共查询到20条相似文献,搜索用时 0 毫秒
1.
A methodology for estimating the blast wave overpressure decay in air produced by a gas explosion in a closed-ended tunnel is proposed based on numerical simulations. The influence of the tunnel wall roughness is taken into account in studying a methane/air mixture explosion and the subsequent propagation of the resulting shock wave in air. The pressure time-history is obtained at different axial locations in the tunnel outside the methane/air mixture. If the shock overpressure at two, or more locations, is known, the value at other locations can be determined according to a simple power law. The study demonstrates the accuracy of the proposed methodology to estimate the overpressure change with distance for shock waves in air produced by methane/air mixture explosions. The methodology is applied to experimental data in order to validate the approach. 相似文献
2.
A laneway support system provides an available way to solve problems related to ground movements in underground coal mines, but also poses another potential hazard. Once a methane/air explosion occurs in a laneway, inappropriate design parameters of the support system, especially the support spacing, likely have a negative influence on explosion disaster effects. The commercial software package AutoReaGas, a computational fluid dynamics code suitable for gas explosions, was used to carry out the numerical investigation for the methane/air explosion and blast process in a straight laneway with different support spacing. The validity of the numerical method was verified by the methane/air explosion experiment in a steel tube. Laneway supports can promote the development of turbulence and explosion, and also inhibit the propagation of flame and shock wave. For the design parameters in actual laneway projects, the fluid dynamic drag due to the laneway support plays a predominant role in a methane/air explosion. There is an uneven distribution of the peak overpressure on the same cross section in the laneway, and the largest overpressure is near the laneway walls. Different support spacing can cause obvious differences for the distributions of the shock wave overpressure and impulse. Under comparable conditions, the greater destructive effects of explosion shock wave are seen for the laneway support system with larger spacing. The results presented in this work provide a theoretical basis for the optimized design of the support system in coal laneways and the related safety assessments. 相似文献
3.
Explosion experiments using premixed gas in a duct have become a significant method of investigating methane-air explosions in underground coal mines. The duct sizes are far less than that of an actual mine gallery. Whether the experimental results in a duct are applicable to analyze a methane-air explosion in a practical mine gallery needed to be investigated. This issue involves the effects of scale on a gas explosion and its shockwave in a constrained space. The commercial software package AutoReaGas, a finite element computational fluid dynamics (CFD) code suitable for gas explosions and blast problems, was used to carry out the numerical simulation for the explosion processes of a methane-air mixture in the gallery (or duct) at various scales. Based on the numerical simulation and its analysis, the effect of scale on the degree of correlation with the real situation was studied for a methane-air explosion and its shockwave in a square section gallery (or duct). This study shows that the explosion process of the methane-air mixture relates to the scales of the gallery or duct. The effect of scale decreases gradually with the distance from the space containing the methane-air mixture and the air shock wave propagation conforms approximately to the geometric similarity law in the far field where the scaled distance (ratio of the propagation distance and the height (or width) of the gallery section) is over 80. 相似文献
4.
借助于激波管测定了几种碳氢燃料和空气混合物的爆轰极限、临界起爆能。根据这些实验数据,分析了所研究的碳氢燃料的爆炸危险性。同时根据烷烃和烯烃键的不同饱和度,分析了它们爆炸危险性差别的原因。 相似文献
5.
In recent years there has been continuing interest in the potential hazards from detonations in pipelines. The interest has arisen in several instances due to the introduction of vapour recover systems, as part of measures to limit environmental emissions. These environmental pressures initially coincided with the preparation of new European-wide test procedures for explosion arrester devices and, more recently, moves to develop a new international ISO standard for the certification and approval of detonation arrester devices. It is an opportune time therefore to review current understanding of explosion development in pipelines and to consider the implications for plant design and explosion arrester selection and testing. 相似文献
6.
Jianfeng Li Bin Zhang Mao Liu Yang Wang 《Process Safety and Environmental Protection》2009,87(4):232-244
With the development of economy, the expansion in industrial production resulted in the increase in the number of malignant environmental pollution incidents. The dispersion of toxic gaseous materials was chosen for study in detail, which took the ‘12.23’ Kaixian blowout accident in Chongqing as an example. This paper firstly reviewed the ‘12.23’ Kaixian blowout accident. Then, the physical boundary conditions including initial conditions were outlined to form an integrated mathematical problem. Thirdly, the blowout accident was simulated for a period of 5 h. In term of criteria for acute poisoning, simulation results were analyzed using the concentration slices that can serve for the decision-making. Finally, based on the analysis of simulation result, four important conclusions were put forward that can be used for the design of emergency evacuation routes. 相似文献
7.
采用数值模拟技术研究了干挂石材幕墙发生燃烧情况下的火蔓延及羽流特点。通过外部高温辐射源点燃了具有4 cm厚PMMA保温层但保温材料和外层钢板间存在2 cm缝隙下的干挂石材幕墙,对模拟结果的温度场、速度场和热释放速率的分析表明其火蔓延速度较泡沫壁面低,但碳化区形状规则,蔓延路径清晰;虽然热释放速率低,但相对而言火焰高度较高,火焰宽度较小,而且其火羽流呈现点火源的特点。 相似文献
8.
为了检验北京大学街区尺度模式BSMPKU(Block Scale Model of Peking University)在城市大气环境研究中的适用性,首先利用Thompson风洞试验的数据集对BSMPKU模式进行了验证,并将其模拟结果与OpenFOAM(Open Source Field Operation and Manipulation)的模拟结果进行比较,然后将BSMPKU模式应用在复杂的实际建筑物群中,进行了3种不同交通线源排放的理想数值模拟研究.结果表明:1)对于单个建筑物,随建筑物宽度增加,建筑物迎风面回流区和建筑物背风面的尾流涡区范围增大;2)BSMPKU和OpenFOAM对单个建筑物周围的流场及浓度场有较好的模拟能力;3)与基于高斯扩散理论的AERMOD相比,BSMPKU和OpenFOAM能更好地模拟出建筑物周围的浓度场,但两个模式的模拟结果都与实测值存在一定误差;4)在实际小区中,受建筑物群影响,建筑物群内的流场分布比较复杂,大部分地区风速大幅下降,建筑物群内污染物浓度场的分布受排放源位置和走向的影响很大;5)BSMPKU能较好地模拟出实际城区的流场和浓度场分布,具有一定模拟和预报复杂城区污染物扩散过程的能力. 相似文献
9.
文中用CFD技术对甲苯池火灾进行数值模拟,首先对甲苯火焰进行数值计算,得到在稳定的横向风条件下,甲苯燃烧的峰温、产物组分、瞬时速度等火焰特征参数以及其空间分布情况:火焰温度的最高点在对称面y=0上,最高温度为1778K,火焰倾斜角度为26°(与竖直方向夹角),火焰高为22.5m。然后应用CFD软件F luent对池火灾进行热辐射模拟,模拟结果表明:对于锰钢材料、内径为20m甲苯储罐,稳态有风池火灾情况下,相邻两储罐之间安全距离在上风向为59m,下风向为72m。由于描述燃烧过程和湍流情况的数学物理模型还不太完善、对大气状况的简化等原因,结果偏保守,文中对此进行了分析讨论。此项研究为CFD技术研究碳氢化合物火灾的一个尝试。 相似文献
10.
In this paper we developed a parallel code, adopting a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method for the two-dimensional reactive Euler equations, to investigate the propagation process of methane explosion in bend ducts. In the simulations, an inverse Lax-Wendroff procedure is adopted to construct a high order boundary in order to treat the complex boundaries. The numerical results show that when the bend angle is 30° and 45°, it cannot inhibit the propagation of the detonation wave; while when the angle reaches 60° and 75°, the detonation wave finally attenuates to the shock wave. It indicates that the propagation of the detonation wave can be inhibited. Furthermore, the temperature and the pressure at the entrance of the bend are low. When the angle arrives at 90°, the detonation wave evolves into cellular detonation when it passes through the bend. When the angle is larger than 90°, the detonation wave dramatically attenuates at the diffracting point, and later some hot spots can be formed, which can ignite the combustible gas nearby. Thus the second explosion occurs and finally the detonation is formed. When the angle is larger than or equal to 90°, the temperature and the pressure at the entrance of the bend is too high that the rescue efforts in the methane explosion accidents will encounter great difficulties. Hence, the laneway with 60° and 75° bend can inhibit the propagation of the detonation wave, and the temperature and the pressure at the entrance of the bend is not too high as well. All the results above can provide an important basis for the design and optimization of the mine laneway. 相似文献
11.
L. Bdard-Tremblay L. Fang L. Bauwens Z. Cheng A.V. Tchouvelev 《Journal of Loss Prevention in the Process Industries》2008,21(2):154-161
An accidental hydrogen release within an equipment enclosure may result in the presence of detonable mixture in a confined environment. From a safety standpoint, it is then useful to assess the potential for damage. In that context, numerical simulation of the sequence of events subsequent to detonative ignition provides a useful tool, although with obvious limitations. This article describes the procedure, summarizes two case studies, and reviews the limitations. First, a hydrogen dispersion pattern is obtained from numerical simulation of dispersion, using a commercial package designed primarily for incompressible flow. This dispersion cloud is then used as the initial condition in an inviscid, compressible, reactive flow simulation. To force detonative ignition, a sufficiently large amount of energy is deposited in a small region that corresponds to the ignition location. Chemistry is modeled using a single step Arrhenius model. Because the wave thickness is small compared with the computational domain, a fine mesh is needed, limiting the practicality of the process to two-dimensional geometries. This is the most significant limitation; it is conservative. The two cases described in the paper include an electrolyzer, in which a small release occurs, leading potentially to some damage to the enclosure, and a reformer, in which the consequences are potentially more serious. 相似文献
12.
S. Vasanth S.M. Tauseef Tasneem Abbasi S.A. Abbasi 《Journal of Loss Prevention in the Process Industries》2013,26(6):1071-1084
Pool fires are the most common of all process industry accidents. Pool fires often trigger explosions which may result in more fires, causing huge losses of life and property. Since both the risk and the frequency of occurrence of pool fires are high, it is necessary to model the risks associated with pool fires so as to correctly predict the behavior of such fires.Among the parameters which determine the overall structure of a pool fire, the most important is turbulence. It determines the extent of interaction of various parameters, including combustion, wind velocity, and entrainment of the ambient air. Of the various approaches capable of modeling the turbulence associated with pool fires, computational fluid dynamics (CFD) has emerged as the most preferred due to its ability to enable closer approximation of the underlying physical phenomena.A review of the state of the art reveals that although various turbulence models exist for the simulation of pool fire no single study has compared the performance of various turbulence models in modeling pool fires. To cover this knowledge-gap an attempt has been made to employ CFD in the assessment of pool fires and find the turbulence model which is able to simulate pool fires most faithfully. The performance of the standard k–? model, renormalization group (RNG) k–? model, realizable k–? model and standard k–ω model were studied for simulating the experiments conducted earlier by Chatris et al. (2001) and Casal (2013). The results reveal that the standard k–? model enabled the closest CFD simulation of the experimental results. 相似文献
13.
J.X. Wen A. HeidariS. Ferraris V.H.Y. Tam 《Journal of Loss Prevention in the Process Industries》2011,24(2):187-193
A modelling strategy has been developed for consequence analysis of medium and large scale gaseous detonation. The model is based on the solution of Euler equations with one-step chemistry. The Van Leer flux limited method which is a total variation diminishing scheme is used for shock capturing. Preliminary calculations were firstly conducted for small domains with fine grids which resolve the wave, relatively coarse grids which have less than 10 grids across the wave and coarse grids in which the minimum grid size is larger than the wave thickness to ensure that the reaction scheme has been properly tuned to capture the correct detonation pressure, temperature and velocity in the resolutions used in the different cases. The model was firstly tested against a medium scale detonation test in a shock tube with U-bends. Reasonably good agreement is achieved on detonation pressure and mean shock wave velocities at different measuring segments of the tube. Following the validation, the detonation of a hypothetical planar propane-air cloud is simulated. The predictions uncovered some interesting features of such large scale detonation phenomena which are of significance in the safety context, especially for accidental investigations. The findings from the present analysis are in line with the forensic evidence on damages in some historic accidents and challenges previous analysis of a major accident in which forensic evidence suggested localised detonation but was considered as the consequence of fire storms by the investigation team. 相似文献
14.
The responsive behaviour of the action of under explosion blasting block damaging device structure was investigated based on quality equation, energy conservation equation and thermodynamics equation, using the ANSYS finite element simulation and Euler form of momentum equation. This paper analyzed the destructive situation of the inside and outside of the foam ceramic device. The research shows that the finite element simulation results and the numerical calculation results agree, which provides important reference basis in the anti-explosion design and improvement of cut off the device for blasting. 相似文献
15.
Gesi LiuYongzhi Zhao Yanlei Liu Jinyang ZhengShuiping Sheng Shuxin Han 《Journal of Loss Prevention in the Process Industries》2011,24(2):156-165
The explosion accident caused by residual pressure is one of the most common kinds of accidents in quick actuating pressure vessels. And it is important to provide some reliable methods, which can give reasonable analysis of the explosion. In this study, experiments of the explosion are preformed by using two quick actuating pressure vessels with residual pressure, and a new mathematical model is presented. The model is based on the combination of the Spalart-Allmaras turbulence fluid model and Newton’s second Law for the solid motion. And the model is solved with local remeshing method. By performing the simulation with the same parameters of experiments, the results of the simulation confirm the accuracy of the model. And the results shows the crucial factor of vessel structure, which the maximum ejected speed of the lid highly depends on. Based on that, the optimal design of the structure is presented, which can provide better security. 相似文献
16.
A methodology for the computationally efficient CFD simulation of hydrogen-air explosions (including transition to detonation) in large volumes is presented. The model is validated by means of the largest ever conducted indoor DDT experiments in the RUT facility. A combination of models is proposed with a particular focus on the influence of flame-instabilities, especially of thermal-diffusive nature, which are crucial for very lean mixtures. Excellent agreement is achieved in terms of flame acceleration. The quality of DDT predictions itself depends on the underlying mechanism. Whereas DDT by shock-focusing is successfully simulated on under-resolved meshes, DDT by local explosions in the vicinity of the turbulent flame brush remains a challenge. Adaptive mesh refinement therefore emerges as a key technique to resolve more of the essential phenomena at reasonable computational costs affordable by industry. Finally, a generic case demonstrates the influence of mixture inhomogeneity, which can promote flame acceleration and ultimately DDT. 相似文献
17.
介绍了建筑防火设计的现状及发展趋势,特别提到计算机模拟技术在建筑工程防火性能化设计中的重要性,并且应用CFD系列防火软件中的FDS软件对室内火灾的特征进行了模拟与描述,体现了计算机模拟技术在建筑防火设计中应用的优越性与实效性。 相似文献
18.
19.
单跑楼梯井内火灾过程的数值模拟 总被引:1,自引:1,他引:1
针对单跑楼梯井内的火灾过程,采用大涡模拟方法,通过改变单跑楼梯井顶层门的面积,探讨了门面积的改变对楼梯井内火灾过程中空气卷吸量、排烟量、楼梯井内平均氧气浓度以及楼梯井内外压差的影响,分析了火灾烟气流动的动力学特征。研究结果表明,随着单跑楼梯井门开口面积的增加,空气卷吸量和排烟量均增加,井内平均氧气浓度增加而井内外压差逐渐降低。计算结果显示,在火灾场景中,当单跑楼梯井顶层门面积较小时,以上物理量对门高度的变化更为敏感。 相似文献
20.
非燃烧区瓦斯爆炸冲击波在单向分岔管道内传播规律的试验研究 总被引:4,自引:0,他引:4
在空间上瓦斯爆炸可以分为瓦斯燃烧区、非瓦斯燃烧区两个区域.在瓦斯燃烧区内冲击波和火焰是相互耦合的;当瓦斯燃烧完毕后燃烧波消失,只剩非瓦斯燃烧区冲击波,冲击波失去能量支持,最终恢复至正常大气参数.为了研究非燃烧区内瓦斯爆炸冲击波在分岔管道中的传播特性,搭建了截面为80 mm× 80 mm的方形管道,分别由1 m、1.5m、2.5 m、3m、4m等5种长度不等的管道组合而成.管道由3个部分组成,前端为直管道瓦斯填充区,中间管道为空气直管道和管道末端,末端设计了30°、45°、60°、90°四种单向分岔角度.通过瓦斯填充量和管道分岔角度两个变量,采用TST6300动态数据采集储存仪,对管道内瓦斯爆炸冲击波能量及冲击波在单向分岔情况下超压分流情况进行试验研究.结果表明,管道单向分岔条件下,非燃烧区瓦斯爆炸冲击波分流系数与冲击波初始超压及管道分岔角度有关,分流系数随冲击波初始超压及分岔角度的增加而增加. 相似文献