首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
讨论了近年来国内外电厂煤燃烧过程中汞的形态分布以及迁移转化规律研究的最新成果 ,并在此基础上评价了现有电站污染控制系统的脱汞性能 ,考虑到汞的排放控制 ,提出了对现有设备的可能优化措施。在分析中 ,注意到汞的易挥发性 ,认为汞排放控制应该充分考虑烟气中汞形态的迁移转化。由于氧化态汞在汞控制中有着重要作用 ,其研究将是控制电厂汞排放的关键。先进的汞排放控制技术的开发应以增强汞的氧化态为优先发展方向。  相似文献   

2.
The goal of this paper is to assess the current status and trends of total mercury (THg) contamination of the atmosphere and terrestrial ecosystems in Poland. The study shows that the reduced domestic and worldwide atmospheric emission of Hg resulted in decreased THg level in the terrestrial biotope and biosphere. Considering that Poland is one of the main Hg emitters in Europe, the THg concentrations in its abiotic environment are still elevated. However, the THg level in terrestrial organisms is relatively low, which is because a large proportion of Hg deposited on land is accumulated in organic-rich soils. Regarding the THg concentration, consumption of wildlife and livestock from Poland is safe for humans. Nevertheless, the authors indicate the need for effective environmental monitoring, based on selected bioindicators, which is crucial considering the slowing reduction of Hg emission combined with the consequences of the changing climate.Supplementary InformationThe online version contains supplementary material available at 10.1007/s13280-021-01505-1.  相似文献   

3.
Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary for further reduction of elemental Hg discharge in the long-term.  相似文献   

4.
The UN Global Mercury Assessment (GMA) estimates that atmospheric emissions of mercury from Australian stationary combustion sources were 97.0 tonnes for the year of 1995. This is more than 90% of the estimated emissions from stationary combustion for the whole of North America, and seems abnormally high for a country with a population of around 20 million, in spite of the fact that most of Australia's stationary energy supply is provided by coal. It is also significantly larger than previous estimates of mercury emissions from Australian sources. New estimates of Australian mercury emissions from stationary energy sources, based on both a top down and bottom up approach, are presented. These estimates can be reconciled for black coal fired power stations, but suggest that the bottom up approach (the Australian National Pollutant Inventory) significantly under-estimates emissions from brown coal fired plant, if mercury capture efficiencies in these plants are low, as observed for lignite-fired plant. The major uncertainties in these estimates are the coal mercury content in coals burnt in Australian power stations, and the mercury capture efficiency in particulate control devices used at these stations. Based on these estimates, Australian emissions of mercury from stationary energy are currently 2–8 tonnes/year, significantly lower than the GMA estimate.  相似文献   

5.
GOAL, SCOPE AND BACKGROUND: Mercury (Hg) emission from combustion flue gas is a significant environmental concern due to its toxicity and high volatility. A number of the research efforts have been carried out in the past decade exploiting mercury emission, monitoring and control from combustion flue gases. Most recently, increasing activities are focused on evaluating the behavior of mercury in coal combustion systems and developing novel Hg control technologies. This is partly due to the new regulatory requirement on mercury emissions from coal-fired combustors to be enacted under the U.S. Title III of the 1990 Clean Air Act Amendments. The aim of this review work is to better understand the state-of-the-art technologies of flue gas mercury control and identify the gaps of knowledge hence areas for further opportunities in research and development. MAIN FEATURES: This paper examines mercury behaviors in combustion systems through a comprehensive review of the available literature. About 70 published papers and reports were cited and studied. RESULTS AND DISCUSSION: This paper summarizes the mechanisms of formation of mercury containing compounds during combustion, its speciation and reaction in flue gas, as well as subsequent mobilization in the environment. It also provides a review of the current techniques designed for real-time, continuous emission monitoring (CEM) for mercury. Most importantly, current flue gas mercury control technologies are reviewed while activated carbon adsorption, a technology that offers the greatest potential for the control of gas-phase mercury emissions, is highlighted. CONCLUSIONS AND RECOMMENDATIONS: Although much progress has been achieved in the last decade, techniques developed for the monitoring and control of mercury from combustion flue gases are not yet mature and gaps in knowledge exist for further advancement. More R&D efforts are required for the effective control of Hg emissions and the main focuses are identified.  相似文献   

6.
本文简要综述了煤中汞的分布规律、赋存状态、成因及燃烧过程中迁移转化和对环境的影响  相似文献   

7.
The first reports that it is possible to emit dioxins from the heat and power generation sector are from the beginning of the 1980s. Detailed research proved that the emission of dioxins might occur during combustion of hard coal, brown coal, and furnace oil as well as coke-oven gas. The emission of dioxins occurs in wood incineration; wood that is clean and understood as biomass; or, in particular, wood waste (polluted). This paper thoroughly discusses the mechanism of dioxin formation in thermal processes, first and foremost in combustion processes. The parameters influencing the quantity of dioxins formed and the dependence of their quantity on the conditions of combustion are highlighted. Furthermore, the methods of reducing dioxin emissions from combustion processes (primary and secondary) are discussed. The most efficacious methods that may find application in the heat and power generation sector are proposed; this is relevant from the point of view of the implementation of the Stockholm Convention resolutions in Poland with regard to persistent organic pollutants.  相似文献   

8.
Particulate matter (PM) has been becoming the principal urban pollutant in many major cities in China, and even all over the world. It is reported that the coal combustion process is one of the main sources of PM in the atmosphere. Therefore, an investigation of formation and emission of fine primary PM in coal combustion was conducted. First, the sources and classification of coal-fired primary PM were discussed; then their formation pathways during the coal combustion process were analyzed in detail. Accordingly, the emission control methods for fine particles generated from coal-fired power plants were put forward, and were classified as precombustion control, in-combustion control, and postcombustion control. Precombustion control refers to the processes for improving the coal quality before combustion, such as coal type selection and coal preparation. In-combustion control means to take measures for adjusting the combustion conditions and injection of additives during the combustion process to abate the formation of PM. Postcombustion control is the way that the fine PM are aggregated into larger ones by some agglomeration approaches and subsequently are removed by dust removal devices, or some high-performance modifications of conventional particle emission control devices (PECDs) can be taken for capturing fine particles. Finally, some general management suggestions are given for reducing fine PM emission in coal-fired power plants.
ImplicationsThe analysis and discussions of coal properties and its combustion process are critical to recognizing the formation and emission of the fine primary PM in combustion. The measures of precombustion, in-combustion, and postcombustion control based on the analysis and discussions are favorable for abating the PM emission. Practically, some measures of implementation do need the support of national policies, even needing to sacrifice economy to gain environmental profit, but this is the very time to execute these, and high-performance PECDs, especially novel devices, should be used for removing fine PM in flue gas.  相似文献   

9.
Mercury emissions concentrations, emission factors, and the total national emission from major anthropogenic sources in Korea for the year 2007 were estimated. Uncontrolled and controlled mercury emission factors and the total emission from each source types are presented. The annual national mercury emission from major anthropogenic sources for the year 2007, on average was 12.8 ton which ranged from 6.5 to 20.2 ton. Averaged emissions of elemental, oxidized, and particulate mercury were estimated at 8.25 ton, 3.69 ton, and 0.87 ton, respectively. Due to the removal of a major portion of particulate and oxidized mercury species, elemental mercury was dominant in stack emission. About 54.8% of mercury emission was contributed by industrial sources, 45.0% by stationary combustion sources and 0.02% by mobile sources. Thermal power plants, oil refineries, cement kilns and incinerators (municipal, industrial, medical, sewage sludge) were the major mercury emitters, contributing about 26%, 25%, 21% and 20%, respectively to the total mercury emission. Other sources (crematory, pulp and paper manufacturing, nonferrous metals manufacturing, glass manufacturing) contributed about 8% of the total emission. Priority should be given in controlling mercury emissions from coal-fired power plants, oil refineries, cement kilns and waste incinerators. More measurements including natural and re-emission sources are to be carried out in the future in order to have a clear scenario of mercury emission from the country and to apply effective control measures.  相似文献   

10.

Due to its adverse impact on health, as well as its global distribution, long atmospheric lifetime and propensity for deposition in the aquatic environment and in living tissue, the US Environmental Protection Agency (US EPA) has classified mercury and its compounds as a severe air quality threat. Such widespread presence of mercury in the environment originates from both natural and anthropogenic sources. Global anthropogenic emission of mercury is evaluated at 2000 Mg year−1. According to the National Centre for Emissions Management (Pol. KOBiZE) report for 2014, Polish annual mercury emissions amount to approximately 10 Mg. Over 90% of mercury emissions in Poland originate from combustion of coal.

The purpose of this paper was to understand mercury behaviour during sub-bituminous coal and lignite combustion for flue gas purification in terms of reduction of emissions by active methods. The average mercury content in Polish sub-bituminous coal and lignite was 103.7 and 443.5 μg kg−1. The concentration of mercury in flue gases emitted into the atmosphere was 5.3 μg m−3 for sub-bituminous coal and 17.5 μg m−3 for lignite. The study analysed six low-cost sorbents with the average achieved efficiency of mercury removal from 30.6 to 92.9% for sub-bituminous coal and 22.8 to 80.3% for lignite combustion. Also, the effect of coke dust grain size was examined for mercury sorptive properties. The fine fraction of coke dust (CD) adsorbed within 243–277 μg Hg kg−1, while the largest fraction at only 95 μg Hg kg−1. The CD fraction < 0.063 mm removed almost 92% of mercury during coal combustion, so the concentration of mercury in flue gas decreased from 5.3 to 0.4 μg Hg m−3. The same fraction of CD had removed 93% of mercury from lignite flue gas by reducing the concentration of mercury in the flow from 17.6 to 1.2 μg Hg m−3. The publication also presents the impact of photochemical oxidation of mercury on the effectiveness of Hg vapour removal during combustion of lignite. After physical oxidation of Hg in the flue gas, its effectiveness has increased twofold.

  相似文献   

11.
The present paper summarises the results of the project: 'Survey of Anthropogenic Sources of Dioxins and Furans in the Baltic Region'. As a part of the project, inventories have been carried out in Estonia, Latvia, Lithuania and Poland by applying the toolkit for quantification of dioxin and furan releases developed by UNEP Chemicals. The main route of direct releases to the environment is emission to air. Total emission to air from Poland was estimated at 490 (88-1,300) g I-TEQ/year, whereas the emissions from Estonia, Latvia and Lithuania were estimated as being 14 (2.4-54), 23 (2.6-63) and 17 (2.6-38) g I-TEQ, respectively. In general, the uncertainty on the estimates is very high, and recommendations regarding further development of the inventories have been made, and measures for reducing the releases have been provided.  相似文献   

12.
Regulatory control of mercury emission from anthropogenic sources has become a global concern in the recent past. Coal-fired power plants are one of the largest sources of anthropogenic mercury emission into the atmosphere. This paper summarizes the current reducing trend of mercury emission as co-beneficial effect by more stringent regulation changes to control primary air pollutants with introducing test results from the commercial coal-fired facilities and suggesting a guideline for future regulatory development in Korea. On average, mercury emission concentrations ranged 16.3–2.7 μg Sm?3, 2.4–1.1 μg Sm?3, 3.1–0.7 μg Sm?3 from anthracite coal-fired power plants equipped with electrostatic precipitator (ESP), bituminous coal-fired power plants with ESP + flue gas desulphurization (FGD) and bituminous coal-fired power plants with selective catalytic reactor (SCR) + cold side (CS) ? ESP + wet FGD, respectively. Among the existing air pollution control devices, the best configuration for mercury removal in coal-fired power plants was SCR + CS ? ESP + wet FGD, which were installed due to the stringent regulation changes to control primary air pollutants emission such as SO2, NOx and dust. It was estimated that uncontrolled and controlled mercury emission from coal-fired power plants as 10.3 ton yr?1 and 3.2 ton yr?1 respectively. After the installation of ESP, FGD and SCR system, following the enforcement of the stringent regulation, 7.1 ton yr?1 of mercury emission has been reduced (nearly 69%) from coal-fired power plants as a co-benefit control. Based on the overall study, a sample guideline including emission limits were suggested which will be applied to develop a countermeasure for controlling mercury emission from coal-fired power plants.  相似文献   

13.
混汞法是一种设备简单、操作简便且应用历史悠久的提金方法 ,在世界范围内得到了普遍使用 ,同时也导致了严重的汞污染。本文介绍了混汞法的流程以及汞的释放过程和释放因子 ;综述了应用混汞法提金的不同国家和地区 ,对由此引发的大气、水体、生物 (包括人体 )和土壤汞污染的研究现状 ,并讨论了采金地区的环境管理政策  相似文献   

14.
This paper presents results of a survey of mercury concentrations in coal, ash, water, fly ash, and flue gas discharges from a 5.5 × 106 Ib/hr steam generator serving a 775 MW (net) turbine-generator set. Representative composite or grab samples were obtained for inlet coal and outlet ash and water. Stack samples were obtained for fly ash and mercury vapor emissions while the unit was operated at 660 MW (net) (85% of full load). Samples were analyzed by anodic stripping voltammetry, plasma emission spectroscopy, and neutron activation analysis to determine mercury concentration entering the furnace in the coal and leaving the furnace in the flue gas, fly ash, bottom and hopper ash, and water. Method inter-comparisons are discussed. A material balance for mercury has been calculated from fuel, ash, and stack gas flow rates. About 90% of the mercury in the coal is released and appears as vapor discharged in the stack gas while 10% remains in the residual ash. For a 700 MW (net) unit, about 5 lb/day of mercury vapor is released to the atmosphere.  相似文献   

15.
Anthropogenic mercury emissions in China   总被引:18,自引:0,他引:18  
An inventory of mercury emissions from anthropogenic activities in China is compiled for the year 1999 from official statistical data. We estimate that China's emissions were 536 (±236) t of total mercury. This value includes open biomass burning, but does not include natural sources or re-emission of previously deposited mercury. Approximately 45% of the Hg comes from non-ferrous metals smelting, 38% from coal combustion, and 17% from miscellaneous activities, of which battery and fluorescent lamp production and cement production are the largest. Emissions are heaviest in Liaoning and Guangdong Provinces, where extensive smelting occurs, and in Guizhou Province, where there is much small-scale combustion of high-Hg coal without emission control devices. Emissions are gridded at 30×30 min spatial resolution. We estimate that 56% of the Hg in China is released as Hg0, 32% as Hg2+, and 12% as Hgp. Particulate mercury emissions are high in China due to heavy burning of coal in residential and small industrial settings without PM controls. Emissions of Hg2+ from coal-fired power plants are high due to the absence of flue-gas desulfurization units, which tend to dissolve the soluble divalent mercury. Metals smelting operations favor the production of elemental mercury. Much of the Hg is released from small-scale activities in rather remote areas, and therefore the activity levels are quite uncertain. Also, emissions test data for Chinese sources are lacking, causing uncertainties in Hg emission factors and removal efficiencies. Overall, we calculate an uncertainty level of ±44% (95% confidence interval) in the estimate of total emissions. We recommend field testing of coal combustors and smelters in China to improve the accuracy of these estimates.  相似文献   

16.
This paper reviews the information on trends of past emissions of mercury, lead, and cadmium in Europe, as well as examines current levels and future scenarios of these emissions. The impact of various factors on emission changes is discussed including the implementation of various strategies of emission controls in Europe. Future emissions are forecasted on the basis of various scenarios of economy growth in Europe, implementation of European and global legislation (e.g. the Kyoto agreement), population changes, etc.Changes of emissions of mercury, lead, and cadmium are then related to the changes of concentrations of these contaminants in air and precipitation samples at selected stations in Europe. It can be concluded that the reduction trends of anthropogenic emissions of cadmium and lead in Europe are similar to the reduction trends of air concentrations of these metals during the last 2 decades. Somewhat different relationship has been noted for changes in emissions and precipitation. In general for Europe, 60% reduction of Cd emissions was met by about 45% reductions of Cd concentrations in precipitation at the studied stations during the last 2 decades.There is a potential for further reduction of these emissions until the year 2010 up to about 37% for Cd, 51% for Pb, and 49% for Hg as estimated within various emission scenarios presented in the paper.  相似文献   

17.
PCDDs/PCDFs, dl-PCBs and HCB in the flue gas from coal fired CFB boilers   总被引:1,自引:0,他引:1  
The aim of the project was to measure the actual emissions of polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), dioxin-like polychlorinated biphenyls (dl-PCBs) and hexachlorobenzene (HCB) from four selected power plants in Poland in order to update the national inventory of PCDDs/PCDFs emission. Relatively low PCDDs/PCDFs as well as dl-PCBs concentrations in flue gas obtained in measurements in this study for four different circulated fluidized bed (CFB) boilers indicate practical absence of any hazards caused by PCDDs/PCDFs emission from these units. The results of PCDDs/PCDFs determination obtained in this study indicate that hard coal combustion in large CFB in the four central heating plants (CHP) is not a significant source of PCDDs/PCDFs emission to the environment even if operated by co-firing of waste coal. PCDDs/PCDFs concentration in flue gases as well as emission factors were recorded in the range of 0.012-0.060ngI-TEQ/m(n)(3) and 7.51-46.4mugI-TEQ/TJ, respectively. Dl-PCBs concentration was practically below the LOQ=0.006ng WHO-PCB TEQ/m(n)(3) in all experiments. HCB concentration as well as emission factors were recorded in the range of 11.5-42.0ng/m(n)(3) and 6.19-26.7mg/TJ, respectively, where the highest value was obtained for co-firing of waste coal, however. Obtained in this work emission factors will be used for national emission inventory purposes instead of the factors proposed by Toolkit or taken from previous measurements. However, consideration should be given to the fact that the measurements in most cases are related to single installations. Therefore, the need for further development of national factors for the power generation industry in Poland is desired.  相似文献   

18.
This paper evaluates the speciation and partitioning of mercury in two Spanish pulverised coal combustion power plants (PP1 and PP2), equipped with wet limestone-based flue gas desulphurisation facilities (FGD) operating with forced oxidation and re-circulation of FGD water streams. These plants are fed with coal (PP1) and coal/pet-coke blends (PP2) with different mercury contents. The behaviour, partitioning and speciation of Hg were found to be similar during the combustion processes but different in the FGD systems of the two power plants. A high proportion (86-88%) of Hg escaped the electrostatic precipitator in gaseous form, Hg2+ being the predominant mercury species (68-86%) to enter the FGD. At this point, a relatively high total Hg retention (72% and 65%) was achieved in the PP1 and PP2 (2007) FGD facilities respectively. However, during the second sampling campaign for PP2 (2008), the mercury removal achieved by the FGD was much lower (26%). Lab-scale tests point to liquid/gas ratio as the main parameter affecting oxidised mercury capture in the scrubber. The partitioning of the gaseous mercury reaching the FGD system in the wastes and by-products differed. In the low mercury input power plant (PP1) most of the mercury (67%) was associated with the FGD gypsum. Moreover in PP2 a significant proportion of the gaseous mercury reaching the FGD system remained in the aqueous phase (45%) in the 2007 sampling campaign while most of it escaped in 2008 (74%). This may be attributed to the scrubber operating conditions and the different composition and chemistry of the scrubber solution probably due to the use of an additive.  相似文献   

19.
Mercury in fish in Swedish lakes   总被引:5,自引:0,他引:5  
The aim of this work has been to try to obtain a picture of the past, present and future mercury situation in fish in Swedish lakes, to make an estimate of the number of lakes threatened by 'blacklisting', and to see if the data can be used to reveal anything about the impact of liming on the Hg content in pike. The register contains a broad set of data from 1456 lakes. The main results are as follows. Trend analyses indicate that the Hg content in 1-kg pike seems to increase with time. This is interesting since there has been a significant decrease in mercury emissions from Swedish industries during the last two decades. High Hg contents in 1-kg pike appear in a very characteristic pattern, linked to specific sources of Hg emission. The data indicate that old Swedish 'sins' are still causing a lot of problems. The factors governing the leakage of Hg from soils to water ought to be a very important topic for further studies. The Hg content in pike shows the highest correlation with the following parameters: Hg in surficial sediments, pH, distance from point source and water hardness, lake water alkalinity and conductivity, water retention time, size of drainage area and lake surface. A formula which provides the best possible degree of explanation (r2 = 0.78) has been derived. At present there are about 250 lakes 'blacklisted' in Sweden due to high Hg content in fish. Our data show that there are at least 9400 lakes that ought to be 'blacklisted' today. A successful liming operation will alter the chemical conditions in lakes and also decrease the Hg content in fish.  相似文献   

20.
This paper presents an example of how air pollution models can be used together with energy system models to study the impacts of climate change mitigation strategies on air pollution. As many mitigation measures of greenhouse gases (GHGs) affect the use of fossil fuels in energy production, they can have important side-effects on other air pollution problems. This paper studies on a national scale the impacts of the planned GHG reduction measures on multiple air pollution problems in Finland, concentrating on acidification of forest soils and lakes, tropospheric ozone levels harmful to humans and vegetation and on emissions of fine particles. The air pollutant emission scenarios with the alternative energy choices are calculated for about 200 large point sources, assuming the present emission limit legislation. Disperse emissions are treated at municipality level. The analysis extends to the year 2020. The implementation of the Kyoto protocol in Finland would induce notable reductions of multiple air pollutant emissions and related environmental impacts. A 6–11% reduction in ecosystems threatened by acidification in Southern and Central Finland would be achieved with the Finnish Climate Strategy alone. Substantial improvement in ozone levels would be reached in all scenarios compared to the current situation. The measures of the Climate Strategy could reduce the harmful ozone levels by a further 3%. The measures of the Climate Strategy would not significantly affect the primary particulate emissions in the future because the emissions from large power plants are already effectively controlled. Contrary to the fuel choices of the large units, expanded use of small-scale wood combustion can result in considerable increases of both fine particulate and VOC emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号