共查询到20条相似文献,搜索用时 15 毫秒
1.
Foundation species in space-limited systems can increase diversity by creating habitat, but they may also reduce diversity by excluding primary space competitors. These contrasting forces of increasing associate diversity and suppressing competitor diversity have rarely been examined experimentally with respect to disturbance. In a benthic marine community in central California, where native oysters are a foundation species, we tested how disturbance influenced overall species richness, evenness, and diversity. Surprisingly, overall diversity did not peak across a disturbance gradient because, as disturbance decreased, decreases in overall species evenness opposed increases in overall species richness. Decreasing disturbance intensity (high oyster abundance) led to increasing species richness of sessile and mobile species combined. This increase was due to the facilitation of secondary sessile and mobile species in the presence of oysters. In contrast, decreasing disturbance intensity and high oyster abundance decreased the evenness of sessile and mobile species. Three factors likely contributed to this decreased evenness: oysters reduced abundances of primary sessile species due to space competition; oysters supported more rare mobile species; and oysters disproportionately increased the relative abundance of a few common mobile species. Our results highlight the need for further studies on how disturbance can differentially affect the evenness and richness of different functional groups, and ultimately how these differences affect the relationship between overall diversity and ecosystem function. 相似文献
2.
Plant-mediated and nonadditive effects of two global change drivers on an insect herbivore community
Warmer temperatures can alter the phenology and distribution of individual species. However, differences across species may blur community-level phenological responses to climate or cause biotic homogenization by consistently favoring certain taxa. Additionally, the response of insect communities to climate will be subject to plant-mediated effects, which may or may not overshadow the direct effect of rising temperatures on insects. Finally, recent evidence for the importance of interaction effects between global change drivers suggests that phenological responses of communities to climate may be altered by other drivers. We used a natural temperature gradient (generated by elevation and topology), combined with experimental nitrogen fertilization, to investigate the effects of elevated temperature and globally increasing anthropogenic nitrogen deposition on the structure and phenology of a seminatural grassland herbivore assemblage (lepidopteran insects). We found that both drivers, alone and in combination, severely altered how the relative abundance and composition of species changed through time. Importantly, warmer temperatures were associated with biotic homogenization, such that herbivore assemblages in the warmest plots had more similar species composition than those in intermediate or cool plots. Changes in herbivore composition and abundance were largely mediated by changes in the plant community, with increased nonnative grass cover under high treatment levels being the strongest determinant of herbivore abundance. In addition to compositional changes, total herbivore biomass more than doubled under elevated nitrogen and increased more than fourfold with temperature, bearing important functional implications for herbivores as consumers and as a prey resource. The crucial role of nonnative plant dominance in mediating responses of herbivores to change, combined with the frequent nonadditive (positive and negative) effects of the two drivers, and the differential responses of species, highlight that understanding complex ecosystem responses will benefit from multifactor, multitrophic experiments at community scales or larger. 相似文献
3.
Cadotte MW 《Ecology》2006,87(4):1008-1016
Large-scale processes are known to be important for patterns of species richness, yet the ways in which local and larger scale processes interact is not clear. I used metacommunities consisting of five interconnected microbial aquatic communities to examine the manner in which processes at different scales affect local and metacommunity richness. Specifically, I manipulated the potential dispersal rate, whether dispersal was localized or global, and variation in initial community composition. A repeated-measures ANOVA showed that a low dispersal rate and intermediate distance dispersal enhanced local richness. Initial assembly variation had no effect on local richness, while a lack of dispersal or global dispersal reduced local richness. At the metacommunity scale, richness was enhanced throughout the time course of the experiment by initial compositional variation and was reduced by high or global dispersal. The effects of dispersal were contingent on the presence of initial compositional variation. The treatments also affected individual species occupancy patterns, with some benefiting from large-scale processes and others being adversely impacted. These results indicate that the effects of dispersal on species richness have a complex relationship with scale and are not solely divisible into "regional" vs. "local" scales. Finally, predictions of the manner in which dispersal rate structures communities appear dependent upon species compositional variation among communities. 相似文献
4.
The influence of community dynamics on the success or failure of an invasion is of considerable interest. What has not been explored is the influence of patch size on the outcomes of invasions for communities with the same species pool. Here we use an empirically validated spatial model of a marine epibenthic community to examine the effects of patch size on community variability, species richness, invasion, and the relationships between these variables. We found that the qualitative form of the relationship between community variability and species richness is determined by the size of the model patch. In small patches, variability decreases with species richness, but beyond a critical patch size, variability increases with increasing richness. This occurs because in large patches large, long-lived colonies attain sufficient size to minimize mortality and dominate the community, leading to decreased species richness and community variability. This mechanism cannot operate on smaller patches where the size of colonies is limited by the patch size and mortality is high irrespective of species identity. Further, invasion resistance is strongly correlated with community variability. Thus, the relationship between species richness and invasion resistance is also determined by patch size. These patterns are generated largely by an inverse relationship between colony size and mortality, and they depend on the spatial nature and patch size of the community. Our results suggest that a continuum of possible relationships can exist between species richness, community variability, invasion resistance, and area. These relationships are emergent behaviors generated by the individual properties of the particular component species of a community. 相似文献
5.
Environmental and Ecological Statistics - Species distribution modelling (SDM) is a family of statistical methods where species occurrence/density/richness are combined with environmental... 相似文献
6.
Spatial heterogeneity may have differential effects on the distribution of native and nonnative plant species richness. We examined the effects of spatial heterogeneity on native and nonnative plant species richness distributions in the central part of Rocky Mountain National Park, Colorado, USA. Spatial heterogeneity around vegetation plots was characterized using landscape metrics, environmental/topographic variables (slope, aspect, elevation, and distance from stream or river), and soil variables (nitrogen, clay, and sand). The landscape metrics represented five components of landscape heterogeneity and were measured at four spatial extents (within varying radii of 120, 240, 480, and 960 m) using the FRAGSTATS landscape pattern analysis program. Akaike's Information Criterion adjusted for small sample size (AICc) was used to select the best models from a set of multiple linear regression models developed for native and nonnative plant species richness at four spatial extents and three levels of ecological hierarchy (i.e., landscape, land cover, and community). Both native and nonnative plant species richness were positively correlated with edge density, Simpson's diversity index and interspersion/juxtaposition index, and were negatively correlated with mean patch size. The amount of variation explained at four spatial extents and three hierarchical levels ranged from 30% to 70%. At the landscape level, the best models explained 43% of the variation in native plant species richness and 70% of the variation in nonnative plant species richness (240-m extent). In general, the amount of variation explained was always higher for nonnative plant species richness, and the inclusion of landscape metrics always significantly improved the models. The best models explained 66% of the variation in nonnative plant species richness for both the conifer land cover type and lodgepole pine community. The relative influence of the components of spatial heterogeneity differed for native and nonnative plant species richness and varied with the spatial extent of analysis and levels of ecological hierarchy. The study offers an approach to quantify spatial heterogeneity to improve models of plant biodiversity. The results demonstrate that ecologists must recognize the importance of spatial heterogeneity in managing native and nonnative plant species. 相似文献
7.
In response to insect herbivory, plants emit volatiles that are used by the herbivores’ natural enemies to locate their host or prey. Herbivore attack also enhances tea aroma. Herbivore-induced plant volatiles (HIPVs) vary both quantitatively and qualitatively with infestation duration and herbivore density. Thus, whether HIPVs can reliably communicate the identities of herbivores is of interest. Here, we studied the tea plant volatiles induced by the tea leafhopper (Empoasca vitis, a piercing–sucking insect), the tea geometrid (Ectropis oblique, a chewing insect), and methyl jasmonate (MeJA, a plant hormone). Geometrid feeding induced more complex volatile blends than did leafhopper infestation. The volatiles induced by both herbivores significantly increased in quality and quantity with time during the first 16 h of infestation, after which the profiles of induced volatile blends and the emission of induced compounds varied diurnally. (E)-β-Ocimene displayed a unique rhythm in which emission peaked at night. The amount of HIPVs significantly increased, while their profiles changed little, with herbivore density. Overall, the leafhoppers and geometrids induced significantly different volatiles from tea plants, while the HIPV profiles varied with a circadian rhythm and were similar at different herbivore densities. Our findings also suggest a new method of enhancing tea flavor using exogenously applied plant hormones, because the volatiles induced by leafhoppers and MeJA were similar in general composition. 相似文献
8.
Habitat fragmentation and effects of herbivore (howler monkey) abundances on bird species richness 总被引:1,自引:0,他引:1
Habitat fragmentation can alter herbivore abundances, potentially causing changes in the plant community that can propagate through the food web and eventually influence other important taxonomic groups such as birds. Here we test the relationship between the density of red howler monkeys (Alouatta seniculus) and bird species richness on a large set of recently isolated land-bridge islands in Lago Guri, Venezuela (n = 29 islands). Several of these islands host relict populations of howler monkeys at densities up to more than 30 times greater than those on the mainland. These "hyperabundant" herbivores previously have been shown to have a strong positive influence on aboveground plant productivity. We predicted that this should lead to a positive, indirect effect of howler monkey density on bird species richness. After accounting for passive sampling (the tendency for species richness to be positively associated with island area, regardless of differences in habitat quality) we found a significant positive correlation between howler monkey density and bird species richness. A path analysis incorporating data on tree growth rates from a subset of islands (n = 9) supported the hypothesis that the effect of howler monkeys on the resident bird communities is indirect and is mediated through changes in plant productivity and habitat quality. These results highlight the potential for disparate taxonomic groups to be related through indirect interactions and trophic cascades. 相似文献
9.
Ecological communities are structured by both deterministic, niche-based processes and stochastic processes such as dispersal. A pressing issue in ecology is to determine when and for which organisms each of these types of processes is important in community assembly. The roles of deterministic and stochastic processes have been studied for a variety of communities, but very few researchers have addressed their contribution to insect herbivore community structure. Insect herbivore niches are often described as largely shaped by the antagonistic pressures of predation and host plant defenses. However host plants are frequently discrete patches of habitat, and their spatial arrangement can affect herbivore dispersal patterns. We studied the roles of predation, host plant quality, and host spatial proximity for the assembly of a diverse insect herbivore community on Quercus alba (white oak) across two growing seasons. We examined abundances of feeding guilds to determine if ecologically similar species responded similarly to variation in niches. Most guilds responded similarly to leaf quality, preferring high-nitrogen, low-tannin host plants, particularly late in the growing season, while bird predation had little impact on herbivore abundance. The communities on the high-quality plants tended to be larger and, in some cases, have greater species richness. We analyzed community composition by correlating indices of community similarity with predator presence, leaf quality similarity, and host plant proximity. Birds did not affect community composition. Community similarity was significantly associated with distance between host plants and uncorrelated with leaf quality similarity. Thus although leaf quality significantly affected the total abundance of herbivores on a host plant, in some cases leading to increased species richness, dispersal limitation may weaken this relationship. The species composition of these communities may be driven by stochastic processes rather than variation in host plant characteristics or differential predation by insectivorous birds. 相似文献
10.
To elucidate the factors that affect the performance of plants in their natural environment, it is essential to study interactions with other neighboring plants, as well as with above- and belowground higher trophic organisms. We used a long-term field experiment to study how local plant community diversity influenced colonization by the biennial composite Senecio jacobaea in its native range in The Netherlands in Europe. We tested the effect of sowing later-succession plant species (0, 4, or 15 species) on plant succession and S. jacobaea performance. Over a period of eight years, the percent cover of S. jacobaea was relatively low in communities sown with 15 or 4 later-succession plant species compared to plots that were not sown, but that were colonized naturally. However, after four years of high abundance, the density of S. jacobaea in unsown plots started to decline, and the size of the individual plants was smaller than in the plots sown with 15 or 4 plant species. In the unsown plots, densities of aboveground leaf-mining, flower-feeding, and stem-boring insects on S. jacobaea plants were lower than on plants in sown plots, and there was a strong positive relationship between plant size and levels of herbivory. In a greenhouse experiment, we grew S. jacobaea in sterilized soil inoculated with soil from the different sowing treatments of the field experiment. Biomass production was lower when S. jacobaea test plants were grown in soil from the unsown plots than in soil from the sown plots (4 or 15 species). Molecular analysis of the fungal and bacterial communities revealed that the composition of fungal communities in unsown plots differed significantly from those in sown plots, suggesting that soil fungi could have been involved in the relative growth reduction of S. jacobaea in the greenhouse bioassay. Our results show that, in its native habitat, the abundance of S. jacobaea depends on the initial composition of the plant community and that, on a scale of almost a decade, its interactions with plant and soil communities and aboveground invertebrates may influence the dynamics of this colonizing species. 相似文献
11.
Herbivores choose their habitats both to maximize forage intake and to minimize their risk of predation. For African savanna herbivores, the available habitats range in woody cover from open areas with few trees to dense, almost-closed woodlands. This variation in woody cover or density can have a number of consequences for herbaceous species composition, cover, and productivity, as well as for ease of predator detection and avoidance. Here, we consider two alternative possibilities: first, that tree density affects the herbaceous vegetation, with concomitant "bottom-up" effects on herbivore habitat preferences; or, second, that tree density affects predator visibility, mediating "top-down" effects of predators on herbivore habitat preferences. We sampled sites spanning a 10-fold range of tree densities in an Acacia drepanolobium-dominated savanna in Laikipia, Kenya, for variation in (1) herbaceous cover, composition, and species richness; (2) wild and domestic herbivore use; and (3) degree of visibility obstruction by the tree layer. We then used structural equation modeling to consider the potential influences that tree density may have on herbivores and herbaceous community properties. Tree density was associated with substantial variation in herbaceous species composition and richness. Cattle exhibited a fairly uniform use of the landscape, whereas wild herbivores, with the exception of elephants, exhibited a strong preference for areas of low tree density. Model results suggest that this was not a response to variation in herbaceous-community characteristics, but rather a response to the greater visibility associated with more open places. Elephants, in contrast, preferred areas with higher densities of trees, apparently because of greater forage availability. These results suggest that, for all but the largest species, top-down behavioral effects of predator avoidance on herbivores are mediated by tree density. This, in turn, appears to have cascading effects on the herbaceous vegetation. These results shed light on one of the major features of the "landscape of fear" in which African savanna herbivores exist. 相似文献
12.
Ecological costs on local adaptation of an insect herbivore imposed by host plants and enemies 总被引:1,自引:0,他引:1
Herbivore populations may become adapted to the defenses of their local hosts, but the traits that maximize host exploitation may also carry ecological costs. We investigated the patterns and costs of local adaptation in the pine processionary moth, Thaumetopoea pityocampa, to its host plants, Pinus nigra and P. sylvestris. The two hosts differ in needle toughness, a major feeding impediment for leaf-eating insects. We observed a west-to-east gradient of increasing progeny size in the Italian Alps, matching the pattern in toughness of their respective local host plant. Eastern populations that feed on the native P. nigra with tough needles had larger eggs, and neonate larvae with larger head capsules, than western populations that feed on the native P. sylvestris and the introduced P. nigra with softer foliage. In a reciprocal transfer experiment that involved the eastern-most and the western-most populations of T. pityocampa from this region, and excluded natural enemies, we found evidence for local adaptation to the host plant. Specifically, larvae from the western population only performed well when raised on their local hosts with soft needles, and they suffered near-complete mortality on the tough foliage at the eastern site. In contrast, larvae from the eastern population survived equally well at both sites. Local adaptation involved a trade-off between progeny size and the number of offspring. We hypothesized that an additional cost, imposed by natural enemies, may be associated with increased egg size: we also observed a west-to-east gradient of increased egg parasitism. We tested this hypothesis in a common garden by exposing eggs of both populations to parasitism by two native egg parasitoids, Ooencyrtus pityocampae and Baryscapus servadeii. The eastern population suffered a higher level of parasitoid attack by O. pityocampae than the western population, and performance of hatched adults of both parasitoids was enhanced in large eggs. Thus, increased neonate quality (larger eggs yielding larger larvae) confers an advantage on tough foliage but incurs the ecological cost of increased parasitism, which may constrain further adaptation by this herbivore. 相似文献
13.
The importance of herbivores and of plant diversity for community succession and recovery from disturbance is well documented. However, few studies have assessed the relative magnitude of, or potential interactions between, these factors. To determine the combined effect of herbivory and surrounding algal species richness on the recovery of a rocky intertidal community, we conducted a 27-month field experiment assessing algal recruitment and succession in cleared patches that mimic naturally forming gaps in the ambient community. We crossed two herbivore treatments, ambient and reduced abundance, with monocultures and polycultures of the four most common algal species in a mid-high rocky intertidal zone of northern California. We found that both the presence of herbivores and high surrounding algal richness increased recovery rates, and the effect of algal richness was twice the magnitude of that of herbivores. The increased recovery rate of patches containing herbivores was due to the consumption of fast-growing, early colonist species that preempt space from perennial, late-successional species. Mechanisms linking algal richness and recovery are more numerous. In polycultures, herbivore abundance and species composition is altered, desiccation rates are lower, and propagule recruitment, survival, and growth are higher compared to monocultures, all of which could contribute the observed effect of surrounding species richness. Herbivory and species richness should jointly accelerate recovery wherever palatable species inhibit late-successional, herbivore-resistant species and recruitment and survival of new colonists is promoted by local species richness. These appear to be common features of rocky-shore seaweed, and perhaps other, communities. 相似文献
14.
The information on temperature-mediated changes in biodiversity in local assemblages is scarce and mainly addresses the change in species richness. However, warming may have more consistent effects on species turnover than on the number of species. Moreover, very few studies extended the analysis of changes in biodiversity and species composition to questions of associated ecosystem functions such as primary production. Here, we synthesize 4 case studies employing microalgal microcosms within the Aquashift priority program to ask (1) do warming-related shifts in species richness correspond to changes in the rate of biomass production, (2) do similar relationships prevail for evenness, and (3) do warming-related shifts in species turnover stabilize or destabilize biomass production? Two of the four cases are previously unpublished, and for a third case, the link between diversity and functional consequences of temperature was not analyzed before. We found accelerated loss of species with warming in all cases. Biomass production was lower with lower species richness in most cases but increased with lower evenness. Most importantly, the relation between functional and compositional stability was different between cases: More rapid extinction resulted in more variable biomass in 2 cases conducted with a limited species pool, indicating that compositional destabilization relates to functional variability. By contrast, the only experiment with a large species pool (30 species) allowed previously rare species to become dominant in the community and showed more stable biomass at high turnover, indicating that compensatory dynamics (turnover) can promote functional stability. These 4 independent experiments highlight the need to consider both compositional and functional consequences of altered temperature regimes. 相似文献
15.
Elephants, fire, and frost can determine community structure and composition in Kalahari Woodlands. 总被引:1,自引:0,他引:1
Ricardo M Holdo 《Ecological applications》2007,17(2):558-568
Fire, elephants, and frost are important disturbance factors in many African savannas, but the relative magnitude of their effects on vegetation and their interactions have not been quantified. Understanding how disturbance shapes savanna structure and composition is critical for predicting changes in tree cover and for formulating management and conservation policy. A simulation model was used to investigate how the disturbance regime determines vegetation structure and composition in a mixed Kalahari sand woodland savanna in western Zimbabwe. The model consisted of submodels for tree growth, tree damage caused by disturbance, mortality, and recruitment that were parameterized from field data collected over a two-year period. The model predicts that, under the current disturbance regime, tree basal area in the study area will decline by two-thirds over the next two decades and become dominated by species unpalatable to elephants. Changes in the disturbance regime are predicted to greatly modify vegetation structure and community composition. Elephants are the primary drivers of woodland change in this community at present-day population densities, and their impacts are exacerbated by the effects of fire and frost. Frost, in particular, does not play an important role when acting independently but appears to be a key secondary factor in the presence of elephants and/or fire. Unlike fire and frost, which cannot suppress the woodland phase on their own in this ecosystem, elephants can independently drive the vegetation to the scrub phase. The results suggest that elephant and fire management may be critical for the persistence of certain woodland communities within dry-season elephant habitats in the eastern Kalahari, particularly those dominated by Brachystegia spiciformis and other palatable species. 相似文献
16.
Cyclic population dynamics of forest insects with periods of more than two generations have been discussed in relation to a variety of extrinsic and intrinsic forces. In the present study, we employed the selection pressure of density dependent competitive interactions according to Witting's equations (Witting, 2000) as driver for a discrete spatiotemporal model of the green oak leaf roller (Tortrix viridana). The model was successfully parameterised to rebuild the cyclic population dynamics of an empirical data set of a 30-year leaf roller monitoring in Russia. Our analysis focussed on the role of herbivore mortality and host plant food quality, which have a significant effect on T. viridana population dynamics. An additional egg or larvae mortality lowers population density and can lead to selection pressures that favour individuals with higher growth rate. This increased population growth rate can not only compensate the additional mortality, but also can lead to higher average moth abundances in subsequent generations. Furthermore, we analysed the effect of inter- and intraspecific variation in host plant quality on herbivore population dynamics and the spatial distribution of abundance and defoliation patterns. We found significant effects of the qualitative composition of a trees neighbourhood on the herbivore population of the respective tree. Also, the patchy damage patterns observable in reality have been reproduced by the present model. The applicability of the model approach and the putative genetic processes underlying Witting's model are discussed. 相似文献
17.
Invasive species richness often is negatively correlated with native species richness at the small spatial scale of sampling plots, but positively correlated in larger areas. The pattern at small scales has been interpreted as evidence that native plants can competitively exclude invasive species. Large-scale patterns have been understood to result from environmental heterogeneity, among other causes. We investigated species richness patterns among submerged and floating-leaved aquatic plants (87 native species and eight invasives) in 103 temperate lakes in Connecticut (northeastern USA) and found neither a consistently negative relationship at small (3-m2) scales, nor a positive relationship at large scales. Native species richness at sampling locations was uncorrelated with invasive species richness in 37 of the 60 lakes where invasive plants occurred; richness was negatively correlated in 16 lakes and positively correlated in seven. No correlation between native and invasive species richness was found at larger spatial scales (whole lakes and counties). Increases in richness with area were uncorrelated with abiotic heterogeneity. Logistic regression showed that the probability of occurrence of five invasive species increased in sampling locations (3 m2, n = 2980 samples) where native plants occurred, indicating that native plant species richness provided no resistance against invasion. However, the probability of three invasive species' occurrence declined as native plant density increased, indicating that density, if not species richness, provided some resistance with these species. Density had no effect on occurrence of three other invasive species. Based on these results, native species may resist invasion at small spatial scales only in communities where density is high (i.e., in communities where competition among individuals contributes to community structure). Most hydrophyte communities, however, appear to be maintained in a nonequilibrial condition by stress and/or disturbance. Therefore, most aquatic plant communities in temperate lakes are likely to be vulnerable to invasion. 相似文献
18.
The relationship between plant nutrient content and insect herbivore populations and community structure has long interested ecologists. Insect herbivores require multiple nutrients, but ecologists have focused mostly on nitrogen (an estimate of plant protein content), and more recently phosphorus (P); other nutrients have received little attention. Here we document nutrient variation in grass and forb samples from grassland habitats in central Nebraska using an elemental approach; in total we measured foliar concentrations of 12 elements (N and P, plus S, B, Ca, Mg, Na, K, Zn, Fe, Mn, and Cu). We detected significant variability among sites for N, P, Mg, Na, K, and Cu. We next used a model selection approach to explore how this nutritional variation and plant biomass correlate with grasshopper densities (collectively and at the feeding-guild level), and principal component analysis to explore nutrient correlations with grasshopper community species composition. When all grasshoppers were pooled, densities varied among sites, but only P was associated with abundance of the elements shown to vary between sites. Different responses occurred at the feeding-guild level. For grass specialists, densities were associated with N, plus P, Mg, and Na. For forb specialists, N and P were often associated with density, but associations with Na and K were also observed. Finally, mixed-feeder abundance was strongly associated with biomass, and to a lesser extent P, Mg, Na, and Cu. At the community level, B, Ca, Zn, and Cu, plus biomass, explained > 30% of species composition variation. Our results confirm the positive association of N and P with insect herbivore populations, while suggesting a potential role for Mg, Na, and K. They also demonstrate the importance of exploring effects at the feeding-guild level. We hope our data motivate ecologists to think beyond N and P when considering plant nutrient effects on insect herbivores, and make a call for studies to examine functional responses of insect herbivores to dietary manipulation of Mg, Na, and K. Finally, our results demonstrate correlations between variation in nutrients and species assemblages, but factors not linked to plant nutrient quality or biomass likely explain most of the observed variation. 相似文献
19.
Plants have different strategies to cope with herbivory, including induction of chemical defences and compensatory growth.
The most favourable strategy for an individual plant may depend on the density at which the plants are growing and on the
availability of nutrients, but this has not been tested previously for marine plant–herbivore interactions. We investigated
the separate and interactive effects of plant density, nutrient availability, and herbivore grazing on the phlorotannin (polyphenolic)
production in the brown seaweed Ascophyllum nodosum. Seaweed plants grown at low or high densities were exposed either to nutrient enrichment, herbivorous littorinid gastropods
(Littorina obtusata), or a combination of nutrients and herbivores in an outdoor mesocosm experiment for 2 weeks. Seaweeds grown at a low density
tended to have higher tissue nitrogen content compared to plants grown at a high density when exposed to elevated nutrient
levels, indicating that there was a density dependent competition for nitrogen. Herbivore grazing induced a higher phlorotannin
content in plants grown under ambient, but not enriched, nutrient levels, indicting either that phlorotannin plasticity is
more costly when nutrients are abundant or that plants responded to herbivory by compensatory growth. However, there were
no significant interactive or main effects of plant density on the seaweed phlorotannin content. The results indicate that
plants in both high and low densities induce chemical defence, and that eutrophication may have indirect effects on marine
plant–herbivore interactions through alterations of plant chemical defence allocation. 相似文献
20.
Although ecologists have long recognized that certain mammalian species exhibit high-amplitude, often multiannual, fluctuations in abundance, their causes have remained poorly understood and the subject of intense debate. A key contention has been the relative role of density-dependent and density-independent processes in governing population dynamics. We applied capture-mark-recapture analysis to 25 years of monthly trapping data from a fluctuating prairie vole Microtus ochrogaster population in Illinois, USA, to estimate realized population growth rates and associated vital rates (survival and recruitment) and modeled them as a function of vole density and density-independent climatic variation. We also tested for phase dependence and seasonality in the effects of the above processes. Variation in the realized population growth rate was best explained by phase-specific changes in vole density lagged by one month and mean monthly temperatures with no time lags. The underlying vital rates, survival and recruitment, were influenced by the additive and interactive effects of phase, vole density, and mean monthly temperatures. Our results are consistent with the observation that large-scale population fluctuations are characterized by phase-specific changes in demographic and physiological characteristics. Our findings also support the growing realization that the interaction between climatic variables and density-dependent factors may be a widespread phenomenon, and they suggest that the direction and magnitude of such interactive effects may be phase specific. We conclude that density-dependent and density-independent climatic variables work in tandem during each phase of density fluctuations to drive the dynamics of fluctuating populations. 相似文献