首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The ability of private conservation organizations to remain financially viable is a key factor influencing their effectiveness. One‐third of financially motivated private‐land conservation areas (PLCAs) surveyed in South Africa are unprofitable, raising questions about landowners’ abilities to effectively adapt their business models to the socioeconomic environment. In any complex system, options for later adaptation can be constrained by starting conditions (path dependence). We tested 3 hypothesized drivers of path dependence in PLCA ecotourism and hunting business models: (H1) the initial size of a PLCA limits the number of mammalian game and thereby predators that can be sustained; (H2) initial investments in infrastructure limit the ability to introduce predators; and (H3) rainfall limits game and predator abundance. We further assessed how managing for financial stability (optimized game stocking) or ecological sustainability (allowing game to fluctuate with environmental conditions) influenced the ability to overcome path dependence. A mechanistic PLCA model based on simple ecological and financial rules was run for different initial conditions and management strategies, simulating landowner options for adapting their business model annually. Despite attempts by simulated landowners to increase profits, adopted business models after 13 years were differentiated by initial land and infrastructural assets, supporting H1 and H2. A conservation organization's initial assets can cause it to become locked into a financially vulnerable business model. In our 50‐year simulation, path dependence was overcome by fewer of the landowners who facilitated natural ecological variability than those who maintained constant hunting rates and predator numbers, but the latter experienced unsustainably high game densities in low rainfall years. Management for natural variability supported long‐term ecological sustainability but not shorter term socioeconomic sustainability for PLCAs. Our findings highlight trade‐offs between ecological and economic sustainability and suggest a role for governmental support of the private conservation industry.  相似文献   

2.
Natural‐resource managers and other conservation practitioners are under unprecedented pressure to categorize and quantify the vulnerability of natural systems based on assessment of the exposure, sensitivity, and adaptive capacity of species to climate change. Despite the urgent need for these assessments, neither the theoretical basis of adaptive capacity nor the practical issues underlying its quantification has been articulated in a manner that is directly applicable to natural‐resource management. Both are critical for researchers, managers, and other conservation practitioners to develop reliable strategies for assessing adaptive capacity. Drawing from principles of classical and contemporary research and examples from terrestrial, marine, plant, and animal systems, we examined broadly the theory behind the concept of adaptive capacity. We then considered how interdisciplinary, trait‐ and triage‐based approaches encompassing the oft‐overlooked interactions among components of adaptive capacity can be used to identify species and populations likely to have higher (or lower) adaptive capacity. We identified the challenges and value of such endeavors and argue for a concerted interdisciplinary research approach that combines ecology, ecological genetics, and eco‐physiology to reflect the interacting components of adaptive capacity. We aimed to provide a basis for constructive discussion between natural‐resource managers and researchers, discussions urgently needed to identify research directions that will deliver answers to real‐world questions facing resource managers, other conservation practitioners, and policy makers. Directing research to both seek general patterns and identify ways to facilitate adaptive capacity of key species and populations within species, will enable conservation ecologists and resource managers to maximize returns on research and management investment and arrive at novel and dynamic management and policy decisions.  相似文献   

3.
Bayesian Networks and Adaptive Management of Wildlife Habitat   总被引:1,自引:0,他引:1  
Abstract: Adaptive management is an iterative process of gathering new knowledge regarding a system's behavior and monitoring the ecological consequences of management actions to improve management decisions. Although the concept originated in the 1970s, it is rarely actively incorporated into ecological restoration. Bayesian networks (BNs) are emerging as efficient ecological decision‐support tools well suited to adaptive management, but examples of their application in this capacity are few. We developed a BN within an adaptive‐management framework that focuses on managing the effects of feral grazing and prescribed burning regimes on avian diversity within woodlands of subtropical eastern Australia. We constructed the BN with baseline data to predict bird abundance as a function of habitat structure, grazing pressure, and prescribed burning. Results of sensitivity analyses suggested that grazing pressure increased the abundance of aggressive honeyeaters, which in turn had a strong negative effect on small passerines. Management interventions to reduce pressure of feral grazing and prescribed burning were then conducted, after which we collected a second set of field data to test the response of small passerines to these measures. We used these data, which incorporated ecological changes that may have resulted from the management interventions, to validate and update the BN. The network predictions of small passerine abundance under the new habitat and management conditions were very accurate. The updated BN concluded the first iteration of adaptive management and will be used in planning the next round of management interventions. The unique belief‐updating feature of BNs provides land managers with the flexibility to predict outcomes and evaluate the effectiveness of management interventions.  相似文献   

4.
Continuing coral‐reef degradation in the western Atlantic is resulting in loss of ecological and geologic functions of reefs. With the goal of assisting resource managers and stewards of reefs in setting and measuring progress toward realistic goals for coral‐reef conservation and restoration, we examined reef degradation in this region from a geological perspective. The importance of ecosystem services provided by coral reefs—as breakwaters that dissipate wave energy and protect shorelines and as providers of habitat for innumerable species—cannot be overstated. However, the few coral species responsible for reef building in the western Atlantic during the last approximately 1.5 million years are not thriving in the 21st century. These species are highly sensitive to abrupt temperature extremes, prone to disease infection, and have low sexual reproductive potential. Their vulnerability and the low functional redundancy of branching corals have led to the low resilience of western Atlantic reef ecosystems. The decrease in live coral cover over the last 50 years highlights the need for study of relict (senescent) reefs, which, from the perspective of coastline protection and habitat structure, may be just as important to conserve as the living coral veneer. Research is needed to characterize the geological processes of bioerosion, reef cementation, and sediment transport as they relate to modern‐day changes in reef elevation. For example, although parrotfish remove nuisance macroalgae, possibly promoting coral recruitment, they will not save Atlantic reefs from geological degradation. In fact, these fish are quickly nibbling away significant quantities of Holocene reef framework. The question of how different biota covering dead reefs affect framework resistance to biological and physical erosion needs to be addressed. Monitoring and managing reefs with respect to physical resilience, in addition to ecological resilience, could optimize the expenditure of resources in conserving Atlantic reefs and the services they provide.  相似文献   

5.
In a rapidly changing climate, conservation practitioners could better use geodiversity in a broad range of conservation decisions. We explored selected avenues through which this integration might improve decision making and organized them within the adaptive management cycle of assessment, planning, implementation, and monitoring. Geodiversity is seldom referenced in predominant environmental law and policy. With most natural resource agencies mandated to conserve certain categories of species, agency personnel are challenged to find ways to practically implement new directives aimed at coping with climate change while retaining their species‐centered mandate. Ecoregions and ecological classifications provide clear mechanisms to consider geodiversity in plans or decisions, the inclusion of which will help foster the resilience of conservation to climate change. Methods for biodiversity assessment, such as gap analysis, climate change vulnerability analysis, and ecological process modeling, can readily accommodate inclusion of a geophysical component. We adapted others’ approaches for characterizing landscapes along a continuum of climate change vulnerability for the biota they support from resistant, to resilient, to susceptible, and to sensitive and then summarized options for integrating geodiversity into planning in each landscape type. In landscapes that are relatively resistant to climate change, options exist to fully represent geodiversity while ensuring that dynamic ecological processes can change over time. In more susceptible landscapes, strategies aiming to maintain or restore ecosystem resilience and connectivity are paramount. Implementing actions on the ground requires understanding of geophysical constraints on species and an increasingly nimble approach to establishing management and restoration goals. Because decisions that are implemented today will be revisited and amended into the future, increasingly sophisticated forms of monitoring and adaptation will be required to ensure that conservation efforts fully consider the value of geodiversity for supporting biodiversity in the face of a changing climate.  相似文献   

6.
Foundations of Resilience Thinking   总被引:1,自引:0,他引:1  
Through 3 broad and interconnected streams of thought, resilience thinking has influenced the science of ecology and natural resource management by generating new multidisciplinary approaches to environmental problem solving. Resilience science, adaptive management (AM), and ecological policy design (EPD) contributed to an internationally unified paradigm built around the realization that change is inevitable and that science and management must approach the world with this assumption, rather than one of stability. Resilience thinking treats actions as experiments to be learned from, rather than intellectual propositions to be defended or mistakes to be ignored. It asks what is novel and innovative and strives to capture the overall behavior of a system, rather than seeking static, precise outcomes from discrete action steps. Understanding the foundations of resilience thinking is an important building block for developing more holistic and adaptive approaches to conservation. We conducted a comprehensive review of the history of resilience thinking because resilience thinking provides a working context upon which more effective, synergistic, and systems‐based conservation action can be taken in light of rapid and unpredictable change. Together, resilience science, AM, and EPD bridge the gaps between systems analysis, ecology, and resource management to provide an interdisciplinary approach to solving wicked problems. Fundamentos del Pensamiento sobre Resiliencia  相似文献   

7.
Adaptive management of natural resources is an iterative process of decision making whereby management strategies are progressively changed or adjusted in response to new information. Despite an increasing focus on the need for adaptive conservation strategies, there remain few applied examples. We describe the 9‐year process of adaptive comanagement of a marine protected area network in Kubulau District, Fiji. In 2011, a review of protected area boundaries and management rules was motivated by the need to enhance management effectiveness and the desire to improve resilience to climate change. Through a series of consultations, with the Wildlife Conservation Society providing scientific input to community decision making, the network of marine protected areas was reconfigured so as to maximize resilience and compliance. Factors identified as contributing to this outcome include well‐defined resource‐access rights; community respect for a flexible system of customary governance; long‐term commitment and presence of comanagement partners; supportive policy environment for comanagement; synthesis of traditional management approaches with systematic monitoring; and district‐wide coordination, which provided a broader spatial context for adaptive‐management decision making. Co‐Manejo Adaptativo de una Red de Áreas Marinas Protegidas en Fiyi  相似文献   

8.
Most species are imperfectly detected during biological surveys, which creates uncertainty around their abundance or presence at a given location. Decision makers managing threatened or pest species are regularly faced with this uncertainty. Wildlife diseases can drive species to extinction; thus, managing species with disease is an important part of conservation. Devil facial tumor disease (DFTD) is one such disease that led to the listing of the Tasmanian devil (Sarcophilus harrisii) as endangered. Managers aim to maintain devils in the wild by establishing disease‐free insurance populations at isolated sites. Often a resident DFTD‐affected population must first be removed. In a successful collaboration between decision scientists and wildlife managers, we used an accessible population model to inform monitoring decisions and facilitate the establishment of an insurance population of devils on Forestier Peninsula. We used a Bayesian catch‐effort model to estimate population size of a diseased population from removal and camera trap data. We also analyzed the costs and benefits of declaring the area disease‐free prior to reintroduction and establishment of a healthy insurance population. After the monitoring session in May–June 2015, the probability that all devils had been successfully removed was close to 1, even when we accounted for a possible introduction of a devil to the site. Given this high probability and the baseline cost of declaring population absence prematurely, we found it was not cost‐effective to carry out any additional monitoring before introducing the insurance population. Considering these results within the broader context of Tasmanian devil management, managers ultimately decided to implement an additional monitoring session before the introduction. This was a conservative decision that accounted for uncertainty in model estimates and for the broader nonmonetary costs of mistakenly declaring the area disease‐free.  相似文献   

9.
Although many taxa have declined globally, conservation actions are inherently local. Ecosystems degrade even in protected areas, and maintaining natural systems in a desired condition may require active management. Implementing management decisions under uncertainty requires a logical and transparent process to identify objectives, develop management actions, formulate system models to link actions with objectives, monitor to reduce uncertainty and identify system state (i.e., resource condition), and determine an optimal management strategy. We applied one such structured decision‐making approach that incorporates these critical elements to inform management of amphibian populations in a protected area managed by the U.S. National Park Service. Climate change is expected to affect amphibian occupancy of wetlands and to increase uncertainty in management decision making. We used the tools of structured decision making to identify short‐term management solutions that incorporate our current understanding of the effect of climate change on amphibians, emphasizing how management can be undertaken even with incomplete information. Estrategia para Monitorear y Manejar Disminuciones en una Comunidad de Anfibios  相似文献   

10.
Supplementary feeding is often a knee‐jerk reaction to population declines, and its application is not critically evaluated, leading to polarized views among managers on its usefulness. Here, we advocate a more strategic approach to supplementary feeding so that the choice to use it is clearly justified over, or in combination with, other management actions and the predicted consequences are then critically assessed following implementation. We propose combining methods from a set of specialist disciplines that will allow critical evaluation of the need, benefit, and risks of food supplementation. Through the use of nutritional ecology, population ecology, and structured decision making, conservation managers can make better choices about what and how to feed by estimating consequences on population recovery across a range of possible actions. This structured approach also informs targeted monitoring and more clearly allows supplementary feeding to be integrated in recovery plans and reduces the risk of inefficient decisions. In New Zealand, managers of the endangered Hihi (Notiomystis cincta) often rely on supplementary feeding to support reintroduced populations. On Kapiti island the reintroduced Hihi population has responded well to food supplementation, but the logistics of providing an increasing demand recently outstretched management capacity. To decide whether and how the feeding regime should be revised, managers used a structured decision making approach informed by population responses to alternative feeding regimes. The decision was made to reduce the spatial distribution of feeders and invest saved time in increasing volume of food delivered into a smaller core area. The approach used allowed a transparent and defendable management decision in regard to supplementary feeding, reflecting the multiple objectives of managers and their priorities.  相似文献   

11.
Ecological systems often operate on time scales significantly longer or shorter than the time scales typical of human decision making, which causes substantial difficulty for conservation and management in socioecological systems. For example, invasive species may move faster than humans can diagnose problems and initiate solutions, and climate systems may exhibit long‐term inertia and short‐term fluctuations that obscure learning about the efficacy of management efforts in many ecological systems. We adopted a management‐decision framework that distinguishes decision makers within public institutions from individual actors within the social system, calls attention to the ways socioecological systems respond to decision makers’ actions, and notes institutional learning that accrues from observing these responses. We used this framework, along with insights from bedeviling conservation problems, to create a typology that identifies problematic time‐scale mismatches occurring between individual decision makers in public institutions and between individual actors in the social or ecological system. We also considered solutions that involve modifying human perception and behavior at the individual level as a means of resolving these problematic mismatches. The potential solutions are derived from the behavioral economics and psychology literature on temporal challenges in decision making, such as the human tendency to discount future outcomes at irrationally high rates. These solutions range from framing environmental decisions to enhance the salience of long‐term consequences, to using structured decision processes that make time scales of actions and consequences more explicit, to structural solutions aimed at altering the consequences of short‐sighted behavior to make it less appealing. Additional application of these tools and long‐term evaluation measures that assess not just behavioral changes but also associated changes in ecological systems are needed.  相似文献   

12.
Natural resource managers are seeking tools to help them address current and future effects of climate change. We present a model for collaborative planning aimed at identifying ways to adapt management actions to address the effects of climate change in landscapes that cross public and private jurisdictional boundaries. The Southwest Climate Change Initiative (SWCCI) piloted the Adaptation for Conservation Targets (ACT) planning approach at workshops in 4 southwestern U.S. landscapes. This planning approach successfully increased participants’ self‐reported capacity to address climate change by providing them with a better understanding of potential effects and guiding the identification of solutions. The workshops fostered cross‐jurisdictional and multidisciplinary dialogue on climate change through active participation of scientists and managers in assessing climate change effects, discussing the implications of those effects for determining management goals and activities, and cultivating opportunities for regional coordination on adaptation of management plans. Facilitated application of the ACT framework advanced group discussions beyond assessing effects to devising options to mitigate the effects of climate change on specific species, ecological functions, and ecosystems. Participants addressed uncertainty about future conditions by considering more than one climate‐change scenario. They outlined opportunities and identified next steps for implementing several actions, and local partnerships have begun implementing actions and conducting additional planning. Continued investment in adaptation of management plans and actions to address the effects of climate change in the southwestern United States and extension of the approaches used in this project to additional landscapes are needed if biological diversity and ecosystem services are to be maintained in a rapidly changing world. Acelerando la Adaptación del Manejo de Recursos Naturales para Atender el Cambio Climático  相似文献   

13.
Abstract Spatial prioritization techniques are applied in conservation‐planning initiatives to allocate conservation resources. Although typically they are based on ecological data (e.g., species, habitats, ecological processes), increasingly they also include nonecological data, mostly on the vulnerability of valued features and economic costs of implementation. Nevertheless, the effectiveness of conservation actions implemented through conservation‐planning initiatives is a function of the human and social dimensions of social‐ecological systems, such as stakeholders’ willingness and capacity to participate. We assessed human and social factors hypothesized to define opportunities for implementing effective conservation action by individual land managers (those responsible for making day‐to‐day decisions on land use) and mapped these to schedule implementation of a private land conservation program. We surveyed 48 land managers who owned 301 land parcels in the Makana Municipality of the Eastern Cape province in South Africa. Psychometric statistical and cluster analyses were applied to the interview data so as to map human and social factors of conservation opportunity across a landscape of regional conservation importance. Four groups of landowners were identified, in rank order, for a phased implementation process. Furthermore, using psychometric statistical techniques, we reduced the number of interview questions from 165 to 45, which is a preliminary step toward developing surrogates for human and social factors that can be developed rapidly and complemented with measures of conservation value, vulnerability, and economic cost to more‐effectively schedule conservation actions. This work provides conservation and land management professionals direction on where and how implementation of local‐scale conservation should be undertaken to ensure it is feasible.  相似文献   

14.
Abstract: The Tiwi people of northern Australia have managed natural resources continuously for 6000–8000 years. Tiwi management objectives and outcomes may reflect how they gather information about the environment. We qualitatively analyzed Tiwi documents and management techniques to examine the relation between the social and physical environment of decision makers and their decision‐making strategies. We hypothesized that principles of bounded rationality, namely, the use of efficient rules to navigate complex decision problems, explain how Tiwi managers use simple decision strategies (i.e., heuristics) to make robust decisions. Tiwi natural resource managers reduced complexity in decision making through a process that gathers incomplete and uncertain information to quickly guide decisions toward effective outcomes. They used management feedback to validate decisions through an information loop that resulted in long‐term sustainability of environmental use. We examined the Tiwi decision‐making processes relative to management of barramundi (Lates calcarifer) fisheries and contrasted their management with the state government's management of barramundi. Decisions that enhanced the status of individual people and their attainment of aspiration levels resulted in reliable resource availability for Tiwi consumers. Different decision processes adopted by the state for management of barramundi may not secure similarly sustainable outcomes.  相似文献   

15.
Reflections on "What is Ecosystem Management?"   总被引:9,自引:1,他引:9  
I review 10 dominant themes of ecosystem management described in the paper "What is Ecosystem Management?" (Grumbine 1994a) based on feedback received from managers actively implementing ecosystem management projects in the field. My emphasis is on practical advice from working professionals for working professionals. Key points include the importance of managing for ecological integrity, the need for social as well as scientific data, suggestions for implementing cooperation strategies and conservation partnerships, a pragmatic definition of adaptive management, and first steps toward changing the structure of natural resource organizations. As ecosystem management evolves, the pressure for change within traditional resource management agencies appears to be reaching a critical point.  相似文献   

16.
Wildlife managers face the daunting task of managing wildlife in light of uncertainty about the nature and extent of future climate change and variability and its potential adverse impacts on wildlife. A conceptual framework is developed for managing wildlife under such uncertainty. The framework uses fuzzy logic to test hypotheses about the extent of the wildlife impacts of past climate change and variability, and fuzzy multiple attribute evaluation to determine best compensatory management actions for adaptively managing the potential adverse impacts of future climate change and variability on wildlife. A compensatory management action is one that can offset some of the potential adverse impacts of climate change and variability on wildlife. Implementation of the proposed framework requires wildlife managers to: (1) select climate impact states, hypotheses about climate impact states, possible management actions for alleviating adverse wildlife impacts of climate change and variability, and future climate change scenarios; (2) choose biological attributes or indicators of species integrity; (3) adjust those attributes for changes in non-climatic variables; (4) define linguistic variables and associated triangular fuzzy numbers for rating both the acceptability of biological conditions under alternative management actions and the relative importance of biological attributes; (5) select minimum or maximum acceptable levels of the attributes and reliability levels for chance constraints on the biological attributes; and (6) define fuzzy sets on the extent of species integrity and biological conditions and select a fuzzy relation between species integrity and biological conditions. A constructed example is used to illustrate a hypothetical application of the framework by a wildlife management team. An overall best compensatory management action across all climate change scenarios is determined using the minimax regret criterion, which is appropriate when the management team cannot assign or is unwilling to assign probabilities to the future climate change scenarios. Application of the framework can be simplified and expedited by incorporating it in a web-based, interactive, decision support tool.  相似文献   

17.
Worldwide, invasive species are a leading driver of environmental change across terrestrial, marine, and freshwater environments and cost billions of dollars annually in ecological damages and economic losses. Resources limit invasive‐species control, and planning processes are needed to identify cost‐effective solutions. Thus, studies are increasingly considering spatially variable natural and socioeconomic assets (e.g., species persistence, recreational fishing) when planning the allocation of actions for invasive‐species management. There is a need to improve understanding of how such assets are considered in invasive‐species management. We reviewed over 1600 studies focused on management of invasive species, including flora and fauna. Eighty‐four of these studies were included in our final analysis because they focused on the prioritization of actions for invasive species management. Forty‐five percent (n = 38) of these studies were based on spatial optimization methods, and 35% (n = 13) accounted for spatially variable assets. Across all 84 optimization studies considered, 27% (n = 23) explicitly accounted for spatially variable assets. Based on our findings, we further explored the potential costs and benefits to invasive species management when spatially variable assets are explicitly considered or not. To include spatially variable assets in decision‐making processes that guide invasive‐species management there is a need to quantify environmental responses to invasive species and to enhance understanding of potential impacts of invasive species on different natural or socioeconomic assets. We suggest these gaps could be filled by systematic reviews, quantifying invasive species impacts on native species at different periods, and broadening sources and enhancing sharing of knowledge.  相似文献   

18.
Abstract: The lack of concrete instances in which conservation and development have been successfully merged has strengthened arguments for strict exclusionist conservation policies. Research has focused more on social cooperation and conflict of different management regimes and less on how these factors actually affect the natural environments they seek to conserve. Consequently, it is still unknown which strategies yield better conservation outcomes? We conducted a meta‐analysis of 116 published case studies on common resource management regimes from Africa, south and central America, and southern and Southeast Asia. Using ranked sociodemographic, political, and ecological data, we analyzed the effect of land tenure, population size, social heterogeneity, as well as internally devised resource‐management rules and regulations (institutions) on conservation outcome. Although land tenure, population size, and social heterogeneity did not significantly affect conservation outcome, institutions were positively associated with better conservation outcomes. There was also a significant interaction effect between population size and institutions, which implies complex relationships between population size and conservation outcome. Our results suggest that communities managing a common resource can play a significant role in conservation and that institutions lead to management regimes with lower environmental impacts.  相似文献   

19.
20.
Land managers decide how to allocate resources among multiple threats that can be addressed through multiple possible actions. Additionally, these actions vary in feasibility, effectiveness, and cost. We sought to provide a way to optimize resource allocation to address multiple threats when multiple management options are available, including mutually exclusive options. Formulating the decision as a combinatorial optimization problem, our framework takes as inputs the expected impact and cost of each threat for each action (including do nothing) and for each overall budget identifies the optimal action to take for each threat. We compared the optimal solution to an easy to calculate greedy algorithm approximation and a variety of plausible ranking schemes. We applied the framework to management of multiple introduced plant species in Australian alpine areas. We developed a model of invasion to predict the expected impact in 50 years for each species-action combination that accounted for each species’ current invasion state (absent, localized, widespread); arrival probability; spread rate; impact, if present, of each species; and management effectiveness of each species-action combination. We found that the recommended action for a threat changed with budget; there was no single optimal management action for each species; and considering more than one candidate action can substantially increase the management plan's overall efficiency. The approximate solution (solution ranked by marginal cost-effectiveness) performed well when the budget matched the cost of the prioritized actions, indicating that this approach would be effective if the budget was set as part of the prioritization process. The ranking schemes varied in performance, and achieving a close to optimal solution was not guaranteed. Global sensitivity analysis revealed a threat's expected impact and, to a lesser extent, management effectiveness were the most influential parameters, emphasizing the need to focus research and monitoring efforts on their quantification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号