首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Scaling parameters for vented gas and dust explosions   总被引:3,自引:0,他引:3  
Results of experiments or calculations for vented explosions are usually presented by expressing a term containing the peak (reduced) pressure as a function of a vent parameter. In gas explosions, the reactivity of the system has been typically characterized through an effective burning velocity, uf. In the case of dust explosions, a normalized peak rate of pressure rise, K(=V1/3(dp/dt)max), has been used instead. Depending on the chosen approach, comparisons between systems with the same “reactivity” take different meanings. In fact, correlation formulas resulting from these two approaches imply different scaling between important system parameters. In the case of a constant-uf system, and for sufficiently large vent areas, the reduced pressure, Δpr, is approximately proportional to the square of the peak unvented pressure, Δpm. On the other hand, correlations developed for constant-K systems imply proportionality of Δpr with Δpm raised to a power between −5/3 and −1, with the exact value depending on the assumptions made on the shape of the pressure profile. While the ultimate resolution of the details of the scaling may require recourse to experiments, this theoretical analysis offers a tool for the planning of such experiments and for the interpretation of their results. The paper provides a discussion of these scaling issues with the help of predictions from an isothermal model of vented explosions.  相似文献   

2.
The fireball from a vented dust explosion presents a danger to personnel who may be within the vicinity of the event. The risk of serious injury to people caught within the fireball is great, and anyone just outside the fireball may be at risk from thermal radiation. This report describes a project in which the effects of thermal radiation from vented dust explosions was studied. The aim was to establish the areas around a fireball in which people would be at risk from thermal radiation. Six dusts were tested in a large vented vessel and external fireballs were generated under a range of conditions. The fireball geometry and the heat flux from the fireball were studied. A range of material samples were exposed to the fireball. The safe areas around the fireballs were established for each of the six dusts. Generally, the larger vent areas resulted in the larger fireballs and high heat pulse values. However, the fireball was usually too brief to ignite fabric samples unless they were very close to the fireball. The work has shown that in most cases the safe area was relatively close to the surface of the largest fireball.  相似文献   

3.
An investigation into the effects of vent ducts on reduced explosion pressures is described. Experiments were made using an 18.5m3 explosion vessel and a modified 20 1 sphere, with dusts having Kst values ranging from 144 bar ms−1 to 630 bar ms−1. The vent area/vessel volume ratio bursting pressure of the vent cover, and the length to diameter ratio of the vent duct have been varied. Straight vent ducts, and ducts containing sharp 45° and 90° bends have been used.A simple model to describe the effect of vent ducts on the reduced explosion pressure has been derived and compared with the experimental results. Agreement is shown to be satisfactory in nearly all cases. A comparison between the experimental results and guidance on the effect of vent ducts already available in the literature is discussed.  相似文献   

4.
Experiments were performed on the influence of pre-ignition turbulence on the course of vented gas and dust explosions. A vertical cylindrical explosion chamber of approximately 100 l volume and a length-to-diameter ratio (l/d) of 4.7 consisting of a steel bottom segment and three glass sections connected by steel flanges was used to perform the experiments. Sixteen small fans evenly distributed within the chamber produced turbulent fluctuations from 0 to 0.45 m/s. A Laser-Doppler-anemometer (LDA) was used to measure the flow and turbulence fields. During the experiments the pressure and in the case of dust explosions the dust concentration were measured. In addition, the flame propagation was observed by a high-speed video camera. A propane/nitrogen/oxygen mixture was used for the gas explosion experiments, while the dust explosions were produced by a cornstarch/air mixture.It turned out that the reduced explosion pressure increased with increasing turbulence intensity. This effect was most pronounced for small vents with low activation pressures, e.g. for bursting disks made from polyethylene foil. In this case, the overpressure at an initial turbulence of 0.45 m/s was twice that for zero initial turbulence.  相似文献   

5.
Empirical correlations are often used to estimate safety distances in the event of dust explosions. In Europe, there are two main correlations available in VDI 3673 and EN 14491. Whereas the VDI 3673 correlation is based on experimental investigations of vented dust explosions using large vessels, and assumes an external explosion, the EN 14491 correlation is derived from SKJELTORP et al. internal explosion tests in ammunition storage facility. This paper provides an overview of the experimental studies of vented gas and dust explosion. It aims to highlight the main findings of such studies, while defining the conditions for a secondary explosion to occur and comparing experimental data with the application of standards, in order to propose elements to choose the more appropriate correlation.  相似文献   

6.
A new safety characteristic the “dustiness” according to VDI 2263 – part 9 (Verein Deutscher Ingenieure, 2008) is investigated. Dustiness means the tendency of a dust to form clouds. The paper deals with the physical reasons for the different behavior of dusts, even if they have similar properties such as particle size and density and the influence of the dustiness on dust explosions. In order to study the effects of the dustiness on dust cloud formation for different dispersion methods experiments in a vertical dust dispersion glass tube apparatus were carried out. Furthermore vented dust explosion experiments were done for two different dispersion methods and two static activation pressures.Experiments show that particle size and density are not the only factors which influence dispersibility. Particle shape, specific surface area, flow and dispersion method have an influence which can outweigh size and density. Preliminary explosion experiments showed that the dustiness has an influence on the reduced explosion pressure and flame speed in a vented 75 L test apparatus. In order to verify the results for applications in the process industries further tests with industrial scale experiments are planned.  相似文献   

7.
Natural gas and LPG are common fuels that have been used relatively safely in the home for many decades. However, when there is a release of gas within a dwelling, or gas from a leaking external pipeline migrates into a building, an explosion may occur. Most of the experimental research into vented gas explosions has been conducted in single enclosure, cuboid or spherical geometries which are not representative of accidental explosions in dwellings or process industries. This paper discusses the findings of a comprehensive large-scale experimental programme undertaken by British Gas Research and Development and also compares FLACS CFD (Computational Fluid Dynamics) simulations against a number of these experiments. The results suggest that the software is useful in gaining a greater understanding of the dynamics of explosion development in dwellings. The paper highlights areas of good performance of the software as well as areas of shortcomings where further understanding and modelling effort is needed.  相似文献   

8.
Dust explosion venting experiments were performed using a 20-L spherical chamber at elevated static activation overpressures larger than 1 bar. Lycopodium dust samples with mean diameter of 70 μm and electric igniters with 0.5 KJ ignition energy were used in the experiments. Explosion overpressures in the chamber and flame appearances near the vent were recorded simultaneously. The results indicated that the flame appeared as the under-expanded free jet with shock diamonds, when the overpressure in the chamber was larger than the critical pressure during the venting process. The flame appeared as the normal constant-pressure combustion when the pressure venting process finished. Three types of venting processes were concluded in the experiments: no secondary flame and no secondary explosion, secondary flame, secondary explosion. The occurrence of the secondary explosions near the vent was related to the vent diameter and the static activation overpressure. Larger diameters and lower static activation overpressures were beneficial to the occurrence of the secondary explosions. In current experiments, the secondary explosions only occurred at the following combinations of the vent diameter and the static activation overpressure: 40 mm and 1.2 bar, 60 mm and 1.2 bar, 60 mm and 1.8 bar.  相似文献   

9.
This paper analyses the experimental data reported by Höchst and Leuckel (1998) for combustion in partially confined vessels and uses the data from these experiments to establish the burning rate based on a simplified model for the combustion process in such vessels. The model establishes three fundamental parameters which are necessary in characterizing the combustion process. These are: i) the burning rate, ii) the fraction of vent area occupied by burnt gas (or discharge sub-model), and iii) the vent area model (if cover mechanisms with variable vent areas are utilized). A set of independent equations is derived to determine the burning rate according to conservation of mass and volume for each gas fraction separately along with a general equation based on general volume conservation. Using this method we are able to describe the combustion process and examine the effect of various discharge models. The advantages of the model presented here include rapid applicability and a valuable analysis to derive mass burn rate and other useful parameters using experimental data from vented explosions with reasonable residual reactant values. Based on these results, the correct interpretation of the obtained burning rate can be used in order to explain the correct prediction of flame velocity and position according to a reasonable discharge model. The paper also evaluates the suitability of several discharge models for phenomenological models of vented explosions. The most appropriate is a Heaviside step function which considers that only unburnt gas is initially expelled, with that component decreasing and the burnt gas component increasing until finally only burnt gas is expelled. The obtained results in this study can be used to predict the burning rate behavior and the combustion process of similar problems.  相似文献   

10.
11.
A typical building consists of a number of rooms; often with windows of different size and failure pressure and obstructions in the form of furniture and décor, separated by partition walls with interconnecting doorways. Consequently, the maximum pressure developed in a gas explosion would be dependent upon the individual characteristics of the building. In this research, a large-scale experimental programme has been undertaken at the DNV GL Spadeadam Test Site to determine the effects of vent size and congestion on vented gas explosions. Thirty-eight stoichiometric natural gas/air explosions were carried out in a 182 m3 explosion chamber of L/D = 2 and KA = 1, 2, 4 and 9. Congestion was varied by placing a number of 180 mm diameter polyethylene pipes within the explosion chamber, providing a volume congestion between 0 and 5% and cross-sectional area blockages ranging between 0 and 40%. The series of tests produced peak explosion overpressures of between 70 mbar and 3.7 bar with corresponding maximum flame speeds in the range 35–395 m/s at a distance of 7 m from the ignition point. The experiments demonstrated that it is possible to generate overpressures greater than 200 mbar with volume blockages of as little as 0.57%, if there is not sufficient outflow through the inadvertent venting process. The size and failure pressure of potential vent openings, and the degree of congestion within a building, are key factors in whether or not a building will sustain structural damage following a gas explosion. Given that the average volume blockage in a room in a UK inhabited building is in the order of 17%, it is clear that without the use of large windows of low failure pressure, buildings will continue to be susceptible to significant structural damage during an accidental gas explosion.  相似文献   

12.
Explosions caused by the rapid release of energy from the expansion of burnt gases, along with an associated pressure rise, in an enclosure can be mitigated by venting. Many empirical equations have been derived based on vented gas deflagration phenomena. In the present paper, four empirical equations for gas venting were reviewed, i.e., NFPA 68, the European Standard (EN 14994), Molkov et al. and Bradley and Mitcheson in order to assess their reliability and applicability for predicting the reduced explosion pressure (Pred) of propane-air, methane-air and hydrogen-air mixtures at three different chamber-scale volumes. The results showed that the NFPA 68 correlation is the most appropriate method for predicting Pred, while Bradley and Mitcheson gave values closer to those of experimental data for propane-air mixtures in medium and larger chambers, respectively. However, none of the predicted correlations was able to provide a reasonable prediction of Pred in a hydrogen-air explosion. In addition, these predicted correlations showed greater discrepancies in Pred values in the presence of vent area, ignition position and obstacles.  相似文献   

13.
Inherent safety is a proactive approach to process safety in which hazards are removed or minimized so as to reduce risk without engineered (add-on) or procedural intervention. Four basic principles are available to attain an inherently safer design—minimization, substitution, moderation, and simplification. The subject of the current paper is the principle of moderation as it applies to the prevention and mitigation of dust explosions.

Moderation can be achieved by processing a material under less severe operating conditions or by processing the material in a less hazardous form. With respect to the latter approach, it may be possible to alter the composition of a dust by admixture of solid inertants, or to increase the dust particle size so as to decrease its reactivity. Additionally, avoidance of the formation of hybrid mixtures of explosible dusts and flammable gases is an application of moderation of the material hazard.

Several examples are given for each of the above three forms of moderation. The discussion on admixture of solid inertants includes examples from the following industrial applications: (i) refractory materials manufacturing, (ii) food processing, (iii) power generation, (iv) industrial recycling, and (v) foundry shell mold fabrication. The importance of particle size consideration is explained first from the perspective of engineering tools such as the Dow Fire & Explosion Index, and professional guidance on the definition of a dust and suitable particle sizes for explosibility testing. Industrial examples are then drawn from the following areas: (i) rubber recycling and textile manufacturing, (ii) industrial recycling, (iii) wood processing, (iv) dry additive handling (polyethylene facility), (v) polyethylene production, (vi) carbon block recycling, and (vii) coal mining. The concluding discussion on hybrid mixtures includes brief cases from the process safety literature.  相似文献   


14.
Experimental data from vented explosion tests using gasoline-air mixtures with concentrations from 0.88 to 2.41% vol. are presented. A 2L vessel was used for the tests with vent sizes of 25 cm2, 50 cm2 and 100 cm2. The tests were focused on the effect of gasoline vapor concentration and vent size on the pressure development and the flame behavior inside and outside the vessel. It was found that the inner flame propagation speed was mainly dependent on the initial concentration, while the maximum flame spreading distance was mainly influenced by the vent size. The external flame speed and duration could be influenced by the combination of the two properties. The internal pressure increases gradually with the flame propagated inside the vessel and decreased sharply when the vent failed. High-pressure durations containing pressure peaks were recorded by transducers in front of the vent and oscillations could be observed besides the vent. At any measure point, the maximum external pressures for A = 25 cm2 or 50 cm2 were significantly larger than those for A = 100 cm2.  相似文献   

15.
The use of Coloured powder (Holi powder orcolour dust) has been largely used in India for their festivities. Due to their popularity is extensive around the world since the popularity of the parties and events with this kind of show is increasing considerably. Despite the fact of its extensive use, its highly flammable nature is poorly known. Currently, some serious accidents related to the Coloured powder have been registered. Coloured powder organic nature implies a significant increase in the probability to form an explosive atmosphere as their use includes dust dispersion, leading to explosion hazards as has been previously reported. Moreover, it is important to take into account the effects on the flammability of the additives and the colorings existing in the Coloured powder as they might increase the hazard. To properly understand Coloured powder potential for producing an explosive atmosphere, and the attached risk of dust explosions, several samples were tested. Coloured powder from 6 different manufacturers were gathered. Each manufacturer provided several colours (between 5 and 8) which were characterized through moisture content and particle size determination. Once each sample was characterized, screening tests were performed on each sample determining whether ignition was produced or not. Those screening tests were carried out under certain conditions using the equipment for minimum ignition temperature on cloud determination (0.5 g set at 500 °C and 0.5 bar), and minimum ignition energy determination (using 100 and 300 mJ energies and 900 and 1200 mg). From those test results, important differences were seen between manufacturers, but most important, differences between colours of the same manufacturer were observed. The screening tests allowed the selection of 11 samples that were fully characterized through thermogravimetric analysis, maximum pressure of explosion, Kst, minimum ignition temperature on cloud, and minimum ignition energy. When carrying out thermogravimetric analysis, some samples increased mass at temperatures close to 300 °C and unexpectedly absorbed energy, followed by the expected combustion reaction at higher temperatures. From the obtained results it was noticed that the colour powders that included talcum in its composition did not produce explosion. Flammability and explosion tests, again, showed important differences between manufacturers and colours, and so it was possible to determine the relative flash fire and explosion risks of the various tested powders.  相似文献   

16.
Thermo-kinetic modelling of dust explosions   总被引:1,自引:0,他引:1  
The guidelines for protection and mitigation against hazard coming from dust explosion require the knowledge and then the evaluation either experimentally or theoretically of the thermo-kinetic parameters (i.e. KSt, Pmax). We developed a numerical tool for the evaluation of the thermo-kinetic parameters of dust explosion. This model is based on the simulations of the combustion reaction by means of a detailed reaction mechanism assuming that the pyrolysis/devolatilization step is very fast and then gas combustion is controlling dust explosion. The model allows then the determination of the most conservative values of KSt, Sl, Pmax. In the present paper we calculated the deflagration index and the laminar burning velocity for dusts utilized in various process industries (i.e. cornstarch, polyethylene, cellulose) as function of dust concentration. The obtained data were successfully compared with the available experimental results.  相似文献   

17.
The performance of two reaction rate models based on the laminar flamelet concept have been examined by calculating the behaviour of turbulent flame deflagration inside a semi-confined explosion tube. The models formulate the mean rate of reaction as a function of a transport equation for the flamelet surface density. The difference in the models is in modelling the source/sink terms of the flamelet surface density transport equation. The models are validated using laser diagnostics of flame deflagration in methane–air flammable mixture. The predictions are compared with experimental results for propagation, pressure history and flame speed. Sensitivity to cross-flow effects are investigated through comparison between two- and three-dimensional calculations. The numerically simulated results show that experimental trends are well reproduced by both models.  相似文献   

18.
The necessary conditions for a dust explosion to occur are well-expressed by the explosion pentagon: (i) fuel, (ii) oxidant, (iii) ignition source, (iv) mixing of the fuel and oxidant, and (v) confinement of the resulting mixture. While it might seem relatively straightforward to prevent or mitigate a dust explosion by simply removing one of the pentagon elements, the field of dust explosion risk reduction is more complex. Building upon previous work by the author and other dust explosion researchers, the theme of the current paper is that this complexity is partially rooted in several erroneous beliefs. These beliefs ignore the realities found with full consideration of appropriate scientific and engineering principles. Several such myths and their factual counterparts are presented with an illustrative example.  相似文献   

19.
An investigation of ignition of dust clouds by the use of electric spark discharges triggered by the explosive dust cloud itself has been conducted. This method of triggering capacitive sparks probably represents a realistic mechanism for initiating accidental dust explosions in industrial practice. Unlike the conventional method for determining the minimum ignition energy (MIE) in the laboratory, the delay between dust dispersion and spark discharge is not a degree of freedom. In stead, the transient dust cloud itself is used to initiate spark breakdown between electrodes set at a high voltage lower than breakdown in pure air. In the present study, different kinds of dusts were tested as ‘spark triggers’, and they exhibited quite different abilities to trigger breakdown. Large particles were found to initiate breakdown at lower voltages than smaller ones. In general, conductive particles were not found to initiate breakdown at lower voltages than dielectric ones when using the same dust concentration.Minimum ignition energies (MIE) of three dusts (Lycopodium clavatum, sulphur and maize starch) were determined using the authors' method of study. The MIEs were somewhat higher than those obtained using conventional methods, but relatively close to the values obtained through conventional methods.  相似文献   

20.
This study investigates dust explosions in vessel-pipe systems to develop a better understanding of dust flame propagation between interconnected vessels and implications for the proper application of explosion isolation systems. Cornstarch dust explosions were conducted in a large-scale setup consisting of a vented 8-m3 vessel and an attached pipe with a diameter of 0.4 m and a length of 9.8 m. The ignition location and effective dust reactivity were varied between experiments. The experimental results are compared against previous experiments with initially quiescent propane-air mixtures, demonstrating a significantly higher reactivity of the dust explosions due to elevated initial turbulence, leading to higher peak pressures and faster flame propagation. In addition, a physics-based model developed previously to predict gas explosion dynamics in vessel-pipe systems was extended for dust combustion. The model successfully predicts the pressure transients and flame progress recorded in the experiments and captures the effects of ignition location and effective dust reactivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号