共查询到20条相似文献,搜索用时 0 毫秒
1.
A methodology for estimating the blast wave overpressure decay in air produced by a gas explosion in a closed-ended tunnel is proposed based on numerical simulations. The influence of the tunnel wall roughness is taken into account in studying a methane/air mixture explosion and the subsequent propagation of the resulting shock wave in air. The pressure time-history is obtained at different axial locations in the tunnel outside the methane/air mixture. If the shock overpressure at two, or more locations, is known, the value at other locations can be determined according to a simple power law. The study demonstrates the accuracy of the proposed methodology to estimate the overpressure change with distance for shock waves in air produced by methane/air mixture explosions. The methodology is applied to experimental data in order to validate the approach. 相似文献
2.
A laneway support system provides an available way to solve problems related to ground movements in underground coal mines, but also poses another potential hazard. Once a methane/air explosion occurs in a laneway, inappropriate design parameters of the support system, especially the support spacing, likely have a negative influence on explosion disaster effects. The commercial software package AutoReaGas, a computational fluid dynamics code suitable for gas explosions, was used to carry out the numerical investigation for the methane/air explosion and blast process in a straight laneway with different support spacing. The validity of the numerical method was verified by the methane/air explosion experiment in a steel tube. Laneway supports can promote the development of turbulence and explosion, and also inhibit the propagation of flame and shock wave. For the design parameters in actual laneway projects, the fluid dynamic drag due to the laneway support plays a predominant role in a methane/air explosion. There is an uneven distribution of the peak overpressure on the same cross section in the laneway, and the largest overpressure is near the laneway walls. Different support spacing can cause obvious differences for the distributions of the shock wave overpressure and impulse. Under comparable conditions, the greater destructive effects of explosion shock wave are seen for the laneway support system with larger spacing. The results presented in this work provide a theoretical basis for the optimized design of the support system in coal laneways and the related safety assessments. 相似文献
3.
Explosion experiments using premixed gas in a duct have become a significant method of investigating methane-air explosions in underground coal mines. The duct sizes are far less than that of an actual mine gallery. Whether the experimental results in a duct are applicable to analyze a methane-air explosion in a practical mine gallery needed to be investigated. This issue involves the effects of scale on a gas explosion and its shockwave in a constrained space. The commercial software package AutoReaGas, a finite element computational fluid dynamics (CFD) code suitable for gas explosions and blast problems, was used to carry out the numerical simulation for the explosion processes of a methane-air mixture in the gallery (or duct) at various scales. Based on the numerical simulation and its analysis, the effect of scale on the degree of correlation with the real situation was studied for a methane-air explosion and its shockwave in a square section gallery (or duct). This study shows that the explosion process of the methane-air mixture relates to the scales of the gallery or duct. The effect of scale decreases gradually with the distance from the space containing the methane-air mixture and the air shock wave propagation conforms approximately to the geometric similarity law in the far field where the scaled distance (ratio of the propagation distance and the height (or width) of the gallery section) is over 80. 相似文献
4.
借助于激波管测定了几种碳氢燃料和空气混合物的爆轰极限、临界起爆能。根据这些实验数据,分析了所研究的碳氢燃料的爆炸危险性。同时根据烷烃和烯烃键的不同饱和度,分析了它们爆炸危险性差别的原因。 相似文献
5.
This paper presents an analysis and simulation of an accident involving a liquefied petroleum gas (LPG) truck tanker in Kannur, Kerala, India. During the accident, a truck tanker hit a divider and overturned. A crack in the bottom pipe caused leakage of LPG for about 20 min forming a large vapor cloud, which got ignited, creating a fireball and a boiling liquid expanding vapor explosion (BLEVE) situation in the LPG tank with subsequent fire and explosion. Many fatalities and injuries were reported along with burning of trees, houses, shops, vehicles, etc. In the present study, ALOHA (Area Locations of Hazardous Atmospheres) and PHAST (Process Hazard Analysis Software Tool) software have been used to model and simulate the accident scenario. Modeling and simulation results of the fireball, jet flame radiation and explosion overpressure agree well with the actual loss reported from the site. The effects of the fireball scenario were more significant in comparison to that of the jet fire scenario. 相似文献
6.
In recent years there has been continuing interest in the potential hazards from detonations in pipelines. The interest has arisen in several instances due to the introduction of vapour recover systems, as part of measures to limit environmental emissions. These environmental pressures initially coincided with the preparation of new European-wide test procedures for explosion arrester devices and, more recently, moves to develop a new international ISO standard for the certification and approval of detonation arrester devices. It is an opportune time therefore to review current understanding of explosion development in pipelines and to consider the implications for plant design and explosion arrester selection and testing. 相似文献
7.
Jianfeng Li Bin Zhang Mao Liu Yang Wang 《Process Safety and Environmental Protection》2009,87(4):232-244
With the development of economy, the expansion in industrial production resulted in the increase in the number of malignant environmental pollution incidents. The dispersion of toxic gaseous materials was chosen for study in detail, which took the ‘12.23’ Kaixian blowout accident in Chongqing as an example. This paper firstly reviewed the ‘12.23’ Kaixian blowout accident. Then, the physical boundary conditions including initial conditions were outlined to form an integrated mathematical problem. Thirdly, the blowout accident was simulated for a period of 5 h. In term of criteria for acute poisoning, simulation results were analyzed using the concentration slices that can serve for the decision-making. Finally, based on the analysis of simulation result, four important conclusions were put forward that can be used for the design of emergency evacuation routes. 相似文献
8.
通过CFD计算软件对锥形量热燃烧实验条件下的多层电缆着火性能进行数值模拟计算,对比相应CONE电缆燃烧实验结果,其计算结果表明所建立的电缆模型所得计算结果能够较好预测电缆着火时间。在此基础上,对护套层、绝缘层厚度、线芯层直径等参数对着火时间的影响进行了分析,发现护套层厚度对着火时间影响最大,线芯层对着火时间影响较小;当护套层及绝缘层厚度达到一定数值之后,电缆着火时间将不再发生变化。另外,因为电缆由多层热特性各异的材料组成,不能简单的划分为热薄材料或者热厚材料,但就所模拟电缆而言,其着火时间在不同的热辐射强度下分别表现出与热薄材料或者热厚材料相似的变化规律。 相似文献
9.
采用数值模拟技术研究了干挂石材幕墙发生燃烧情况下的火蔓延及羽流特点。通过外部高温辐射源点燃了具有4 cm厚PMMA保温层但保温材料和外层钢板间存在2 cm缝隙下的干挂石材幕墙,对模拟结果的温度场、速度场和热释放速率的分析表明其火蔓延速度较泡沫壁面低,但碳化区形状规则,蔓延路径清晰;虽然热释放速率低,但相对而言火焰高度较高,火焰宽度较小,而且其火羽流呈现点火源的特点。 相似文献
10.
The effect of turbulence on unsteady premixed flame propagation and associated pressure rise during explosion of stoichiometric CH4/air in closed spherical vessels of different size was investigated by means of CFD simulation. Computations were run by varying the vessel volume from 20 l to 200 l and to 1 m3.Numerical results have shown that, at fixed initial conditions, the turbulence kinetic energy induced by the propagating flame increases with increasing vessel volume. It has been demonstrated that the cubic relationship does not apply. Under the conditions investigated, a correction to the cubic relationship has been proposed to take into account the effect of the vessel volume on turbulence. 相似文献
11.
为了检验北京大学街区尺度模式BSMPKU(Block Scale Model of Peking University)在城市大气环境研究中的适用性,首先利用Thompson风洞试验的数据集对BSMPKU模式进行了验证,并将其模拟结果与OpenFOAM(Open Source Field Operation and Manipulation)的模拟结果进行比较,然后将BSMPKU模式应用在复杂的实际建筑物群中,进行了3种不同交通线源排放的理想数值模拟研究.结果表明:1)对于单个建筑物,随建筑物宽度增加,建筑物迎风面回流区和建筑物背风面的尾流涡区范围增大;2)BSMPKU和OpenFOAM对单个建筑物周围的流场及浓度场有较好的模拟能力;3)与基于高斯扩散理论的AERMOD相比,BSMPKU和OpenFOAM能更好地模拟出建筑物周围的浓度场,但两个模式的模拟结果都与实测值存在一定误差;4)在实际小区中,受建筑物群影响,建筑物群内的流场分布比较复杂,大部分地区风速大幅下降,建筑物群内污染物浓度场的分布受排放源位置和走向的影响很大;5)BSMPKU能较好地模拟出实际城区的流场和浓度场分布,具有一定模拟和预报复杂城区污染物扩散过程的能力. 相似文献
12.
Although industrial denotations in semi-open and congested geometries are often neglected by many practitioners during risk assessment, recent studies have shown that industrial detonations might be more common than previously believed. Therefore, from the explosion safety perspective, it becomes imperative to better assess industrial detonation hazards to improve robustness of explosion mitigation design, emergency response procedures, and building siting evaluation. Having that in mind, this study aims to review current empirical vapor cloud explosion models, understand their limitations, and assess their capability to indicate detonation onset for elongated vapor clouds. Six models were evaluated in total: TNO Multi-Energy, Baker-Strehlow-Tang (BST), Congestion Assessment Method (CAM), Quest Model for Estimation of Flame Speed (QMEFS), Primary Explosion Site (PES), and Confinement Specific Correlation (CSC). Model estimations were compared with large-scale test data available in the open literature. The CAM model demonstrated good performance in indicating deflagration-to-detonation transition (DDT) for test conditions experiencing detonation onset without any modification in the methodology. Some suggestions are provided to improve simulation results from PES, BST and QMEFS. 相似文献
13.
文中用CFD技术对甲苯池火灾进行数值模拟,首先对甲苯火焰进行数值计算,得到在稳定的横向风条件下,甲苯燃烧的峰温、产物组分、瞬时速度等火焰特征参数以及其空间分布情况:火焰温度的最高点在对称面y=0上,最高温度为1778K,火焰倾斜角度为26°(与竖直方向夹角),火焰高为22.5m。然后应用CFD软件F luent对池火灾进行热辐射模拟,模拟结果表明:对于锰钢材料、内径为20m甲苯储罐,稳态有风池火灾情况下,相邻两储罐之间安全距离在上风向为59m,下风向为72m。由于描述燃烧过程和湍流情况的数学物理模型还不太完善、对大气状况的简化等原因,结果偏保守,文中对此进行了分析讨论。此项研究为CFD技术研究碳氢化合物火灾的一个尝试。 相似文献
14.
In this paper we developed a parallel code, adopting a fifth-order weighted essentially non-oscillatory (WENO) scheme with a third-order TVD Runge-Kutta time stepping method for the two-dimensional reactive Euler equations, to investigate the propagation process of methane explosion in bend ducts. In the simulations, an inverse Lax-Wendroff procedure is adopted to construct a high order boundary in order to treat the complex boundaries. The numerical results show that when the bend angle is 30° and 45°, it cannot inhibit the propagation of the detonation wave; while when the angle reaches 60° and 75°, the detonation wave finally attenuates to the shock wave. It indicates that the propagation of the detonation wave can be inhibited. Furthermore, the temperature and the pressure at the entrance of the bend are low. When the angle arrives at 90°, the detonation wave evolves into cellular detonation when it passes through the bend. When the angle is larger than 90°, the detonation wave dramatically attenuates at the diffracting point, and later some hot spots can be formed, which can ignite the combustible gas nearby. Thus the second explosion occurs and finally the detonation is formed. When the angle is larger than or equal to 90°, the temperature and the pressure at the entrance of the bend is too high that the rescue efforts in the methane explosion accidents will encounter great difficulties. Hence, the laneway with 60° and 75° bend can inhibit the propagation of the detonation wave, and the temperature and the pressure at the entrance of the bend is not too high as well. All the results above can provide an important basis for the design and optimization of the mine laneway. 相似文献
15.
Thiol and urea functionalized montmorillonite powders were successfully prepared by silane coupling agent treatments in this work. The pyrolysis characteristics, surface functional groups, and distribution of particle size of untreated montmorillonite powders (Mt), the hydroxyl functionalized montmorillonite (O–Mt), the urea functionalized montmorillonite (N–Mt), and the thiol functionalized montmorillonite (S–Mt), which was derived from the previous research, were respectively characterized by utilizing the thermogravimetric differential scanning calorimetry, Fourier transform infrared spectroscopy, as well as the laser particle analyzer. The suppression effect of the S–Mt, O–Mt, Mt, and N–Mt on a 9.5% CH4 explosion was tested in the duct system (5 L). The obtained results indicated that N–Mt and O–Mt exhibited a better explosion suppression effect than Mt and S–Mt at the same mass concentration. Additionally, the methane/air explosion suppression mechanism of these powders could be explained by molecular simulation results that indicated the negatively electrophilic potential regions exist on the surface of O–Mt and N–Mt. Moreover, NH4∙、 NCO∙ and ∙OH radicals, which can interrupt explosive chain reactions, were easily generated by N–Mt and O–Mt. 相似文献
16.
Using water curtain system to forced mitigate ammonia vapor cloud has been proven to be an effective measure. Currently, no engineering guidelines for designing an effective water curtain system are available, due to lack of understanding of complex interactions between ammonia vapor cloud and water droplets, especially the understanding of ammonia absorption into water droplets. This paper presents numerical calculations to reproduce the continuous ammonia release dispersion with and without the mitigating influence of a downwind water curtain using computational fluid dynamic (CFD) software ANSYS Fluent 14.0. The turbulence models k–ɛ and RNG were used to simulate the ammonia cloud dispersion without downwind water curtain. The simulated results were compared with literature using the statistical performance indicators. The RNG model represents better agreement with the experimental data and the k–ɛ model generates a slightly lesser result. The RNG model coupled with Lagrangian discrete phase model (DPM) was used to simulate the dilution effectiveness of the water curtain system. The ammonia absorption was taken into account by means of user-defined functions (UDF). The simulated effectiveness of water curtains has good agreements with the experimental results. The effectiveness of water mitigation system with and without the ammonia absorption was compared. The results display that the effectiveness mainly depends on the strong air entrainment enhanced by water droplets movement and the ammonia absorption also enhances the effectiveness of water curtain mitigation system. The study indicates that the CFD code can be satisfactorily applied in design criteria for an effective mitigation system. 相似文献
17.
L. Bdard-Tremblay L. Fang L. Bauwens Z. Cheng A.V. Tchouvelev 《Journal of Loss Prevention in the Process Industries》2008,21(2):154-161
An accidental hydrogen release within an equipment enclosure may result in the presence of detonable mixture in a confined environment. From a safety standpoint, it is then useful to assess the potential for damage. In that context, numerical simulation of the sequence of events subsequent to detonative ignition provides a useful tool, although with obvious limitations. This article describes the procedure, summarizes two case studies, and reviews the limitations. First, a hydrogen dispersion pattern is obtained from numerical simulation of dispersion, using a commercial package designed primarily for incompressible flow. This dispersion cloud is then used as the initial condition in an inviscid, compressible, reactive flow simulation. To force detonative ignition, a sufficiently large amount of energy is deposited in a small region that corresponds to the ignition location. Chemistry is modeled using a single step Arrhenius model. Because the wave thickness is small compared with the computational domain, a fine mesh is needed, limiting the practicality of the process to two-dimensional geometries. This is the most significant limitation; it is conservative. The two cases described in the paper include an electrolyzer, in which a small release occurs, leading potentially to some damage to the enclosure, and a reformer, in which the consequences are potentially more serious. 相似文献
18.
S. Vasanth S.M. Tauseef Tasneem Abbasi S.A. Abbasi 《Journal of Loss Prevention in the Process Industries》2013,26(6):1071-1084
Pool fires are the most common of all process industry accidents. Pool fires often trigger explosions which may result in more fires, causing huge losses of life and property. Since both the risk and the frequency of occurrence of pool fires are high, it is necessary to model the risks associated with pool fires so as to correctly predict the behavior of such fires.Among the parameters which determine the overall structure of a pool fire, the most important is turbulence. It determines the extent of interaction of various parameters, including combustion, wind velocity, and entrainment of the ambient air. Of the various approaches capable of modeling the turbulence associated with pool fires, computational fluid dynamics (CFD) has emerged as the most preferred due to its ability to enable closer approximation of the underlying physical phenomena.A review of the state of the art reveals that although various turbulence models exist for the simulation of pool fire no single study has compared the performance of various turbulence models in modeling pool fires. To cover this knowledge-gap an attempt has been made to employ CFD in the assessment of pool fires and find the turbulence model which is able to simulate pool fires most faithfully. The performance of the standard k–? model, renormalization group (RNG) k–? model, realizable k–? model and standard k–ω model were studied for simulating the experiments conducted earlier by Chatris et al. (2001) and Casal (2013). The results reveal that the standard k–? model enabled the closest CFD simulation of the experimental results. 相似文献
19.
J.X. Wen A. HeidariS. Ferraris V.H.Y. Tam 《Journal of Loss Prevention in the Process Industries》2011,24(2):187-193
A modelling strategy has been developed for consequence analysis of medium and large scale gaseous detonation. The model is based on the solution of Euler equations with one-step chemistry. The Van Leer flux limited method which is a total variation diminishing scheme is used for shock capturing. Preliminary calculations were firstly conducted for small domains with fine grids which resolve the wave, relatively coarse grids which have less than 10 grids across the wave and coarse grids in which the minimum grid size is larger than the wave thickness to ensure that the reaction scheme has been properly tuned to capture the correct detonation pressure, temperature and velocity in the resolutions used in the different cases. The model was firstly tested against a medium scale detonation test in a shock tube with U-bends. Reasonably good agreement is achieved on detonation pressure and mean shock wave velocities at different measuring segments of the tube. Following the validation, the detonation of a hypothetical planar propane-air cloud is simulated. The predictions uncovered some interesting features of such large scale detonation phenomena which are of significance in the safety context, especially for accidental investigations. The findings from the present analysis are in line with the forensic evidence on damages in some historic accidents and challenges previous analysis of a major accident in which forensic evidence suggested localised detonation but was considered as the consequence of fire storms by the investigation team. 相似文献
20.
为研究大型储油罐区池火灾温度、热辐射强度、流速、组分等燃烧特性参数在油罐外不同区域的变化规律,以10万m3原油储罐区为研究对象,构建罐区池火灾燃烧数学模型,运用计算流体动力学(Computational Fluid Dynamics,CFD)技术进行数值模拟研究。结果表明:整个火场温度大致呈锥形分布,火焰温度最高可达1 500 K,纵向来看,底部温度较高,上部温度逐渐降低,径向来看,中心温度较高,周围温度逐渐降低;随着距罐壁以及距罐顶距离的不断增加,热辐射强度均呈现逐渐降低的趋势,最高热辐射强度为132 kW/m2;罐顶上方区域存在火焰卷吸现象,中心位置流速最大,最高可达56 m/s,罐底区域存在火焰贴壁现象;得到燃烧产物(CO和CO2)的体积分数分布,以CO体积分数为0.001作为判断依据,推断出火焰高度为120 m。研究结果可为今后此类火灾事故的防治提供理论支撑。 相似文献