首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract: Studies have documented biodiversity losses due to intensification of coffee management (reduction in canopy richness and complexity). Nevertheless, questions remain regarding relative sensitivity of different taxa, habitat specialists, and functional groups, and whether implications for biodiversity conservation vary across regions. We quantitatively reviewed data from ant, bird, and tree biodiversity studies in coffee agroecosystems to address the following questions: Does species richness decline with intensification or with individual vegetation characteristics? Are there significant losses of species richness in coffee‐management systems compared with forests? Is species loss greater for forest species or for particular functional groups? and Are ants or birds more strongly affected by intensification? Across studies, ant and bird richness declined with management intensification and with changes in vegetation. Species richness of all ants and birds and of forest ant and bird species was lower in most coffee agroecosystems than in forests, but rustic coffee (grown under native forest canopies) had equal or greater ant and bird richness than nearby forests. Sun coffee (grown without canopy trees) sustained the highest species losses, and species loss of forest ant, bird, and tree species increased with management intensity. Losses of ant and bird species were similar, although losses of forest ants were more drastic in rustic coffee. Richness of migratory birds and of birds that forage across vegetation strata was less affected by intensification than richness of resident, canopy, and understory bird species. Rustic farms protected more species than other coffee systems, and loss of species depended greatly on habitat specialization and functional traits. We recommend that forest be protected, rustic coffee be promoted, and intensive coffee farms be restored by augmenting native tree density and richness and allowing growth of epiphytes. We also recommend that future research focus on potential trade‐offs between biodiversity conservation and farmer livelihoods stemming from coffee production.  相似文献   

2.
Effects of Selective Logging on the Butterflies of a Bornean Rainforest   总被引:7,自引:0,他引:7  
Abstract: Selective logging has been the main cause of disturbance to tropical forests in Southeast Asia, so the extent to which biodiversity is maintained in selectively logged forest is of prime conservation importance. We compared the butterfly assemblages of Bornean primary rainforest to those of rainforest selectively logged 6 years previously. We sampled by means of replicated transects stratified into riverine and ridge forests and we included roads in the logged forest. There was a three-fold variation in species richness and abundance over the 8-month sampling period. More species and individuals were observed in the logged forest, although between-replicate variability was high. Rarefied species richness was positively correlated with canopy openness within the range of disturbance levels encountered at our forest sites. Within families, there was no significant difference in the number of species between primary and logged forest. There was a significant difference in the relative abundance of species, but this was due largely to the abundance of one or two species. Community ordination separated the sites along a gradient of disturbance and revealed strong differences between riverine and ridge-forest butterfly assemblages in primary forest that were obscured in logged forest. There was no evidence that logging has resulted in a change in the composition of the butterfly assemblages from species with a local distribution to more widespread species. We conclude that at a logged forest site in close proximity to primary forest, low intensities of logging do not necessarily reduce the species richness or abundance of butterflies, although assemblage composition is changed.  相似文献   

3.
As tropical regions are converted to agriculture, conservation of biodiversity will depend not only on the maintenance of protected forest areas, but also on the scope for conservation within the agricultural matrix in which they are embedded. Tree cover typically retained in agricultural landscapes in the neotropics may provide resources and habitats for animals, but little is known about the extent to which it contributes to conservation of animal species. Here, we explore the animal diversity associated with different forms of tree cover for birds, bats, butterflies, and dung beetles in a pastoral landscape in Nicaragua. We measured species richness and abundance of these four animal taxa in riparian and secondary forest, forest fallows, live fences, and pastures with high and low tree cover. We recorded over 20,000 individuals of 189 species including 14 endangered bird species. Mean abundance and species richness of birds and bats, but not dung beetles or butterflies, were significantly different among forms of tree cover. Species richness of bats and birds was positively correlated with tree species richness. While the greatest numbers of bird species were associated with riparian and secondary forest, forest fallows, and pastures with >15% tree cover, the greatest numbers of bat species were found in live fences and riparian forest. Species assemblages of all animal taxa were different among tree cover types, so that maintaining a diversity of forms of tree cover led to conservation of more animal species in the landscape as a whole. Overall, the findings indicate that retaining tree cover within agricultural landscapes can help conserve animal diversity, but that conservation efforts need to target forms of tree cover that conserve the taxa that are of interest locally. Preventing the degradation of remaining forest fragments is a priority, but encouraging farmers to maintain tree cover in pastures and along boundaries may also make an important contribution to animal conservation.  相似文献   

4.
Abstract:  World chocolate demand is expected to more than double by 2050. Decisions about how to meet this challenge will have profound effects on tropical rainforests and wild species in cocoa-producing countries. Cocoa, "the chocolate tree," is traditionally produced under a diverse and dense canopy of shade trees that provide habitat for a high diversity of organisms. The current trend to reduce or eliminate shade cover raises concerns about the potential loss of biodiversity. Nevertheless, few studies have assessed the ecological consequences and economic trade-offs under different management options in cocoa plantations. Here we describe the relationships between ant ecology (species richness, community composition, and abundance) and vegetation structure, ecosystem functions, and economic profitability under different land-use management systems in 17 traditional cocoa forest gardens in southern Cameroon. We calculated an index of profitability, based on the net annual income per hectare. We found significant differences associated with the different land-use management systems for species richness and abundance of ants and species richness and density of trees. Ant species richness was significantly higher in floristically and structurally diverse, low-intensity, old cocoa systems than in intensive young systems. Ant species richness was significantly related to tree species richness and density. We found no clear relationship between profitability and biodiversity. Nevertheless, we suggest that improving the income and livelihood of smallholder cocoa farmers will require economic incentives to discourage further intensification and ecologically detrimental loss of shade cover. Certification programs for shade-grown cocoa may provide socioeconomic incentives to slow intensification.  相似文献   

5.
Palmer TM  Brody AK 《Ecology》2007,88(12):3004-3011
The foundation of many plant-ant mutualisms is ant protection of plants from herbivores in exchange for food and/or shelter. While the role of symbiotic ants in protecting plants from stem- and leaf-feeding herbivores has been intensively studied, the relationship between ant defense and measures of plant fitness has seldom been quantified. We studied ant aggression, damage by herbivores and seed predators, and fruit production among Acacia drepanolobium trees occupied by four different acacia-ant species in an East African savanna. Levels of ant aggression in response to experimental disturbance differed strongly among the four species. All four ant species recruited more strongly to new leaf growth on host plants following disturbance, while recruitment to developing fruits was on average an order of magnitude lower. Host plants occupied by more aggressive ant species suffered significantly less vegetative damage from leaf-feeding insects, stem-boring beetles, and vertebrate browsers than host plants occupied by less aggressive ant species. However, there were no differences among fruiting host plants occupied by different ant species in levels of seed predation by bruchid seed predators. Fruit production on host trees was significantly correlated with tree stem diameter but not with the identity of resident ants. Our results demonstrate that defense of host plants may differ substantially among ant species and between vegetative and reproductive structures and that fruit production is not necessarily correlated with high levels of aggression by resident ants.  相似文献   

6.
Wolters V  Bengtsson J  Zaitsev AS 《Ecology》2006,87(8):1886-1895
Spatially explicit forecasting of changes in species richness is key to designing informative scenarios on the development of diversity on our planet. It might be possible to predict changes in the richness of inadequately investigated groups from that of groups for which enough information is available. Here we evaluate the reliability of this approach by reviewing 237 richness correlations extracted from the recent literature. Of the 43 taxa covered, beetles, vascular plants, butterflies, birds, ants, and mammals (in that order) were the most common ones examined. Forests and grasslands strongly dominated the ecosystem types studied. The variance explanation (R2) could be calculated for 152 cases, but only 53 of these were significant. An average correlation effect size of 0.374 (95% CI = +/- 0.0678) indicates positive but weak correlations between taxa within the very heterogeneous data set; None of the examined explanatory variables (spatial scale, taxonomic distance, trophic position, biome) could account for this heterogeneity. However, studies focusing on 10-km2 grid cells had the highest variance explanation. Moreover, within-phylum between-class comparisons had marginally significantly lower correlations than between-phylum comparisons. And finally, the explanatory power of studies conducted in the tropics was significantly higher than that of studies conducted in temperate regions. It is concluded that the potential of a correlative approach to species richness is strongly diminished by the overall low level of variance explanation. So far, no taxon has proved to be a universal or even particularly good predictor for the richness of other taxa. Some suggestions for future research are inclusion of several taxa in models aiming at regional richness predictions, improvement of knowledge on species correlations in human dominated systems, and a better understanding of mechanisms underlying richness correlations.  相似文献   

7.
The family of tiger beetles (Cicindelidae) is an appropriate indicator taxon for determining regional patterns of biodiversity because (1) its taxonomy is stabilized; (2) its biology and general life history are well understood, (3) individuals are readily observed and manipulated in the field, (4) the family occurs world-wide and in a broad range of habitat types; (5) each species tends to be specialized within a narrow habitat; (6) patterns of species richness are highly correlated with those of other vertebrate and invertebrate taxa; and (7) the taxon includes species of potential economic importance. Logistical advantages provide some of the strongest arguments for selecting tiger beetles as an appropriate indicator taxon. Species numbers of tiger beetles are relatively well known for 129 countries. Eight countries alone account for more than half the world total of 2028 known species. Species numbers are also indicated for eleven biogeographical zones of the world. For gridded squares across North America, the Indian subcontinent, and Australia, species richness of tiger beetles, birds, and butterflies shows significant positive correlations. However, tiger beetle species numbers can be reliably determined within fifty hours on a single site, compared to months or years for birds or butterflies, and the advantage of using tiger beetles in conservation biology is evident  相似文献   

8.
Abstract: Little is known about the effects of anthropogenic land‐use change on the amphibians and reptiles of the biodiverse tropical forests of Southeast Asia. We studied a land‐use modification gradient stretching from primary forest, secondary forest, natural‐shade cacao agroforest, planted‐shade cacao agroforest to open areas in central Sulawesi, Indonesia. We determined species richness, abundance, turnover, and community composition in all habitat types and related these to environmental correlates, such as canopy heterogeneity and thickness of leaf litter. Amphibian species richness decreased systematically along the land‐use modification gradient, but reptile richness and abundance peaked in natural‐shade cacao agroforests. Species richness and abundance patterns across the disturbance gradient were best explained by canopy cover and leaf‐litter thickness in amphibians and by canopy heterogeneity and cover in reptiles. Amphibians were more severely affected by forest disturbance in Sulawesi than reptiles. Heterogeneous canopy cover and thick leaf litter should be maintained in cacao plantations to facilitate the conservation value for both groups. For long‐term and sustainable use of plantations, pruned shade trees should be permanently kept to allow rejuvenation of cacao and, thus, to prevent repeated forest encroachment.  相似文献   

9.
Abstract: The degree to which changes in community composition mediate the probability of colonization and spread of non‐native species is not well understood, especially in animal communities. High species richness may hinder the establishment of non‐native species. Distinguishing between this scenario and cases in which non‐native species become established in intact (lacking extensive anthropogenic soil disturbance) communities and subsequently diminish the abundance and richness of native species is challenging on the basis of observation alone. The red imported fire ant (Solenopsis invicta), an invasive species that occurs throughout much of the southeastern United States, is such an example. Rather than competitively displacing native species, fire ants may become established only in disturbed areas in which native species richness and abundance are already reduced. We used insecticide to reduce the abundance of native ants and fire ants in four experimental plots. We then observed the reassembly and reestablishment of the ants in these plots for 1 year after treatment. The abundance of fire ants in treated plots did not differ from abundance in control plots 1 year after treatment. Likewise, the abundance of native ants increased to levels comparable to those in control plots after 1 year. Our findings suggest that factors other than large reductions in ant abundance and species density (number of species per unit area) may affect the establishment of fire ants and that the response of native ants and fire ants to disturbance can be comparable.  相似文献   

10.
Rogers DA  Rooney TP  Olson D  Waller DM 《Ecology》2008,89(9):2482-2492
We resurveyed the under- and overstory species composition of 94 upland forest stands in southern Wisconsin in 2002-2004 to assess shifts in canopy and understory richness, composition, and heterogeneity relative to the original surveys in 1949-1950. The canopy has shifted from mostly oaks (Quercus spp.) toward more mesic and shade-tolerant trees (primarily Acer spp.). Oak-dominated early-successional stands and those on coarse, nutrient-poor soils changed the most in canopy composition. Understories at most sites (80%) lost native species, with mean species density declining 25% at the 1-m2 scale and 23.1% at the 20-m2 scale. Woody species have increased 15% relative to herbaceous species in the understory despite declining in absolute abundance. Initial canopy composition, particularly the abundance of red oaks (Quercus rubra and Q. velutina), predicted understory changes better than the changes observed in the overstory. Overall rates of native species loss were greater in later-successional stands, a pattern driven by differential immigration rather than differential extirpation. However, understory species initially found in early-successional habitats declined the most, particularly remnant savanna taxa with narrow or thick leaves. These losses have yet to be offset by compensating increases in native shade-adapted species. Exotic species have proliferated in prevalence (from 13 to 76 stands) and relative abundance (from 1.2% to 8.4%), but these increases appear unrelated to the declines in native species richness and heterogeneity observed. Although canopy succession has clearly influenced shifts in understory composition and diversity, the magnitude of native species declines and failure to recruit more shade-adapted species suggest that other factors now act to limit the richness, heterogeneity, and composition of these communities.  相似文献   

11.
The ecological consequences of logging have been and remain a focus of considerable debate. In this study, we assessed bird species composition within a logging concession in Central Kalimantan, Indonesian Borneo. Within the study area (approximately 196 km2) a total of 9747 individuals of 177 bird species were recorded. Our goal was to identify associations between species traits and environmental variables. This can help us to understand the causes of disturbance and predict whether species with given traits will persist under changing environmental conditions. Logging, slope position, and a number of habitat structure variables including canopy cover and liana abundance were significantly related to variation in bird composition. In addition to environmental variables, spatial variables also explained a significant amount of variation. However, environmental variables, particularly in relation to logging, were of greater importance in structuring variation in composition. Environmental change following logging appeared to have a pronounced effect on the feeding guild and size class structure but there was little evidence of an effect on restricted range or threatened species although certain threatened species were adversely affected. For example, species such as the terrestrial insectivore Argusianus argus and the hornbill Buceros rhinoceros, both of which are threatened, were rare or absent in recently logged forest. In contrast, undergrowth insectivores such as Orthotomus atrogularis and Trichastoma rostratum were abundant in recently logged forest and rare in unlogged forest. Logging appeared to have the strongest negative effect on hornbills, terrestrial insectivores, and canopy bark-gleaning insectivores while moderately affecting canopy foliage-gleaning insectivores and frugivores, raptors, and large species in general. In contrast, undergrowth insectivores responded positively to logging while most understory guilds showed little pronounced effect. Despite the high species richness of logged forest, logging may still have a negative impact on extant diversity by adversely affecting key ecological guilds. The sensitivity of hornbills in particular to logging disturbance may be expected to alter rainforest dynamics by seriously reducing the effective seed dispersal of associated tree species. However, logged forest represents an increasingly important habitat for most bird species and needs to be protected from further degradation. Biodiversity management within logging concessions should focus on maintaining large areas of unlogged forest and mitigating the adverse effects of logging on sensitive groups of species.  相似文献   

12.
Enright NJ  Mosner E  Miller BP  Johnson N  Lamont BB 《Ecology》2007,88(9):2292-2304
The fire-prone shrublands of southwestern Australia are renowned for their high plant species diversity and prominence of canopy seed storage (serotiny). We compared species richness, abundance, and life history attributes for soil and canopy seed banks in relation to extant vegetation among four sites with different substrate conditions and high species turnover (50-80%) to identify whether this unusual community-level organization of seed storage might contribute to maintenance of high species richness. Soil seed bank (SSB) densities were low to moderate (233-1435 seeds/m2) compared with densities for other Mediterranean-type vegetation and were lowest for sites with highest canopy seed bank (CSB) species richness and lowest nutrient availability, but not richness or abundance of resprouters. Annuals were infrequent in the lowest nutrient sites, but there was no evidence that small SSB size was due to low seed inputs or a trade-off between seed production/storage and seed size in response to low nutrient availability. Sorensen's similarity between SSB and extant vegetation was 26-43% but increased to 54-57% when the CSB was included, representing levels higher than reported for most other ecosystems. Resprouting species were well represented in both the SSB and CSB, and there was no evidence for lower seed production in resprouters than in non-sprouters overall. The SSB and CSB held no species in common and were characterized by markedly different seed dispersal attributes, with winged or small seeds in the CSB and seeds dispersed by ants, birds, and wind (though none with wings) in the SSB. There was no evidence of spatial differentiation in the distribution of seeds of SSB species between vegetated and open microsites that might facilitate species coexistence, but most woody non-sprouters showed aggregation at scales of 1-2 m, implying limited seed dispersal. High similarity between overall seed bank (SSB + CSB) and extant species composition, high number of resprouting species, and seed dispersal processes before (SSB) and after fire (CSB) leading to differential spatial aggregation of post-fire recruits from the two seed bank types may buffer species composition against rapid change and provide a mechanism for maintaining species coexistence at the local scale.  相似文献   

13.
Abstract: In Canada and the United States pressure to recoup financial costs of wildfire by harvesting burned timber is increasing, despite insufficient understanding of the ecological consequences of postfire salvage logging. We compared the species richness and composition of deadwood‐associated beetle assemblages among undisturbed, recently burned, logged, and salvage‐logged, boreal, mixed‐wood stands. Species richness was lowest in salvage‐logged stands, largely due to a negative effect of harvesting on the occurrence of wood‐ and bark‐boring species. In comparison with undisturbed stands, the combination of wildfire and logging in salvage‐logged stands had a greater effect on species composition than either disturbance alone. Strong differences in species composition among stand treatments were linked to differences in quantity and quality (e.g., decay stage) of coarse woody debris. We found that the effects of wildfire and logging on deadwood‐associated beetles were synergistic, such that the effects of postfire salvage logging could not be predicted reliably on the basis of data on either disturbance alone. Thus, increases in salvage logging of burned forests may have serious negative consequences for deadwood‐associated beetles and their ecological functions in early postfire successional forests.  相似文献   

14.
Abstract:  As primary forest is cleared, pastures and secondary forest occupy an increasing space in the Amazonian landscape. We evaluated the effect of forest clearing on a soil macrofauna (invertebrate) community in a smallholder farming system of southeastern Amazonia. We sampled the soil macrofauna in 22 plots of forest, upland rice fields, pastures, and fallows of different ages. In total, we collected 10,728 invertebrates. In cleared plots the species richness per plot of the soil macrofauna fell from 76 to 30 species per plot immediately after forest clearance, and the composition of the new community was different. Ants, termites, and spiders were most affected by the disturbance. In plots deforested several years before, the effect of forest clearance was highly dependent on the type of land use (pasture or fallow). In fallows, the community was similar to the initial state. The species richness per plot in old fallows rose to 66, and the composition was closer to the primary forests than to the other types of land use. On the contrary, in the pastures the species richness per plot remained low at 47. In fallows, all the groups showed a richness close to that in primary forest, whereas in the forest only the richness of earthworms and Coleoptera recovered. Our results show that forest clearing constitutes a major disturbance for the soil macrofauna and that the recovery potential of the soil macrofauna after 6 or 7 years is much higher in fallows than in pastures. Thus, fallows may play a crucial role in the conservation of soil macrofauna.  相似文献   

15.
Belote RT  Jones RH  Hood SM  Wender BW 《Ecology》2008,89(1):183-192
Research examining the relationship between community diversity and invasions by nonnative species has raised new questions about the theory and management of biological invasions. Ecological theory predicts, and small-scale experiments confirm, lower levels of nonnative species invasion into species-rich compared to species-poor communities, but observational studies across a wider range of scales often report positive relationships between native and nonnative species richness. This paradox has been attributed to the scale dependency of diversity-invasibility relationships and to differences between experimental and observational studies. Disturbance is widely recognized as an important factor determining invasibility of communities, but few studies have investigated the relative and interactive roles of diversity and disturbance on nonnative species invasion. Here, we report how the relationship between native and nonnative plant species richness responded to an experimentally applied disturbance gradient (from no disturbance up to clearcut) in oak-dominated forests. We consider whether results are consistent with various explanations of diversity-invasibility relationships including biotic resistance, resource availability, and the potential effects of scale (1 m2 to 2 ha). We found no correlation between native and nonnative species richness before disturbance except at the largest spatial scale, but a positive relationship after disturbance across scales and levels of disturbance. Post-disturbance richness of both native and nonnative species was positively correlated with disturbance intensity and with variability of residual basal area of trees. These results suggest that more nonnative plants may invade species-rich communities compared to species-poor communities following disturbance.  相似文献   

16.
Effects of Forest Fragmentation on a Dung Beetle Community in French Guiana   总被引:4,自引:0,他引:4  
Abstract:  Fragmentation is the most common disturbance induced by humans in tropical forests. Some insect groups are particularly suitable for studying the effects of fragmentation on animal communities because they are taxonomically and ecologically homogenous. We investigated the effects of forest fragmentation on a dung beetle species community in the forest archipelago created in 1994–1995 by the dam of Petit Saut, French Guiana. We set and baited an equal number of pitfall traps for dung beetles on three mainland sites and seven island sites. The sites ranged from 1.1 to 38 ha. In 250 trap days, we captured 50 species in 19 genera. Diversity indices were high (2.18–4.06). The lowest diversity was on the small islands and one mainland site. Species richness and abundance were positively related to fragment area but not to distance from mainland or distance to the larger island. The islands had lower species richness and population than mainland forest, but rarefied species richness was relatively invariant across sites. There was a marked change in species composition with decreasing fragment that was not caused by the presence of a common fauna of disturbed-area species on islands. Small islands differed from larger islands, which did not differ significantly from mainland sites. Partial correlation analyses suggested that species richness and abundance of dung beetle species were positively related to the number of species of nonflying mammals and the density index of howler monkeys ( Alouatta seniculus ), two parameters positively related to fragment area.  相似文献   

17.
Abstract:  Seminatural grasslands in Europe are susceptible to habitat destruction and fragmentation that result in negative effects on biodiversity because of increased isolation and area effects on extinction rate. However, even small habitat patches of seminatural grasslands might be of value for conservation and restoration of species richness in a landscape with a long history of management, which has been argued to lead to high species richness. We tested whether ant communities have been negatively affected by habitat loss and increased isolation of seminatural grasslands during the twentieth century. We examined species richness and community composition in seminatural grasslands of different size in a mosaic landscape in Central Sweden. Grasslands managed continuously over centuries harbored species-rich and ecologically diverse ant communities. Grassland remnant size had no effect on ant species richness. Small grassland remnants did not harbor a nested subset of the ant species of larger habitats. Community composition of ants was mainly affected by habitat conditions. Our results suggest that the abandonment of traditional land use and the encroachment of trees, rather than the effects of fragmentation, are important for species composition in seminatural grasslands. Our results highlight the importance of considering land-use continuity and dispersal ability of the focal organisms when examining the effects of habitat loss and fragmentation on biodiversity. Landscape history should be considered in conservation programs focusing on effects of land-use change.  相似文献   

18.
The potential of linear strips of vegetation to act as corridors to facilitate dispersal is examined for three taxa of insects in lowland rain forest in northeastern Australia. The taxa selected were ants, butterflies, and dung beetles, all of which are taxonomically well known and could be considered bioindicator groups. The sampling design encompassed four habitats, namely rain-forest interior, rain-forest edge, rain-forest linear strip (corridor), and arable land. Ants and dung beetles were sampled using baited pitfall traps, and visual surveys were used to census butterflies. Potential increase in dispersal was examined by first identifying those species that specialized on the rain-forest interior habitat and then determining whether these species were present in the linear strips as opposed to the surrounding arable land. Two species of butterfly and two species of dung beetle were identified as rain-forest interior specialists, and two of these species were found in the linear strips but not in the arable habitat. This result supports the concept that the presence of corridors can increase the potential for dispersal of these species. But the remaining rain-forest interior species did not occur in the linear strips, which suggests that corridors will not increase dispersal for these species.  相似文献   

19.
Invertebrate Morphospecies as Surrogates for Species: A Case Study   总被引:17,自引:0,他引:17  
Environmental monitoring and conservation evaluation in terrestrial habitats may be enhanced by the use of invertebrate inventories, but taxonomic and logistic constraints frequently encountered during conventional taxonomic treatment have greatly restricted their use. To overcome this problem we suggest that nonspecialists may be used to classify invertebrates to morphospecies without compromising scientific accuracy. To test this proposition, large pitfall and litter samples of ants, beetles, and spiders from four forest types were sorted to morphospecies by a nonspecialist and to species by specialists. These data were used to generate morphospecies and species inventories and to estimate richness (α diversity) and turnover (β diversity), information frequently used in the above activities. Our results show that the estimates of richness of ants and spiders varied little between morphospecies and species inventories. Differences between estimates of beetle richness were largely influenced by errors of identification in two families, Curculionidae and Staphylinidae. But morphospecies and species inventories yielded identical ranking of forest type using richness. Turnover was assessed by sample ordination, which revealed similar clusters regardless of the type of inventory. Analysis of similarities of assemblages of ants and beetles showed significant differences between all forest types. Spider assemblages showed a lower level of discrimination. The assessment of turnover was consistent among inventories but different between the major taxa. Our findings suggest that morphospecies may be used as surrogates for species in some environmental monitoring and conservation, in particular when decisions are guided by estimates of richness and the assessment of turnover.  相似文献   

20.
Invasibility and Effects of Amur Honeysuckle in Southwestern Ohio Forests   总被引:16,自引:0,他引:16  
The Asian exotic Amur honeysuckle ( Lonicera maackii [Rupr.] Herder) has become the dominant shrub in many forests in southwestern Ohio and in some other locations in the eastern United States. Our research focused on the invasibility of forest communities and relationships of L. maackii to the abundance of tree seedlings and herbs. We surveyed 93 forest stands near Oxford, Ohio (USA) to determine L. maackii cover, time since invasion, tree canopy cover, tree basal area, and a shade tolerance index. Stepwise multiple regression indicated that greater than one-half of the variation (r 2 = 0.550) in Lonicera cover was correlated to five variables (in descending order of importance): tree canopy cover, distance from Oxford, shade tolerance index, tree basal area, and time since invasion. The results suggest that high light levels and proximity to an abundant seed source increase forest invasibility. Tree seedling density, species richness of seedlings, and herb cover were all inversely related to L. maackii cover. When Lonicera becomes abundant, future structure and composition of forests could be affected and local populations of herbs threatened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号