首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到6条相似文献,搜索用时 18 毫秒
1.
Abstract: Spatial and temporal dynamics of ecological processes have long been considered important in marine systems, but seldom have conservation objectives been set for them. Climate change makes the consideration of the dynamics of ecological processes in the design of marine protected areas critical. We analyzed sea‐surface temperature (SST) trends and variability in Great Barrier Reef Marine Park (GBRMP) for 25 years and formulated and tested whether three sets of notional conservation objectives were met to illustrate the potential for planning to address climate change. Given mixed and limited evidence that no‐take areas increase resilience to disturbances such as anomalously high temperatures (i.e., temperatures ≥1 °C above weekly mean temperature), our conservation objectives focused on areas less likely to be affected by such events at extents ranging from the entire Great Barrier Reef to the system of no‐take zones and individual no‐take zones. The objective sets were (1) at least 50% of temperature refugia (i.e., pixels that had high‐temperature anomalies <5% or <7% of the time) within no‐take zones, (2) maximum occurrence of high‐temperature anomalies is <10%,< 20%, or <30% of total no‐take area 90% of the time, and (3) coverage of any single no‐take zone by high‐temperature anomalies occurs <5% or <10% of the time. We used satellite imagery from 1985–2009 to measure SST to determine high‐temperature anomalies. SSTs in the Great Barrier Reef increased significantly in some regions, and some of the conservation objectives were met by the park's current zoning plan. Dialogue between conservation scientists and managers is needed to develop appropriate conservation objectives under climate change and strategies to meet them.  相似文献   

2.
To contribute to the aspirations of recent international biodiversity conventions, protected areas (PAs) must be strategically located and not simply established on economically marginal lands as they have in the past. With refined international commitments under the Convention on Biological Diversity to target protected areas in places of “importance to biodiversity,” perhaps they may now be. We analyzed location biases in PAs globally over historic (pre‐2004) and recent periods. Specifically, we examined whether the location of protected areas are more closely associated with high concentrations of threatened vertebrate species or with areas of low agricultural opportunity costs. We found that both old and new protected areas did not target places with high concentrations of threatened vertebrate species. Instead, they appeared to be established in locations that minimize conflict with agriculturally suitable lands. This entrenchment of past trends has substantial implications for the contributions these protected areas are making to international commitments to conserve biodiversity. If protected‐area growth from 2004 to 2014 had strategically targeted unrepresented threatened vertebrates, >30 times more species (3086 or 2553 potential vs. 85 actual new species represented) would have been protected for the same area or the same cost as the actual expansion. With the land available for conservation declining, nations must urgently focus new protection on places that provide for the conservation outcomes outlined in international treaties.  相似文献   

3.
The efficacy of protected areas varies, partly because socioeconomic factors are not sufficiently considered in planning and management. Although integrating socioeconomic factors into systematic conservation planning is increasingly advocated, research is needed to progress from recognition of these factors to incorporating them effectively in spatial prioritization of protected areas. We evaluated 2 key aspects of incorporating socioeconomic factors into spatial prioritization: treatment of socioeconomic factors as costs or objectives and treatment of stakeholders as a single group or multiple groups. Using as a case study the design of a system of no‐take marine protected areas (MPAs) in Kubulau, Fiji, we assessed how these aspects affected the configuration of no‐take MPAs in terms of trade‐offs between biodiversity objectives, fisheries objectives, and equity in catch losses among fisher stakeholder groups. The achievement of fisheries objectives and equity tended to trade‐off concavely with increasing biodiversity objectives, indicating that it is possible to achieve low to mid‐range biodiversity objectives with relatively small losses to fisheries and equity. Importantly, the extent of trade‐offs depended on the method used to incorporate socioeconomic data and was least severe when objectives were set for each fisher stakeholder group explicitly. We found that using different methods to incorporate socioeconomic factors that require similar data and expertise can result in plans with very different impacts on local stakeholders.  相似文献   

4.
5.
Abstract: Changes in the management of the fin fish fishery of the Great Barrier Reef motivated us to investigate the combined effects on economic returns and fish biomass of no‐take areas and regulated total allowable catch allocated in the form of individual transferable quotas (such quotas apportion the total allowable catch as fishing rights and permits the buying and selling of these rights among fishers). We built a spatially explicit biological and economic model of the fishery to analyze the trade‐offs between maintaining given levels of fish biomass and the net financial returns from fishing under different management regimes. Results of the scenarios we modeled suggested that a decrease in total allowable catch at high levels of harvest either increased net returns or lowered them only slightly, but increased biomass by up to 10% for a wide range of reserve sizes and an increase in the reserve area from none to 16% did not greatly change net returns at any catch level. Thus, catch shares and no‐take reserves can be complementary and when these methods are used jointly they promote lower total allowable catches when harvest is relatively high and encourage larger no‐take areas when they are small.  相似文献   

6.
Coastal and ocean planning comprises a broad field of practice. The goals, political processes, and approaches applied to planning initiatives may vary widely. However, all planning processes ultimately require adequate information on both the biophysical and social attributes of a planning region. In coastal and ocean planning practice, there are well‐established methods to assess biophysical attributes; however, less is understood about the role and assessment of social data. We conducted the first global assessment of the incorporation of social data in coastal and ocean planning. We drew on a comprehensive review of planning initiatives and a survey of coastal and ocean practitioners. There was significantly more incorporation of social data in multiuse versus conservation‐oriented planning. Practitioners engaged a wide range of social data, including governance, economic, and cultural attributes of planning regions and human impacts data. Less attention was given to ecosystem services and social–ecological linkages, both of which could improve coastal and ocean planning practice. Although practitioners recognize the value of social data, little funding is devoted to its collection and incorporation in plans. Increased capacity and sophistication in acquiring critical social and ecological data for planning is necessary to develop plans for more resilient coastal and ocean ecosystems and communities. We suggest that improving social data monitoring, and in particular spatial social data, to complement biophysical data, is necessary for providing holistic information for decision‐support tools and other methods. Moving beyond people as impacts to people as beneficiaries, through ecosystem services assessments, holds much potential to better incorporate the tenets of ecosystem‐based management into coastal and ocean planning by providing targets for linked biodiversity conservation and human welfare outcomes. La Práctica Actual y los Prospectos Futuros para los Datos Sociales en la Planeación Costera y Oceánica  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号