首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
To investigate the mechanism of removal of selected pharmaceuticals in activated sludge systems, laboratory-scale batch experiments were conducted to assess the adsorption and degradation behavior of trace oxytetracycline (OTC). The adsorption equilibrium of OTC was observed in 30 min and the adsorption process could be well described by a pseudo-second-order model with a rate of 0.362 L μg?1 min?1. The OTC adsorption rate decreased with increasing temperature and could be fitted by the Freundlich isotherm. The linear partition coefficients (Kd) were 1.19, 0.999, and 0.841 L g?1 at temperatures of 15, 20, and 25 °C, respectively. Thermodynamic analysis revealed that the adsorption of OTC onto the inactivated sludge was spontaneous (ΔG = ?16.7 to ?17.0 kJ mol?1), enthalpy-driven (ΔH = ?24.9 kJ mol?1), entropy-retarded (ΔS = ?27.4 J (mol K)?1), and predominantly a physical adsorption.  相似文献   

2.
The use of different lower and higher alcohols viz; methanol, ethanol, n-propanol and n-octanol, for the synthesis of methyl, ethyl, propyl and octyl fatty acid esters by transesterification of vegetable oil (triglycerides) with respective alcohols also known as ‘Bio-diesel’ and ‘Bio-lubricants’ was studied in detail. The reactions were carried out in a batch process. The activity with different supports like clay (K-10), activated carbon, ZSM-5, H-beta and TS-1 were compared. The superacids (heteropolyacids, HPA) viz; Dodeca-Tungstophosphoric acid [H3PO4·12 WO3·xH2O] (TPA) and Dodeca-Molybdo phosphoric acid ammonium salt hydrate [H12Mo12N3-O40P + aq] (DMAA) was used to increase the acidity and so the activity by loading on the most active support viz; clay (K-10). These HPA loaded on clay as a catalyst was used for the following study: effect of percent HPA loading on clay, effect of different vegetable oils, effect of different alcohols on the triglyceride conversion based on glycerol formation and selectivity based on alkyl esters formation. The data is compared at the best-optimized identical set of operating reaction conditions: 170 °C, 170 rpm, catalyst loading: 5% (w/w of reaction mixture), molar ratio (oil: alcohol): 1:15 and time on stream of 8 h. The generated data is also evaluated based on the reported one.  相似文献   

3.
A soft wheat variety has been tested as the raw material for fuel ethanol production via a novel processing route. The bran stream produced by the break section of a Buhler mill was used as the sole nutrient source in solid-state fermentation for the production of hydrolytic enzymes by two fungal strains, Aspergillus awamori and Aspergillus oryzae. Co-fermentation of the two fungi was largely problematic because of a significant difference between their growth rates. A mixture of the two enzyme solutions produced by separate cultivation of the two strains was effective for simultaneous starch and protein hydrolyses. Response surface methodology was used to design ethanol production trials using the flour hydrolysate as the only nutrient source by Saccharomyces cerevisiae. In a medium containing 150 g l−1 glucose and 310 mg l−1 free amino nitrogen, ethanol yield on glucose reached 50.7%, i.e., 99.2% of the theoretical conversion ratio, in 72 h. The yield of CO2 from glucose was approximated as slightly higher than its theoretical yield due possibly to the availability of O2 in the early fermentation stage. The overall production of 2-methyl-1-butanol, 1-propanol, 2-methyl-1-propanol and 3-methyl-butanol in all trials of yeast fermentation remained below 1000 ppm. Mass balance calculation concluded conversion ratios of 29.61% (w/w) ethanol and 23.74% (w/w) CO2 from the wheat.  相似文献   

4.
Treatment of Methyl Orange (MO), an azo dye, synthetic wastewater by electrocoagulation with periodic reversal of the electrodes (PREC) was examined. Response Surface Methodology (RSM) was used to optimize the influence of experimental conditions for color removal (CR), energy consumption (ENC), electrode consumption (ELC) and sludge production (SP) per kg MO removed (kg(MOr)) with optimal conditions being found to be pH 7.4, solution conductivity (к) 9.4 mS cm−1, cell voltage (U) 4.4 V, current density (j) 185 mA cm−2, electrocoagulation time (T) 14 min, cycle of periodic reversal of electrodes (t) 15 s, inter-electrode distance (d) 3.5 cm and initial MO concentration of 125 mg L−1. Under these conditions, 97 ± 2% color was removed and ENC, ELC and SP were 44 ± 3 kWh kg(MOr)−1, 4.1 ± 0.2 kg(Al) kg(MOr)−1 and 17.2 ± 0.9 kg(sludge) kg(MOr)−1, respectively. With the enhanced electrochemical efficiency resulting from the periodic electrode reversal, the coefficients of increased resistance and decreased current density between the two electrodes in the PREC setup were 2.48 × 10−4 Ω cm−2 min−1 and 0.29 mA cm−2 min−1, respectively, as compared to 7.72 × 10−4 Ω cm−2 min−1 and 0.79 mA cm−2 min−1 as measured for the traditional electrocoagulation process. The rate constant of decolorization was also enhanced by 20.4% from 0.152 min−1 in the traditional electrocoagulation process to 0.183 min−1 in the PREC process. These performance characteristics indicate that the PREC approach may be more promising in terms of practical application, as a cost-effective treatment, than conventional electrocoagulation for textile dye removals.  相似文献   

5.
Biodegradability enhancement of landfill leachate using air stripping followed by coagulation/ultrafiltration (UF) processes was introduced. The air stripping process obtained a removal efficiency of 88.6% for ammonia nitrogen (NH4–N) at air-to-liquid ratio of 3500 (pH 11) for stripping 18 h. The single coagulation process increased BOD/COD ratio by 0.089 with the FeCl3 dosage of 570 mg l?1 at pH 7.0, and the single UF process increased the BOD/COD ratio to 0.311 from 0.049. However, the combined process of coagulation/UF increased the BOD/COD ratio from 0.049 to 0.43, and the final biological oxygen demand (BOD), chemical oxygen demand (COD), NH4–N and colour of leachate were 1223.6 mg l?1, 2845.5 mg l?1, 145.1 mg l?1 and 2056.8, respectively, when 3 kDa molecular weight cut-off (MWCO) membrane was used at the operating pressure 0.7 MPa. In ultrafiltration process, the average solution flux (JV), concentration multiple (MC) and retention rate (R) for COD was 107.3 l m?2 h?1, 6.3% and 84.2%, respectively.  相似文献   

6.
The effect of 7 mT (milliTesla) SMF (static magnetic field) on poly-3-hydroxybutyrate (PHB) production was studied at an acetate concentration of 260 Cmmol l?1 and temperature of 10 °C. The SMF decreased the specific acetate uptake rate by 29%, but increased the maximum PHB content and the yield of PHB on acetate by 32 and 28% respectively. The ratio qP/(qS ? qP), which described specific PHB production rate over the difference between specific acetate uptake rate and specific PHB production rate, was introduced for evaluation of the ratio of carbon flux into PHB synthesis and into the TCA (tricarboxylic acid) cycle. This value reached 2.3 when activated sludge culture was exposed to magnetic field of 7 mT, which was 1.1 times higher than the qP/(qS ? qP) value obtained without magnetic exposure. Therefore, the SMF promoted diversion of more acetyl-CoA towards PHB synthesis and could offset adverse effects of high acetate concentration and low temperature. These results provide evidence that SMF enhances PHB production by activated sludge.  相似文献   

7.
The start-up and operation of a partial nitritation sequencing batch reactor for the treatment of landfill leachate were carried out on intermittent aeration mode. Partial nitrite accumulation was established in 15 days after the mode was changed from continuous aeration to intermittent aeration. Despite the varying influent composition, partial nitritation could be maintained by adjusting the hydraulic retention time (HRT) and the air flow rate. An increase in the air flow rate together with a decrease in air off duration can improve the partial nitritation capacity and eventually result in the development of granular sludge with fine diameters. A nitrogen loading rate of 0.71 ± 0.14 kg/m3/d and a COD removal rate of 2.21 ± 0.13 kg/m3/d were achieved under the conditions of an air flow rate of 19.36 ± 1.71 m3 air/m3/h and an air on/off duration of 1.5 min/0.7 min. When the ratio of total air flux (TAF) to the influent loading rate (ILR) was controlled at the range of 163–256 m3 air/kg COD, a stable effluent NO3?–N/NOx?–N (NO2?–N plus NO3?–N) ratio below 13% was achieved. Interestingly, the effluent pH was found to be a good indicator of the effluent NO2?–N/NH4+–N ratio, which is an essential parameter for a subsequent anaerobic ammonium oxidation (Anammox) reactor.  相似文献   

8.
The objective of this study is to obtain information about the thermal decomposition behaviors of hydrazine (N2H4) caused by metals, using differential scanning calorimeter (DSC) and SuperCRC. The DSC measurements revealed that the exothermic reactions of N2H4 were caused by the reaction conditions such as the type of cells; the TDSC with a gold pan is 485.2 K and that with a glass capillary is 620.5 K. Besides, the activation energy of the thermal decomposition of N2H4, calculated from the Kissinger and Ozawa methods, were found to be about 38±2 kJ mol−1 in the gold pan and 141±8 kJ mol−1 in the glass capillary. Moreover, a heat flow profile was observed with SuperCRC during the mixing of N2H4 and the metal ion solution at 298 K. The maximum heat flow was related to the metal ion oxidative characters. The higher oxidative characters would provide a faster acceleration for the exothermic behavior than the lower oxidative ions. Based on this study, Mn(VII) and Cr(VI) were considered to exhibit strongly oxidative characteristics during mixing with N2H4.  相似文献   

9.
The fate of trace tetracycline, tetracycline resistant bacteria (TRB) and tetracycline resistant genes (TRGs) in an improved anaerobic-anoxic-oxic (AAO) wastewater treatment plant (WWTP) was investigated in this study. Quantitative real-time polymerase chain reaction (qPCR) and conventional heterotrophic plate count method were used to measure eight tet genes (tetA, tetB, tetC, tetE, tetM, tetO, tetS and tetX) and TRB, respectively. The TRB percent of total heterotrophic bacteria (THB) is about 1.31–24.1% in WWTP influent. Tet gene abundance in the WWTP varied greatly among the gene types. The concentrations of TRGs in effluent samples ranged from 7.11 × 10−9 to 1.53 × 10−4 copies/copy 16S rRNA gene. TRB and THB, tetM and tetO, tetE and tetX, but not the others, showed a significant correlation with each other (p < 0.01). The relationships between ribosomal protection protein genes, enzymatic modification gene and corresponding concentrations of antibiotics were found to be considerably significant (R2 = 0.898, p < 0.01 for ribosomal protection protein genes and R2 = 0.872, p < 0.05 for enzymatic modification gene).  相似文献   

10.
Nanoscale zero-valent iron (Fe0) was synthesized for nitrate denitrification. The reduction efficiency of nitrate decreased quickly with increasing initial pH value, increased considerably with the increasing dosage of nanoscale Fe0, and did not vary much with initial nitrate concentrations changing from 20 to 50 mg l?1 when the excessive amount of nanoscale Fe0 was utilized. With reductive denitrification of nitrate by nanoscale Fe0, the removal rate of nitrate reached 96.4% in 30 min with nanoscale Fe0 dosage of 1.0 g l?1 and pHin 6.7, and more than 85% of the nitrate was transformed into ammonia. Kinetics analysis in batch studies demonstrates that the denitrification of nitrate by nanoscale Fe0 involves reaction on the metal surface, which fits well the pseudo-first order reaction with respect to nitrate concentration. The observed reaction rate constant of reductive denitrification of nitrate was determined to be 0.086 min?1 with a nanoscale Fe0 dosage of 1.0 g l?1 and pHin 6.7. Fast and highly effective denitrification can be achieved by nanoscale Fe0 compared with commercial Fe0 powder, this is due to the extremely high surface area and high reactivity for nanoscale Fe0, which can enhance the denitrification efficiencies remarkably.  相似文献   

11.
In the Ag(II)/Ag(I) redox mediator integrated scrubber system, NO reacts with the Ag(II) ions produced by the electrochemical oxidation of Ag(I) in an electrochemical cell present in the scrubbing solution (aqueous HNO3 acid) to form NO2. This NO2 is then absorbed into the scrubbing solution and degraded to nitrate. Numerous experimental runs were carried out to evaluate the feasibility of the integrated system to treat industrial waste gases containing high NOx levels. The results showed that the levels of NO and NOx removal increased with increasing Ag(II) loading and contact time. Under optimized conditions, 93.5% and 73.3% of the NO and NOx, respectively, were removed by a single stage gas scrubber with 1.62 g L?1 Ag(II) operating at 25 °C and atmospheric pressure.  相似文献   

12.
Titania nanomaterial with an anatase structure and 5.6 nm crystallite size and 280.7 m2 g−1 specific surface areas had been successfully prepared by sol–gel/hydrothermal route. The effect of pH as a type of autoclave and calcination was studied. Crystallite size and phase composition of the prepared samples were identified. X-ray diffraction analyses showed the presence of anatase with little or no rutile phases. The crystallite size of the prepared TiO2 with acidic catalyst was both smaller than that prepared with basic catalyst, and was increasing after acidic calcinations by a factor 4–5. Basic calcinations produced a specific increase of 1.5. Rutile ratio and the particle size were increased after calcination at 500 °C. However, TiO2 powder synthesized using a basic catalyst persisted the anatase phase and a loosely aggregation of particles. Anatase TiO2 as prepared with acidic catalyst in Teflon lined stainless steel autoclave demonstrated the highest photocatalytic activity for degradation of 2,6-dichlorophenol-indophenol under ultraviolet irradiation with t½ 0.8 min.  相似文献   

13.
Simultaneous photocatalytic reduction of poisonous Cr(VI) and Ni(II) ions, coupled with photocatalytic oxidation of sodium dodecyl benzene sulfonate (SDBS) were studied with a trace amount of commercial titania nanoparticles and by means of a direct-photo-irradiation reactor. The co-presence of metal ions and SDBS causes metal ions reduction as well as SDBS oxidation to enhance and energy efficiency to improve. XRD, XPS and FTIR analysis were used to characterize TiO2 particles before and after usage with the aim of evaluating the mechanism of reactions. The effect of major operating parameters, pH and temperature, was investigated. Under conditions of [Cr(VI)]0 = [Ni(II)]0 = 5 mg/L, [SDBS]0 = 10 mg/L, [TiO2] = 40 mg/L, pH 6 and T = 35 °C; the removal efficiencies of 55.4%, 71.2% and 57.2% were obtained, respectively, for Cr(VI) and Ni(II) reduction, as well as for SDBS oxidation, after 110 min operation. The relevant kinetic model jointed with the Arrhenius equation was introduced. Pseudo-first-order reactions are relevant. Energy consumption (electrical and thermal) evaluations revealed that operations at higher temperatures provide significant cost reduction. Meantime, a criterion was proposed for a consistent assessment of this kind of processes.  相似文献   

14.
The aim of this work is the study of p-nitrophenol (PNP) removal, as a nitroaromatic compound, using a hybridized photo-thermally activated potassium persulfate (KPS) in a fully recycled batch reactor. Response surface method was used for modeling the process. Reaction temperature, KPS initial dosage and initial pH of the solution were selected as variables, besides PNP degradation efficiency was selected as the response. ANOVA analysis reveals that a second order polynomial model with F-value of 41.7, p-value of 0.0001 and regression coefficient of 0.95 is able to predict the response. Based on the model, the process optimum conditions were introduced as initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 66 °C. Also experiments showed that using thermolysis and photolysis of the persulfate simultaneously, the role of thermolysis is not considerable. A pseudo first order kinetic model was established to describe the degradation reaction. Operational cost, as a vital industrial criterion, was estimated so that the condition of initial pH of 4.5, [KPS]0 = 1452 mg/L and T = 25 °C showed the highest cost effective case. Under the preferred mild condition, the process will reach to 84% and 89% of degradation and mineralization efficiencies, after 60 and 120 min, respectively.  相似文献   

15.
In this study, pyrolysis of sugarcane bagasse was performed in fixed bed tubular reactor under the conditions of nitrogen atmosphere, by varying temperature and different particle sizes. The effect of final pyrolysis temperature from 400 to 500°C and the nitrogen flow rate from 50 to 200 cc min−1 on the pyrolysis product yields from sugarcane bagasse have been investigated. The Maximum bio-oil yield obtained is 24.12 wt% at the final pyrolysis temperature of 450°C, N2 flow rate of 50 cc min−1 and particle size of mesh number −8 + 12. The yield of bio-oil decreases with increase in temperature from 450 to 550°C and N2 flow rate from 50 to 200 cc min−1. The various characteristics of pyrolysis oil obtained under these conditions were identified on the basis of standard test methods. The empirical formula of pyrolysis oil with a heating value of 37.01 MJ Kg−1 was established as CH1.434 O0.555 N0.004. The results from the pyrolysis show the potential of sugarcane bagasse as an important source of liquid hydrocarbon fuel.  相似文献   

16.
Oxidative disintegration of municipal waste activated sludge (WAS) using conventional Fenton (Fe2+ + H2O2, CFP) and Fenton type (Fe0 + H2O2, FTP) processes was investigated and compared in terms of the efficiency of sludge disintegration and enhancement of anaerobic biodegradability. The influences of different operational variables namely sludge pH, initial concentration of Fe2+ or Fe0, and H2O2 were studied in detail. The optimum conditions have been found as catalyst iron dosage = 4 g/kg TS, H2O2 dosage = 40 g/kg TS and pH = 3 within 1 h oxidation period for both CFP and FTP. Kinetics studies were performed under optimal conditions. It was determined that the sludge disintegration was happened in two stages by both processes: rapid and subsequent slow disintegration stages and rapid sludge disintegration stage can be described by a zero-order kinetic model. The effects of oxidative sludge disintegration under the optimum conditions on anaerobic digestion were experienced with biochemical methane potential (BMP) assay in batch anaerobic reactors. Total methane production in the CFP and FTP pre-treated reactors increased by 26.9% and 38.0%, relative to the untreated reactor (digested the raw WAS). Furthermore, the total chemical oxygen demand reductions in the pre-treated reactors were improved as well.  相似文献   

17.
Biological control of odor gases has gained more attention in recent years. In this study, removal performance of a vertical bio-trickling filter inoculated with bacteria and fungi was studied. Bacteria and fungi were isolated from activated sludge in a sewage treatment plant. By adopting “three step immobilization method”, the bio-trickling filter could degrade pollutant immediately once hydrogen sulfide (H2S) passed. The optimal empty bed resident time was 20 s. The optimal elimination capacity was about 60 g H2S m?3 h?1 with removal efficiency of 95%. And the maximum elimination capacity was 170 g H2S m?3 h?1. Pressure drop was ranged between 5 and 15 mm H2O per bed over the whole operation. Removal efficiency was not affected obviously after terminating nutrient supply. The bio-trickling filter could recover back after shut down H2S gaseous and liquid supplies simultaneously. Microbial community structure in the bio-trickling filter was not changed significantly.Combining bacteria and fungi would be a better choice for inoculation into a bio-trickling filter because of the quickly degradation of H2S and rapid recovery under shut-down experiment. This is the first study attempting to combine bacteria and fungi for removal of H2S in a bio-trickling filter.  相似文献   

18.
Carbon coated monolith was prepared by sucrose solution 65 wt.% via dip-coating method. Sulfonation of incomplete carbonized carbon coated monolith was carried out in order to synthesize solid acid catalyst. The textural structure characteristics of the solid acid catalyst demonstrated a low surface area and pore volume. Palm fatty acid distillate (PFAD), a by-product of palm oil refineries, was utilized as oil source in biodiesel production. The esterification reaction subjected to different reaction conditions was performed by using the sulfonated carbon coated monolith as heterogeneous catalyst. The sulfonation process had been performed by using vapour of concentrated H2SO4 that was much easier and efficient than liquid phase sulfonation. Total acidity value of carbon coated monolith was measured for unsulfonated sample (0.5 mmol/g) and sulfonated sample (4.2 mmol/g). The effect of methanol/oil ratio, catalyst amount and reaction time were examined. The maximum methyl ester content was 89% at the optimum condition, i.e. methanol/oil molar ratio (15:1), catalyst amount (2.5 wt.% with respect to PFAD), reaction time (240 min) and temperature 80 °C. The sugar catalyst supported on the honeycomb monolith showed comparable reactivity compared with the sugar catalyst powder. However, the catalyst reusability studies showed decrease in FFA% conversion from 95.3% to 68.8% after four cycles as well as the total acidity of catalyst dropped from the value 4.2 to 3.1 mmol/g during these cycles. This might be likely due to the leaching out of SO3H group from the sulfonated carbon coated monolith surface. The leaching of active species reached a plateau state after fourth cycle.  相似文献   

19.
In this study, recalcitrant total phenol (TPh) and organic matter removal were investigated at olive mill wastewater (OMW) in sequential Coagulation and Fenton system. This study focused on different operational parameters such as pH, H2O2, and Fe2+ dosages, and [Fe2+]/[H2O2] ratios. The optimum conditions were determined as; pH = 3; [Fe2+] = 2.5 g/L; [Fe2+]/[H2O2] = 2.5. A higher treatment efficiency was achieved at sequential Coagulation and Fenton system (COD, 65.5%) and TPh, 87.2%), compared to coagulation process (COD, 51.4%; total organic carbon (TOC), 38.6% and total nitrogen (TN) 52.1%). This study demonstrated that the Coagulation and Fenton process has a potential for efficient removal of phenolic pollutants from wastewater.  相似文献   

20.
The feasibility of using endpoint pH control to achieve stable partial nitritation (PN) in an SBR for landfill leachate treatment was investigated. By imposing a fixed-time anoxia followed by variable-time aeration in an SBR cycle, successful partial nitritation was maintained for 182 days at a nitrogen loading rate of 0.30–0.89 kg/m3/day. The effluent NO2-N/NH4+-N ratio and the effluent NO3-N concentration were 1.30 ± 0.22 and 16 ± 9 mg/L, respectively. High free ammonia (FA) and low dissolved oxygen (DO) concentrations were inhibition factors of nitrate formation. The termination of aeration at a suitable endpoint pH was the key to achieve an effluent NO2-N/NH4+-N ratio close to the stoichiometric value. This endpoint pH control strategy represents practical potentials in the engineered application of combined PN–ANAMMOX processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号