首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In situ fixation of metals in soils using bauxite residue: chemical assessment   总被引:24,自引:0,他引:24  
Contamination of soils with heavy metals and metalloids is a widespread problem all over the world. Low cost, non-invasive, in situ technologies are required for remediation processes. We investigated the efficiency of a bauxite residue (red mud) to fix heavy metals in two soils, one contaminated by industrial activities (French soil), and one by sewage sludge applications (UK soil). This Fe-oxide rich material was compared with lime, or beringite, a modified aluminosilicate that has been used for in situ fixation processes. Four different crop species were successively grown in pots. Metal concentrations in the soil pore waters were analyzed during the growing cycles. At the end of the experiment fluxes of heavy metals were measured using a diffusive gradient in thin film technique (DGT). Furthermore, a sequential extraction procedure (SEP) and an acidification test were performed to investigate the mechanisms of metal fixation by different soil amendments. In both soils, the concentrations of metals in the soil pore water and metal fluxes were greatly decreased by the amendments. An application of 2% red mud performed as well as beringite applied at 5%. Increasing soil pH was a common mechanism of action for all the amendments. However, the red mud amendment shifted metals from the exchangeable to the Fe-oxide fraction, and decreased acid extractability of metals. The results suggest that specific chemisorption, and possibly metal diffusion into oxide particles could also be the mechanisms responsible for the fixation of metals by red mud.  相似文献   

2.

Purpose  

A former wood exploitation revealing high Cu and As concentration of the soils served as a case study for assisted phytoextraction.  相似文献   

3.
Following onto our work on the in situ remediation of soils contaminated with PAH's, PCB's and other polychlorinated organic compounds using microwave energy, we now report a preliminary investigation on the in situ remediation of soils contaminated with toxic metal ions: Cd(II), Mn(II), Th(IV), Cr(III) and mainly Cr(VI). The soil is partially vitrified in the process, and extraction with hot (70 degrees C) 35% nitric acid for 4.5 h leads to the recovery of very small amounts of the metals which had been spiked into the clean soil: Cd, Mn, and Cr(III) are completely immobilized (unextractable), Th is mostly unextractable, and Cr(VI) partially extractable at very high levels of spiking, but almost completely unextractable using the US EPA Toxicity Characteristic Leaching Procedure. This suggests that contaminated soils which are not going to be used for agricultural purposes can be remediated safely to preset depths without fear of the toxic metal ions leaching out for a long time.  相似文献   

4.
We present a field application of a new in situ technique to analyze phase transformations of fine lead oxide particles (50-100mum) in different soils directly in the field over 18 months. After the first month of exposure to a calcareous sand we found newly precipitated secondary mineral phases on the lead oxide. The samples exposed to two loamy soils (Dystric Cambisol and Luvisol) showed only very few traces of new phases. We identified the new phases as mainly lead-hydroxy carbonates (hydrocerussite). Whereas the results confirm the transformation of lead phases to lead carbonates in calcareous soil, they also show that an easily soluble phase such as PbO may persist in soils virtually unweathered for more than one year. The formation of a weathering crust is therefore not necessarily needed for preservation of easily soluble phases. The use of experimental in situ methods is thus giving new information on contaminant mineral behavior under field conditions.  相似文献   

5.
Liu R  Zhao D 《Chemosphere》2007,68(10):1867-1876
This study tested the feasibility of using a new class of iron phosphate (vivianite) nanoparticles synthesized using sodium carboxymethyl cellulose (NaCMC) as a stabilizer for in situ immobilization of Cu(II) in soils. Transmission electron microscopy measurements demonstrated that the particle size was about 8.4+/-2.9 nm. Batch tests showed that nano-sized vivianite particles can effectively reduce the leachability and in vitro bioaccessibility of Cu(II) in three representative soils (calcareous, neutral, and acidic) at the low doses of 0.61 and 3.01 mg PO(4) g(-1) soil. The Cu leachability was evaluated by the toxicity characteristic leaching procedure and in vitro bioaccessibility was evaluated by the physiological based extraction test. In the case of soil amendment with nanoparticles in 3.01 mg PO(4) g(-1) soil, Cu leachability reduced 63-87% and Cu concentrations in TCLP extract decreased from 1.74-13.33 mg l(-1) to 0.23-2.55 mg l(-1) after those soils were amended for 56 d. Meanwhile, the bioaccessibility of Cu was reduced by 54-69%. Sequential extraction procedures showed the significant decrease of water soluble/exchangeable Cu(II) and carbonate bound fractions and concomitant increase of Cu residual fraction after the soils were amended with the nanoparticles, suggesting that the formation of copper phosphate minerals through precipitation and adsorption was probably responsible for the decrease of Cu availability in soils. Visual MINTEQ modeling further revealed that Cu(3)(PO(4))(2) and Cu(5)(PO(4))(3)OH were formed in the vivianite-solid Cu(II) system, resulting in the decreased solubility of the Cu(II) in the acidic pH range.  相似文献   

6.
Leaching of heavy metals from contaminated soils using EDTA   总被引:40,自引:0,他引:40  
Ethylenediaminetetraacetic acid (EDTA) extraction of Zn, Cd, Cu and Pb from four contaminated soils was studied using batch and column leaching experiments. In the batch experiment, the heavy metals extracted were virtually all as 1:1 metal-EDTA complexes. The ratios of Zn, Cd, Cu and Pb of the extracted were similar to those in the soils, suggesting that EDTA extracted the four heavy metals with similar efficiency. In contrast, different elution patterns were obtained for Zn, Cd, Cu and Pb in the column leaching experiment using 0.01 M EDTA. Cu was either the most mobile or among the most mobile of the four heavy metals, and its peak concentration corresponded with the arrival of full strength EDTA in the leachate. The mobility of Zn and Cd was usually slightly lower than that of Cu. Pb was the least mobile, and its elution increased after the peaks of Cu and Zn. Sequential fractionations of leached and un-leached soils showed that heavy metals in various operationally defined fractions contributed to the removal by EDTA. Considerable mobilisation of Fe occurred in two of the four soils during EDTA leaching. Decreases in the Fe and Mn oxide fraction of heavy metals after EDTA leaching occurred in both soils, as well as in a third soil that showed little Fe mobilisation. The results suggest that the lability of metals in soil, the kinetics of metal desorption/dissolution and the mode of EDTA addition were the main factors controlling the behaviour of metal leaching with EDTA.  相似文献   

7.
植物混种原位修复多环芳烃污染农田土壤   总被引:2,自引:1,他引:1  
通过比较实验前后土壤微生物主要类群数量、PAHs降解菌数量、土壤PAHs含量和植物不同部位PAHs含量变化,评价植物单种和混种野外原位修复多环芳烃(PAHs)污染农田土壤的效果。结果显示,150 d天生长期内,黑麦草/小麦混种及黑麦草/蚕豆混种修复效果最好,对土壤PAHs总量的降解率分别达到了59.4%和64.8%。同时,这2个混种处理土壤细菌、真菌和PAHs降解菌数量分别显著高于相应的小麦、蚕豆和黑麦草单种处理。植物不同部位PAHs含量高低次序为根部>茎叶≈籽粒。混种模式下,蚕豆和小麦不同部位PAHs含量比单种模式的不同程度降低,特别是籽粒部。植物混种模式不仅显著提高了土壤PAHs的降解率,还降低了农作物体内PAHs含量,实现了边生产边修复,在污染农田土壤修复领域有着广阔的应用前景。  相似文献   

8.
改良剂与植被联合修复是促进赤泥土壤化的关键,但其对赤泥团聚体中养分和微生物特性的影响尚不清晰。通过开展盆栽修复实验探究改良剂 (磷石膏、木醋液、鱼粪、菌渣) 与黑麦草联合修复对赤泥团聚体中养分、酶活性、微生物群落空间分异特征的影响。结果表明,在改良剂与植被联合修复赤泥后,大团聚体 (>0.25 mm) 和微团聚体 (<0.25 mm) 占比分别减少和增加。团聚体中有机质、养分质量分数、酶活性及微生物群落Alpha多样性指数显著增加 (P<0.05) ,且主要分布于<1 mm团聚体。此外,团聚体养分、酶活性、微生物群落间呈显著正相关 (P<0.05) 。本研究结果可为深入了解赤泥土壤化过程中养分迁移转化机理及修复植物的养分自维持机制提供参考。  相似文献   

9.
Red mud (RM) is a strongly alkaline residue generated in enormous amounts worldwide from bauxite refining using the Bayer chemical process. RM is composed mainly of Fe, Ti and Al oxides and hydroxides, but it also contains an array of trace metals and metalloids at different concentrations. The purpose of this paper is to assess the potential mobility of metals in RM, with special emphasis on pH effect. The ‘operational’ distribution and leachability of metals within/from RM was studied by applying a sequential extraction procedure (SEP) and several leaching tests (rapid titration, equilibration acidification, batch leaching with acetic acid and also the toxicity characteristics leaching procedure (TCLP) and the DIN 38414-S4 procedures, used as reference methods) carried out at different pH, solid/liquid ratio, extraction period and type of acid (HCl or acetic acid). Chemical analysis showed that, in addition to the major metals Fe, Al and Ti, RM contains several trace metals, some of them (Cr, Cu and Ni) in concentrations exceeding the regulatory limits. SEP showed that a majority of the metals in the RM (between the 32.2?±?8.5 for Cd and 95.3?±?0.4 % for Ni) were found in the residual fraction, suggesting that they are not readily mobile under normal environmental conditions. Leaching tests performed at different pH showed that a significant fraction of the metals is mobilised from RM only under very strong acid conditions (pH?<?2), whereas Al is released in considerable amounts at pH?<?5.3. Among the trace metals, Cr requires special attention because of its relative high concentration in RM and the higher concentrations of this metal mobilised at low pH. The leaching tests using acetic acid showed that the standard TCLP largely underestimates the release of trace metals from RM, and therefore it is not advisable to evaluate the actual potential leaching of trace metals from this residue.  相似文献   

10.
Diffusion experiments in compacted bentonite have been carried out in situ using the borehole laboratory CHEMLAB. The "ordinary" anion iodide and the redox-sensitive pertechnetate ion have been investigated. In spite of strongly reducing groundwater conditions, technetium was found to diffuse mostly unreduced as TcO4-, although in some spots in the compacted clay, the activity was significantly higher, which may be explained by reduction of some TcO4- by iron-containing minerals in the bentonite. The measured concentration profiles in the clay cannot be accommodated by assuming one single diffusion process. The experimental data are modeled assuming two diffusion paths, intralamellar diffusion and diffusion in external water. The apparent diffusivity for the intralamellar diffusion was found to be 8.6 x 10(-11) m2 s(-1) for iodide with a capacity factor of 0.1, while the apparent diffusivity for the diffusion in external water was found to be 5 x 10(-14) m2 s(-1) with alpha=2.26. The corresponding values for Tc were found to be Da= 6 x 10(-11) m2 s(-1), alpha=0.1 and Da= 1 x 10(-13) m2 s(-1), alpha=0.46, respectively. The diffusion constants and capacity factors obtained in this study are in accordance with data from laboratory experiments.  相似文献   

11.
Whether the radial thickness (RT) of the chloragogenous tissue and intestinal epithelium of earthworms (Lumbricus terrestris) reflects the bioavailability of metals in soils was investigated in two areas, one with active volcanism (Furnas) and another with no volcanic activity since 3 million years ago (Santa Maria), in the Azores. Metal contents in soil samples and earthworms from the two areas were analyzed. Autometallography and measurements of the RT were performed in the chloragogenous tissue and intestinal epithelium. Earthworms from the active volcanic area demonstrated lower RT of chloragogenous tissue and intestinal epithelium as well as higher levels of bioavailable metals, especially Zn and Cd. Comparison of bioavailable metal contents between both areas suggests a higher risk for uptake of potentially toxic metals in the active volcanic area than in the non-active volcanic area, which is reflected by the lower RT of the chloragogenous tissue and intestinal epithelium in the former.  相似文献   

12.
The city of East St. Louis, IL, has a history of abundant industrial activities including smelters of ferrous and non-ferrous metals, a coal-fired power plant, companies that produce organic and inorganic chemicals, and petroleum refineries. A protocol for soil analysis was developed to produce sufficient information on the extent of heavy metal contamination in East St. Louis soils. Soil cores representing every borough of East St. Louis were analyzed for heavy metals--As, Cd, Cu, Cr, Hg, Ni, Pb, Sb, Sn, and Zn. The topsoil contained heavy metal concentrations as high as 12.5 ppm Cd, 14,400 ppm Cu, ppm quantities of Hg, 1860 ppm Pb, 40 ppm Sb, 1130 ppm Sn, and 10,360 ppm Zn. Concentrations of Sb, Cu, and Cd were well correlated with Zn concentrations, suggesting a similar primary industrial source. In a sandy loam soil from a vacated rail depot near the bank of the Mississippi River, the metals were evenly distributed down to a 38-cm depth. The clay soils within a half-mile downwind of the Zn smelter and Cu products company contained elevated Cd (81 ppm), Cu (340 ppm), Pb (700 ppm), and Zn (6000 ppm) and displayed a systematic drop in concentration of these metals with depth. This study demonstrates the often high concentration of heavy metals heterogeneously distributed in the soil and provides baseline data for continuing studies of heavy metal soil leachability.  相似文献   

13.
14.

Background, aim and scope  

In an alumina refinery, bauxite ore is treated with sodium hydroxide at high temperatures and pressures and for every tonne of alumina produced, about 2 tonnes of alkaline, saline bauxite processing waste is also produced. At Alcoa, a dry stacking system of disposal is used, and it is the sand fraction of the processing waste that is rehabilitated. There is little information available regarding the most appropriate amendments to add to the processing sand to aid in revegetation. The purpose of this study was to investigate how the addition of organic wastes (biosolids and poultry manure), in the presence or absence of added residue mud, would affect the properties of the residue sand and its suitability for revegetation.  相似文献   

15.
Long-term residue of DDT compounds in forest soils in Maine   总被引:3,自引:0,他引:3  
Soils in forests sprayed aerially with DDT in 1958-1967 have been sampled for persistence of residues at intervals since then and most recently in 1993. Results of all the samples are presented and show persistence through 30 years, with evidence of decline of residue only in the third decade. The metabolites of DDT--DDE and DDD--increased over time, each comprising about a third of total residue in 1993. Residue continues to be held in the organic mat with little evidence of movement downward to the inorganic soil horizons.  相似文献   

16.
Salinity increases mobility of heavy metals in soils   总被引:11,自引:0,他引:11  
The effect of salinity induced by CaCl2, MgCl2, NaCl and Na2SO4 on the mobility of Cu, Cd, Pb and Zn was studied. An increase of ionic strength by any salts promoted a higher release of Cd than the others metals. When CaCl2 and NaCl were applied, Cd and Pb showed the highest degree of mobilization. When MgCl2 was applied, Cd and Cu were mobilized the most. Finally, an increase of Na2SO4 also promoted the strongest mobilization of Cd and Cu.As the total heavy metal content was higher, the percentage of Pb and Cu released upon salinization decreased, indicating that these metals are strongly bound to soil constituents. An increase of carbonates in the soil promoted a higher release of Pb for all used salts and for Zn when MgCl2 and NaCl were used. This indicates that Pb and Zn are adsorbed on the surface of carbonate crystals. An increase of fine particles promoted a decrease of percentage of released Cd for all salts, indicating that Cd is strongly retained in the fine fractions.The main mechanism regulating Pb and Cd mobility was competition with Ca2+ for sorption sites followed for metal chloro-complexation, association between the Cd/Pb-sulfates and competition with Mg2+. The main mechanism regulating Cu mobility was the formation of Cu-sulfate, followed by competition with cations (Mg > Ca) and chloride. For Zn, competition with Ca2+ for sorption sites was the most important process for its mobility; followed by Zn-sulfate association and, finally, chloride and competition with Mg with the same effect.  相似文献   

17.

Purpose  

To examine (1) the effect of organic (poultry manure) and inorganic (residue mud and phosphogypsum) amendments on nutrient leaching losses from residue sand and (2) whether amendments improve the growth of plants in residue sand.  相似文献   

18.
Heavy metals of the Tibetan top soils   总被引:1,自引:0,他引:1  

Objective

Due to its high elevation, rare human activities and proximity to south Asia where industries are highly developed, it is required to investigate the fragile environment of the Tibetan Plateau. We are aiming to obtain the concentration level, source, spatial distribution, temporal variation and potential environmental risk of Tibetan soils.

Methods

A total of 128 surf ace soil samples were collected and analyzed f or V, Cr, Mn, Co, Ni, Cu, Zn, As, Cd and Pb, and an additional 111 samples were analyzed f or Hg and total organic carbon. Concentration comparisons coupled with multivariate statistics were used to analysis the sources of elements of soils. We also carried out Risk assessment on the soils.

Results

Concentrations of Hg, Cr, Ni, Cd and Pb are slightly higher than those of the late 1970s. Concentrations of Cr and Ni are higher than averaged world background values. Tibetan soils present a high natural As concentration level.

Discussion

Anthropogenic sources may partly contribute to the elevated Hg, Cd and Pb concentrations. Cr and Ni are mainly originated from soil parent materials. Soil elements in Anduo and Qamdo regions may threaten the health of local people.

Conclusion

Heavy metal elements of Tibetan Plateau are mainly from the natural source. Arsenic present a high background level. Soil elements in Anduo and Qamdo regions may threaten the health of local people, which should be of concern to scientists and the government.  相似文献   

19.
An investigation was conducted to determine whether effective strains of Rhizobium leguminosarum biovar. trifolii capable of symbiotic N2 fixation with white clover (Trifolium repens) were present in a range of metal-contaminated soils. A number of historically sewage-amended sites (including experimental, pasture grassland and arable sites) were selected and compared with highly contaminated samples from abandoned heavy metal mines. Many sites had metal concentrations above the limits established by the UK Government, based on those developed by the European Commission (EC) for sludge-amended soils. Acetylene reduction activity (ARA) was used to screen the samples for effective N2 fixation. When the host plant was indigenous to the sward, rhizobia were found in the nodules and in the soil rhizosphere at all the sites tested. They were shown to be capable of effective symbiosis and N2 fixation, even though metal concentrations greatly exceeded the soil metal limits in some cases. However, nodulation failed to occur in some cases where T. repens was not indigenous to metal-contaminated soils. This indicated either that an ineffective rhizobial population was present, or that effective cells were absent from the soil. The influence of individual metals on ARA could not be determined conclusively because of the confounding effects of soil physicochemical variability and the presence of different metals at high concentrations together in the soil. However, Cd concentrations appeared to be particularly important in determining the presence of effective ARA in soils with no indigenous clover. In contrast to previous studies, the results presented here suggest that heavy metals may have had a quantitative effect on the free-living population of rhizobia, rather than a genetic effect.  相似文献   

20.
A combined chemical and biological treatment scheme was evaluated in this study aiming at obtaining the simultaneous removal of metalloid arsenic and cationic heavy metals from contaminated soils. The treatment involved the use of the iron reducing microorganism Desulfuromonas palmitatis, whose activity was combined with the chelating strength of EDTA. Taking into consideration that soil iron oxides are the main scavengers of As, treatment with iron reducing microorganisms aimed at inducing the reductive dissolution of soil oxides and thus obtaining the release of the retained As. The main objective of using EDTA was the removal of metal contaminants, such as Pb and Zn, through the formation of soluble metal chelates. Experimental results however indicated that EDTA was also indispensable for the biological reduction of Fe(III) oxides. The bacterial activity was found to have a pronounced positive effect on the removal of arsenic, which increased from the value of 35% obtained during the pure chemical treatment up to 90% in the presence of D. palmitatis. In the case of Pb, the major part, i.e. approximately 85%, was removed from soil with purely chemical mechanisms, whereas the biological activity slightly improved the extraction, increasing the final removal up to 90%. Co-treatment had negative effect only for Zn, whose removal was reduced from 80% under abiotic condition to approximately 50% in the presence of bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号