共查询到17条相似文献,搜索用时 62 毫秒
1.
Fenton试剂处理酸性染料废水的研究 总被引:25,自引:0,他引:25
采用Fenton试剂处理酸性染料废水,在pH=3,〔FeSO4〕=40mg/L,〔H2O2〕=800mg/L时,酸性媒介漂蓝废水的色度及COD去除率分别达98.6%和80.1%。 相似文献
2.
3.
Fenton试剂处理青霉素废水实验研究 总被引:7,自引:0,他引:7
以青霉素废水为研究对象 ,初步探讨了 Fenton试剂处理有毒有机废水时各影响因素的作用机制 ,通过实验确定了 Fenton试剂氧化降解青霉素废水的适宜操作条件为 :CODCr为 30 0 0 mg/L左右的青霉素废水 ,p H为 6.0、H2 O2 (30 % )投加量为 0 .6% (体积分数 )、Fe SO4 · 7H2 O投加量为 0 .2 % (质量分数 )、反应时间为 lh,此条件下废水 CODcr的去除率可达 70 % ,而且该方法设备简单 ,易于下一步实现工业放大 ,是一种有较好开发前景的处理青霉素废水工艺。 相似文献
4.
丁禄彬 《安全.健康和环境》2015,15(3):39-41
利用臭氧和Fenton试剂对某石化炼油厂电脱盐废水进行了处理.结果表明:经臭氧处理后COD去除率为51.10%;用Fenton试剂处理经臭氧氧化后的电脱盐废水,效果最好,COD去除率提高到84.61%;用臭氧和Fenton试剂联合处理时,COD去除率为77.95%;这3种方法都能减轻该种废水的后续处理压力,其中第2种方法效果最好. 相似文献
5.
Fenton试剂处理废水中各影响因子的作用机制 总被引:266,自引:6,他引:266
以洗胶废水为研究对象初步研究了 Fenton试剂处理有毒有机废水时各影响因子的作用机制 ,通过正交实验确定了 Fen-ton反应各种影响因子的最佳操作条件为 :[H2O2]=0.2 mol· L-1、[Fe2+]=40 mmol· L-1、反应温度 85℃ ,反应时间 60 min、反应体系的 pH值为3左右 .此条件下废水 COD的去除率普遍大于 80% .试验发现紫外光和配体络合物可提高 Fenton试剂对有机物的降解能力 .在各影响因子与 COD去除率的关系曲线基础上 ,分析了混合废水中各影响因子的作用机理和综合反应机理的关键及控制步骤 ,提出了改进的思路 . 相似文献
6.
刘凤华 《辽宁城乡环境科技》1996,16(4):47-48,19
本文采用Fenton试剂处理废水中难以降解的苯,氯苯生产废水的有效面经济的新颖方法。其苯和氯苯脱除率主要与氯化剂添加量有关。 相似文献
7.
氧化偶合混凝法处理废水,是使其中的有机污染物在氧化剂的诱导作用下,发生偶合或聚合而被混凝过滤去除。本文采用低剂量Fenton试剂诱导氧化偶合混凝法处理苯酚及其衍生物模拟废水,取得良好效果。通过对苯酚氧化过程的分析及分子量分布的测定,证实了反应过程中确有偶合产物生成,并通过顺磁共振波谱(ESR)的研究及偶合产物结构的质谱(GC/MS)鉴定,推测了偶合反应的机理。该偶合反应为自由基偶合反应,偶合产物是由C-C键或C-O键联接而成的。 相似文献
8.
Fenton试剂处理苯酚废水的研究 总被引:4,自引:0,他引:4
利用Fenton试剂对吉林某化工厂产生的苯酚废水进行试验研究,探讨了H2O2、FeSO4·7H2O、pH值、反应时间等因素对苯酚废水中COD去除效果的影响。结果表明:Fenton试剂处理苯酚废水时,受到影响因素的作用大小顺序为H2O2〉FeSO4·7H2O〉pH〉反应时间。并确定Fenton处理此类苯酚废水时最佳的运行条件为:H2O2=8mL/L,FeSO4·7H2O=1.5g/L,pH=3.5,反应时间为40min,且此条件下COD去除率为79%。 相似文献
9.
Fenton试剂加硫酸处理高浓度含酚废水的研究 总被引:6,自引:0,他引:6
研究了硫酸、Fenton试剂对酚的催化降解作用,证实了硫酸与Fenton试剂对酚的催化降解具有协同作用。H_2SO_4-Fenton试剂对高浓度含酚废水的处理结果说明,在Fenton试剂中加入硫酸可大大增加其对酚的降解能力。与单独的Fenton试剂法比较,当H_2O_2∶COD(重量比)<0.8时,本法对COD≥14000mg/L含酚废水COD去除率可提高40%以上,对高浓度含酚废水具有很好的处理效果。 相似文献
10.
11.
制药废水中含有大量难生物降解的化学物质,其BOD5/COD值很低,可生化性差。故一般仅采用生化处理很难将其COD降低到排放标准,现采用铁碳微电解法并串联Fenton工艺对某制药厂废水进行预处理。以废水COD为指标并通过正交试验确定达到最佳处理效果的各因素的最佳组合条件为:前端的铁碳微电解反应时间为2.5 h,pH值为5,铁碳质量比1:2,Fe粉的投加量为120 g/L;后续Fenton反应投加30%H2O23 mL/L,FeSO.47H2O(100 g/L)400 mg/L,调节pH值为2,反应时间2.5 h,总去除率大于70%,为工业化应用做出铺垫。 相似文献
12.
Fenton化学氧化法深度处理精细化工废水 总被引:14,自引:1,他引:13
根据某精细化工厂的废水经过长时间的厌氧-好氧生化处理,难以进一步生物降解的特点,采用Fenton试剂进行高级氧化处理。通过实验探讨了不同的H2O2和Fe2+浓度、反应时间、pH等因素对二级生化出水COD去除率的影响。在H2O2投加量为18mmol/L,FeSO·47H2O投加量为12mmol/L,反应时间1.5h,废水的pH=4的条件下,二级生化出水的COD去除率达到82.61%,降到100mg/L以内,达到国家一级排放标准。 相似文献
13.
微波诱导Fenton试剂氧化降解水中对硝基氯苯 总被引:2,自引:1,他引:2
采用微波辐射诱导Fenton氧化工艺处理对硝基氯苯模拟废水。考察了H2O2用量、Fe2+用量、溶液pH、微波辐射时间、微波功率对降解效果的影响;比较了微波诱导Fenton氧化法和单纯的Fenton氧化法对对硝基氯苯的去除效果。结果表明,微波辐射不仅可以提高对硝基氯苯的去除效率,还可促进对硝基氯苯的矿质化,大大提高COD去除率,并缩短反应时间。微波诱导Fenton氧化降解对硝基氯苯的适宜工艺条件为:H2O2和Fe2+用量分别为3.0g/L和160mg/L、pH为3、微波功率为800W、微波辐射时间为10min。在此工艺条件下,对硝基氯苯和COD的去除率分别可达98.9%和90.8%。 相似文献
14.
15.
Fenton试剂催化氧化降解含硝基苯废水的特性 总被引:54,自引:5,他引:54
探讨不同氧化剂和催化剂浓度下Fenton试剂氧化降解硝基苯的作用规律,用一元线性回归方程对不同氧化降解时间后硝基苯的相对残余浓度对反应时间的相关性进行了定量分析,结果发现硝基苯的Fenton试剂氧化降解符合一级反应动力学模式,通过回归求出了各反应条件下的一级速率常数.实验中还发现以Fenton反应过程中产生的铁离子的复合物代替Fe2+作为催化剂时Fenton反应不仅取得了较高的催化反应速率和降解效率,而且对硝基苯具有明显的专属性,硝基苯的降解速率可由原来的17.48mg/(L·min)提高到71.22mg/(L@min),反应5min的硝基苯去除率由9.74%提高到91.79%.用人造沸石为载体吸附该物质制成的非均相催化剂同样具有良好的催化性能.另外,在体系中引入紫外光可以促进废水中CODCr的进一步降解,提高有机物降解速率. 相似文献
16.
铁炭耦合Fenton试剂-混凝沉淀法预处理DMAC废水 总被引:5,自引:1,他引:5
N,N-二甲基乙酰胺(DMAC)危害大,是化纤废水中的主要污染物之一. 采用铁炭微电解-Fenton试剂-混凝沉淀工艺预处理DMAC废水. 结果表明:在海绵铁投加量为30 g/L,铁炭体积比为1,pH为2,微电解反应1 h,H2O2投加量为5 mL/L,pH为3,Fenton试剂反应2.0 h,混凝沉淀pH为9.0,沉淀40 min的最佳工艺条件下,CODCr的去除率可稳定在70%以上;紫外可见分光光计测定证明,经微电解反应后DMAC的助色基团—CH3和CO被破坏,经过Fenton 氧化后,—NH—基团才能被破坏,废水中的大分子物质被破坏,最终转变成小分子物质,为后续处理奠定了基础. 相似文献
17.
采用混凝-Fenton氧化联合技术,对可生化性差的含有丙烯酸的化工废水进行处理,考察了不同因素对COD去除率的影响。结果表明,对于COD为150000~160000mg/L的高浓度丙烯酸废水,经过混凝和Fenton氧化的联合处理,废水COD的去除率可高达80%左右,但出于实际生产运用中成本、运行难度和污泥量的考虑,选择其混凝最佳反应条件为:10%PAC投加量为5%,1‰PAM投加量为0.25%,pH为9,反应时间1h;Fenton最佳反应条件:初始pH为3,[Fe^2+]/[H2O2]的摩尔比为0.05,H2O2与废水的体积比为2%左右,反应时间3h,沉降1h。在这个条件下,COD的去除率可达60%左右,而且可生化性比较好。 相似文献