 nm) at the beginning and the end of the experiment. The effects of UV light source, UV irradiation time, hydrogen peroxide and ultrasound on the efficiency of photocatalytic regeneration were also investigated. Significant differences in the efficiency were observed between uncoated ACs and TiO2 coated samples. Among the 5 types of ACs tested, AC-3, AC-4 and their coated ones achieved better efficiency in color and A254 removal, with around 90% or more color and A254 being removed within 1 h of treatment. The data obtained in this study also demonstrated that the photocatalytic process was effective for decomposing the adsorbed compounds and regenerating the spent TiO2/AC-3. Finally, it was found that this regeneration process could be greatly enhanced with the assistance of H2O2 and ultrasound by reducing the required regeneration time.  相似文献   

10.
A column of silica gel was employed to contact water with flue gas (CO2/N2) mixture to assess if CO2 can be separated by hydrate crystallization. Three different silica gels were used. One with a pore size of 30 nm (particle size 40–75 μm) and two with a pore size of 100 nm and particle sizes of 40–75 and 75–200 μm respectively. The observed trends indicate that larger pores and particle size increase the gas consumption, CO2 recovery, separation factor and water conversion to hydrate. Thus, the gel (gel #3) with the larger particle size and larger pore size was chosen to carry out experiments with concentrated CO2 mixtures and for experiments in the presence of tetrahydrofuran (THF), which itself is a hydrate forming substance. Addition of THF reduces the operating pressure in the crystallizer but it also reduces the gas uptake. Gel #3 was also used in experiments with a fuel gas (CO2/H2) mixture in order to recover CO2 and H2. It was found that the gel column performs as well as a stirred reactor in separating the gas components from both flue gas and fuel gas mixtures. However, the crystallization rate and hydrate yield are considerably enhanced in the former. Finally the need for stirring is eliminated with the gel column which is enormously beneficial economically.  相似文献   

11.
ABSTRACT

The quality of microalgal biofuel depends on the fatty acid (FA) distribution. A high ratio of saturated fatty acids (SFAs) favors better biofuel characteristics. Palmitic acid (C16:0) and stearic acid (C18:0) are essential FAs for required biodiesel quality. In this study, combined effects of growth medium concentrations of NaCl, glucose and glycerol on cell composition and FA profile of the Chlorella vulgaris SAG 211–12 were investigated. A central composite design (CCD) based design of experiments (DoE) was used for experimental setup. According to experimental results, the maximum mass fraction for palmitic acid (C16:0), 40.67% of total fatty acids, was obtained in the medium supplemented with 0.9% (w/v) NaCl, 0.3% (w/v) glucose, and 0.3% (w/v) glycerol, whereas stearic acid (C18:0) percentage reached the highest value of 22.16% of total fatty acids in the presence of 2.5% NaCl, 0.6% glucose, and 0.6% glycerol. According to the same set of designed experiments, best starch content was found as 22.08% of dry cell weight in a medium containing 2.0% NaCl, 0.3% glucose, and 0.3% glycerol. C16:0 mass fraction as a function of three medium ingredient concentrations was modeled using a Kriging model. Optimum concentrations of NaCl, glucose and glycerol to reach maximum C16:0 fraction were predicted as 0.5, 1, and 1%, respectively.  相似文献   

12.
Adsorption of sulfapyridine, tetracycline, and tylosin to a commercial microporous activated carbon (AC) and its potassium hydroxide (KOH)-, CO-, and steam-treated counterparts (prepared by heating at 850°C) was studied to explore efficient adsorbents for the removal of selected pharmaceuticals from water. Phenol and nitrobenzene were included as additional adsorbates, and nonporous graphite was included as a model adsorbent. The activation treatments markedly increased the specific surface area and enlarged the pore sizes of the mesopores of AC (with the strongest effects shown on the KOH-treated AC). Adsorption of large-size tetracycline and tylosin was greatly enhanced, especially for the KOH-treated AC (more than one order of magnitude), probably due to the alleviated size-exclusion effect. However, the treatments had little effect on adsorption of low-size phenol and nitrobenzene due to the predominance of micropore-filling effect in adsorption and the nearly unaffected content of small micropores causative to such effect. These hypothesized mechanisms on pore-size dependent adsorption were further tested by comparing surface area-normalized adsorption data and adsorbent pore size distributions with and without the presence of adsorbed antibiotics. The findings indicate that efficient adsorption of bulky pharmaceuticals to AC can be achieved by enlarging the adsorbent pore size through suitable activation treatments.  相似文献   

13.
Alternative N fertilizers that produce low greenhouse gas (GHG) emissions from soil are needed to reduce the impacts of agricultural practices on global warming potential (GWP). We quantified and compared growing season fluxes of NO, CH, and CO resulting from applications of different N fertilizer sources, urea (U), urea-ammonium nitrate (UAN), ammonium nitrate (NHNO), poultry litter, and commercially available, enhanced-efficiency N fertilizers as follows: polymer-coated urea (ESN), SuperU, UAN + AgrotainPlus, and poultry litter + AgrotainPlus in a no-till corn ( L.) production system. Greenhouse gas fluxes were measured during two growing seasons using static, vented chambers. The ESN delayed the NO flux peak by 3 to 4 wk compared with other N sources. No significant differences were observed in NO emissions among the enhanced-efficiency and traditional inorganic N sources, except for ESN in 2009. Cumulative growing season NO emission from poultry litter was significantly greater than from inorganic N sources. The NO loss (2-yr average) as a percentage of N applied ranged from 0.69% for SuperU to 4.5% for poultry litter. The CH-C and CO-C emissions were impacted by environmental factors, such as temperature and moisture, more than the N source. There was no significant difference in corn yield among all N sources in both years. Site specifics and climate conditions may be responsible for the differences among the results of this study and some of the previously published studies. Our results demonstrate that N fertilizer source and climate conditions need consideration when selecting N sources to reduce GHG emissions.  相似文献   

14.
This research utilizes real operating data from a tire plant operating in Central Taiwan to investigate the carbon footprint emissions (CO2e) involved in producing the electric bicycle. The simulation results are based on the PAS 2050 standard using the SimaPro 7.3 software tool. Our results show the total carbon footprint emissions of 1.2-kg tire for the electric bicycle weighing 4.53-kg CO2e, composed of 2.63-kg CO2e from raw tire materials stage, 1.295-kg CO2e from tire manufacturing stage, and 0.605-kg CO2e from tire transport stage. An international certified organization, British Standard Institute (BSI), verified the accuracy of our results as 98.7%. We found that carbon emissions at the raw materials stage were higher than that for the other two stages – manufacturing and transportation. Carbon black was determined as the maximum source of carbon emissions at the raw material stage. To reduce the tire plant carbon emissions, this paper recommends using graphene to replace carbon black. Graphene has been reported by many researches to improve the properties of rubber products. From our simulation results, the carbon footprint emissions of 4.56-kg CO2e of the origin tire plant uses 0.456-kg carbon black to produce 1.2-kg electric bicycle tires. This can be reduced to 4.29 (5.92%), 4.03 (11.62%), 3.75 (11.76%), and 3.49-kg CO2e (23.46%) by using graphene to replace carbon black 25, 50, 75, and 100 wt% respectively. If we focus only on 0.456-kg carbon black producing 1.08-kg CO2e, the reduced carbon footprint will be 0.812 (24.81%), 0.547 (49.35%), 0.28 (74.07%), and 0.0128-kg CO2e (98.81%) by using graphene to replace carbon black 25, 50, 75, and 100 wt% respectively. From our analysis, graphene replacing carbon black can reduce carbon footprint. This has not been published previously and provides a direction for the tire plant to save carbon emissions.  相似文献   

15.
Concentrated animal feeding operations emit trace gases such as ammonia (NH?), methane (CH?), carbon dioxide (CO?), and nitrous oxide (N?O). The implementation of air quality regulations in livestock-producing states increases the need for accurate on-farm determination of emission rates. The objective of this study was to determine the emission rates of NH?, CH?, CO?, and N?O from three source areas (open lots, wastewater pond, compost) on a commercial dairy located in southern Idaho. Gas concentrations and wind statistics were measured each month and used with an inverse dispersion model to calculate emission rates. Average emissions per cow per day from the open lots were 0.13 kg NH?, 0.49 kg CH?, 28.1 kg CO?, and 0.01 kg N?O. Average emissions from the wastewater pond (g m(-2) d(-1)) were 2.0 g NH?, 103 g CH?, 637 g CO?, and 0.49 g N?O. Average emissions from the compost facility (g m(-2) d(-1)) were 1.6 g NH?, 13.5 g CH?, 516 g CO?, and 0.90 g N?O. The combined emissions of NH?, CH?, CO?, and N?O from the lots, wastewater pond and compost averaged 0.15, 1.4, 30.0, and 0.02 kg cow(-1) d(-1), respectively. The open lot areas generated the greatest emissions of NH?, CO?, and N?O, contributing 78, 80, and 57%, respectively, to total farm emissions. Methane emissions were greatest from the lots in the spring (74% of total), after which the wastewater pond became the largest source of emissions (55% of total) for the remainder of the year. Data from this study can be used to develop trace gas emissions factors from open-lot dairies in southern Idaho and potentially other open-lot production systems in similar climatic regions.  相似文献   

16.
Soil chemical constituents influence soil structure and erosion potential. We investigated manure and inorganic fertilizer applications on soil chemistry (carbon [C] quality and exchangeable cations), aggregation, and phosphorus (P) loss in overland flow. Surface samples (0-5 cm) of a Hagerstown (fine, mixed, semiactive, mesic Typic Hapludalf) soil, to which either dairy or poultry manure or triple superphosphate had been applied (0-200 kg P ha(-1) yr(-1) for 5 yr), were packed in boxes (1 m long, 0.15 m wide, and 0.10 m deep) to field bulk density (1.2 g cm(-3)). Rainfall was applied (65 mm h(-1)), overland flow collected, and sediment and P loss determined. All amendments increased Mehlich 3-extractable P (19-177 mg kg(-1)) and exchangeable Ca (4.2-11.5 cmol kg(-1)) compared with untreated soil. For all treatments, sediment transport was inversely related to the degree of soil aggregation (determined as ratio of dispersed and undispersed clay; r = 0.51), exchangeable Ca (r = 0.59), and hydrolyzable carbohydrate (r = 0.62). The loss of particulate P and total P in overland flow from soil treated with up to 50 kg P ha(-1) dairy manure (9.9 mg particulate phosphorus [PPI, 15.1 mg total phosphorus [TP]) was lower than untreated soil (13.3 mg PP, 18.1 mg TP), due to increased aggregation and decreased surface soil slaking attributed to added C in manure. Manure application at low rates (<50 kg P ha(-1)) imparts physical benefits to surface soil, which decrease P loss potential. However, at greater application rates, P transport is appreciably greater (26.9 mg PP, 29.5 mg TP) than from untreated soil (13.3 mg PP, 18.1 mg TP).  相似文献   

17.
Concerns over increased phosphorus (P) application with nitrogen (N)-based compost application have shifted the trend to P-based composed application, but focusing on one or two nutritional elements does not serve the goals of sustainable agriculture. The need to understand the nutrient release and uptake from different composts has been further aggravated by the use of saline irrigation water in the recent scenario of fresh water shortage. Therefore, we evaluated the leachability and phytoavailability of P, N, and K from a sandy loam soil amended with animal, poultry, and sludge composts when applied on a total P-equivalent basis (200 kg ha(-1)) under Cl(-) (NaCl)- and SO4(2-) (Na2SO4)-dominated irrigation water. Our results showed that the concentration of dissolved reactive P (DRP) was higher in leachates under SO(4)(2-) than Cl(-) treatments. Compost amendments differed for DRP leaching in the following pattern: sludge > animal > poultry > control. Maize (Zea mays L.) growth and P uptake were severely suppressed under Cl(-) irrigation compared with SO4(2-) and non-saline treatments. All composts were applied on a total P-equivalent basis, but maximum plant (shoot + root) P uptake was observed under sludge compost amendment (73.4 mg DW(-1)), followed by poultry (39.3 mg DW(-1)), animal (15.0 mg DW(-1)), and control (1.2 mg DW(-1)) treatment. Results of this study reveal that irrigation water dominated by SO4(2-) has greater ability to replace/leach P, other anions (NO3(-)), and cations (K+). Variability in P release from different bio-composts applied on a total P-equivalent basis suggested that P availability is highly dependent on compost source.  相似文献   

18.
Environmentally sound management of the use of composts in agriculture relies on matching the rate of release of available N from compost-amended soils to the crop demand. To develop such management it is necessary to (i) characterize the properties of composts that control their rates of decomposition and release of N and (ii) determine the optimal amount of composts that should be applied annually to wheat (Triticum aestivum L.). Carbon and N mineralization were measured under controlled conditions to determine compost decomposition rate parameters, and the NCSOIL model was used to derive the organic wastes parameters that control the rates of N and C transformations in the soil. We also characterized the effect of a drying period to estimate the effects of the dry season on C and N dynamics in the soil. The optimized compost parameters were then used to predict mineral N concentration dynamics in a soil-wheat system after successive annual applications of compost. Sewage sludge compost (SSC) and cattle manure compost (CMC) mineralization characteristics showed similar partitioning into two components of differing ease of decomposition. The labile component accounted for 16 to 20% of total C and 11 to 14% of total N, and it decomposed at a rate of 2.4 x 10(-2) d(-1), whereas the resistant pool had a decomposition rate constant of 1.2 to 1.4 x 10(-4) d(-1). The main differences between the two composts resulted from their total C and N and inorganic N contents, which were determined analytically. The long-term effect of a drying period on C and N mineralization was negligible. Use of these optimization results in a simulation of compost mineralization under a wheat crop, with a modified plant-effect version of the NCSOIL model, enabled us to evaluate the effects of the following factors on the C and N dynamics in soil: (i) soil temperature, (ii) mineral N uptake by plants, and (iii) release of very labile organic C in root exudates. This labile organic C enhanced N immobilization following application, and so decreased the N available for uptake by plants.  相似文献   

19.
Naturally occurring arsenic in groundwater in Bangladesh poses a well-known public health threat. The aim of the present study is to investigate fostering and hindering factors of people's use of deep tubewells that provide arsenic-safe drinking water, derived from the Protection Motivation Theory and the Theory of Planned Behavior. Structured personal interviews were conducted with 222 households in rural Sreenagar, Bangladesh. Multiple linear regressions were carried out to identify the most influential personal, social, and situational behavior determinants. Data revealed that social factors explained greater variance in the consumption of drinking water from deep tubewells than did situational and personal factors. In an overall regression, social factors played the biggest role. In particular, social norms seem to strongly influence deep tubewell use. But also self-efficacy and the perceived taste of shallow tubewell water proved influential. Concurrently considering other important factors, such as the most mentioned response cost (i.e., time needed to collect deep tubewell water), we propose a socially viable procedure for installing deep tubewells for the extended consumption of arsenic-safe drinking water by the Bangladeshi population.  相似文献   

20.
This study uses rate parameters in pseudo-first-order (PFO) and pseudo-second-order (PSO) equations (k1 and k2qe, respectively) to judge the extent for approaching equilibrium in an adsorption process. Out of fifty-six systems collected from the literature, the adsorption processes with a k2qe value between 0.1 and 0.8 min?1 account for as much as 70% of the total. These are classified as fast processes. This work compares the validity of PFO and PSO equations for the adsorption of phenol, 4-chlorophenol (4-CP), and 2,4-dichlorophenol (2,4-DCP) on activated carbons prepared from pistachio shells at different NaOH/char ratios. The activated carbons, recognized as microporous materials, had a surface area ranging from 939 to 1936 m2/g. Findings show that the adsorption of phenol, 4-CP, and 2,4-DCP on activated carbons had a k2qe value of 0.15–0.58 min?1, reflecting the fast process. Evaluating the operating time by rate parameters revealed that k2qe was 1.6–1.8 times larger than k1. These findings demonstrate the significance of using an appropriate kinetic equation for adsorption process design.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号