首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Diagnosing the processes that threaten species persistence is critical for recovery planning and risk forecasting. Dominant threats are typically inferred by experts on the basis of a patchwork of informal methods. Transparent, quantitative diagnostic tools would contribute much‐needed consistency, objectivity, and rigor to the process of diagnosing anthropogenic threats. Long‐term census records, available for an increasingly large and diverse set of taxa, may exhibit characteristic signatures of specific threatening processes and thereby provide information for threat diagnosis. We developed a flexible Bayesian framework for diagnosing threats on the basis of long‐term census records and diverse ancillary sources of information. We tested this framework with simulated data from artificial populations subjected to varying degrees of exploitation and habitat loss and several real‐world abundance time series for which threatening processes are relatively well understood: bluefin tuna (Thunnus maccoyii) and Atlantic cod (Gadus morhua) (exploitation) and Red Grouse (Lagopus lagopus scotica) and Eurasian Skylark (Alauda arvensis) (habitat loss). Our method correctly identified the process driving population decline for over 90% of time series simulated under moderate to severe threat scenarios. Successful identification of threats approached 100% for severe exploitation and habitat loss scenarios. Our method identified threats less successfully when threatening processes were weak and when populations were simultaneously affected by multiple threats. Our method selected the presumed true threat model for all real‐world case studies, although results were somewhat ambiguous in the case of the Eurasian Skylark. In the latter case, incorporation of an ancillary source of information (records of land‐use change) increased the weight assigned to the presumed true model from 70% to 92%, illustrating the value of the proposed framework in bringing diverse sources of information into a common rigorous framework. Ultimately, our framework may greatly assist conservation organizations in documenting threatening processes and planning species recovery. Inferencia la Naturaleza de las Amenazas Antropogénicas para los Registros de Abundancia a Largo Plazo  相似文献   

2.
Conservation planning and biodiversity assessments need quantitative targets to optimize planning options and assess the adequacy of current species protection. However, targets aiming at persistence require population‐specific data, which limit their use in favor of fixed and nonspecific targets, likely leading to unequal distribution of conservation efforts among species. We devised a method to derive equitable population targets; that is, quantitative targets of population size that ensure equal probabilities of persistence across a set of species and that can be easily inferred from species‐specific traits. In our method, we used models of population dynamics across a range of life‐history traits related to species’ body mass to estimate minimum viable population targets. We applied our method to a range of body masses of mammals, from 2 g to 3825 kg. The minimum viable population targets decreased asymptotically with increasing body mass and were on the same order of magnitude as minimum viable population estimates from species‐ and context‐specific studies. Our approach provides a compromise between pragmatic, nonspecific population targets and detailed context‐specific estimates of population viability for which only limited data are available. It enables a first estimation of species‐specific population targets based on a readily available trait and thus allows setting equitable targets for population persistence in large‐scale and multispecies conservation assessments and planning.  相似文献   

3.
Abstract: The search for generalities in ecology has often been thwarted by contingency and ecological complexity that limit the development of predictive rules. We present a set of concepts that we believe succinctly expresses some of the fundamental ideas in conservation biology. (1) Successful conservation management requires explicit goals and objectives. (2) The overall goal of biodiversity management will usually be to maintain or restore biodiversity, not to maximize species richness. (3) A holistic approach is needed to solve conservation problems. (4) Diverse approaches to management can provide diverse environmental conditions and mitigate risk. (5) Using nature's template is important for guiding conservation management, but it is not a panacea. (6) Focusing on causes not symptoms enhances efficacy and efficiency of conservation actions. (7) Every species and ecosystem is unique, to some degree. (8) Threshold responses are important but not ubiquitous. (9) Multiple stressors often exert critical effects on species and ecosystems. (10) Human values are variable and dynamic and significantly shape conservation efforts. We believe most conservation biologists will broadly agree these concepts are important. That said, an important part of the maturation of conservation biology as a discipline is constructive debate about additional or alternative concepts to those we have proposed here. Therefore, we have established a web‐based, online process for further discussion of the concepts outlined in this paper and developing additional ones.  相似文献   

4.
Conservation decisions increasingly involve multiple environmental and social objectives, which result in complex decision contexts with high potential for trade‐offs. Improving social equity is one such objective that is often considered an enabler of successful outcomes and a virtuous ideal in itself. Despite its idealized importance in conservation policy, social equity is often highly simplified or ill‐defined and is applied uncritically. What constitutes equitable outcomes and processes is highly normative and subject to ethical deliberation. Different ethical frameworks may lead to different conceptions of equity through alternative perspectives of what is good or right. This can lead to different and potentially conflicting equity objectives in practice. We promote a more transparent, nuanced, and pluralistic conceptualization of equity in conservation decision making that particularly recognizes where multidimensional equity objectives may conflict. To help identify and mitigate ethical conflicts and avoid cases of good intentions producing bad outcomes, we encourage a more analytical incorporation of equity into conservation decision making particularly during mechanistic integration of equity objectives. We recommend that in conservation planning motivations and objectives for equity be made explicit within the problem context, methods used to incorporate equity objectives be applied with respect to stated objectives, and, should objectives dictate, evaluation of equity outcomes and adaptation of strategies be employed during policy implementation.  相似文献   

5.
Scientists increasingly rely on protected areas to assist in biodiversity conservation, yet the efficacy of these areas is rarely systematically assessed, often because of underfunding. Still, adaptive management strategies to maximize conservation success often rely on understanding the temporal and spatial dynamism of populations therein. Examination of environmental DNA (eDNA) is a time and cost‐effective way to monitor species’ distribution, and quantitative polymerase chain reaction (qPCR) provides information on organismal abundance. To date, however, such techniques remain underused for population assessments in protected areas. We determined eDNA concentration of the critically endangered Yangtze finless porpoise (Neophocaena asiaeorientalis asiaeorientalis) to describe its occurrence, range, and use of the Tian e‐Zhou National Nature Reserve in Hubei, China, across seasons and hydrological depths. Despite the observation that total eDNA concentrations were highest in surface waters in summer, finless porpoise eDNA concentrations were significantly higher in deeper waters than in surface waters in summer. During the breeding season (spring), eDNA signals were site specific and restricted to the core area of the reserve. However, postbreeding eDNA concentrations were widespread across the reserve, encompassing sites previously thought to be unfrequented by the species. Our results suggest spatiotemporal idiosyncrasies in site, depth, and seasonal use of the reserve and a propensity for postbreeding population dispersal. With eDNA and qPCR we were able to assess an entire population's use of a protected area. Illuminating nuances in habitat use via eDNA could be valuable to set pragmatic conservation goals for this, and other, species.  相似文献   

6.
Abstract: Funding for conservation is limited, and its investment for maximum conservation gain can likely be enhanced through the application of relevant science. Many donor institutions support and use science to pursue conservation goals, but their activities remain relatively unfamiliar to the conservation‐science community. We examined the priorities and practices of U.S.‐based private foundations that support biodiversity conservation. We surveyed 50 donor members of the Consultative Group on Biological Diversity (CGBD) to address three questions: (1) What support do CGBD members provide for conservation science? (2) How do CGBD members use conservation science in their grant making and strategic thinking? (3) How do CGBD members obtain information about conservation science? The 38 donor institutions that responded to the survey made $340 million in grants for conservation in 2005, including $62 million for conservation science. Individual foundations varied substantially in the proportion of conservation funds allocated to science. Foundations also varied in the ways and degree to which they used conservation science to guide their grant making. Respondents found it “somewhat difficult” to stay informed about conservation science relevant to their work, reporting that they accessed conservation science information mainly through their grantees. Many funders reported concerns about the strategic utility of funding conservation science to achieve conservation gains. To increase investment by private foundations in conservation science, funders, researchers, and conservation practitioners need to jointly identify when and how new scientific knowledge will lower barriers to conservation gains. We envision an evolving relationship between funders and conservation scientists that emphasizes primary research and synthesis motivated by (1) applicability, (2) human‐ecosystem interactions, (3) active engagement among scientists and decision makers, and (4) broader communication of relevant scientific information.  相似文献   

7.
Conservation actions need to be prioritized, often taking into account species’ extinction risk. The International Union for Conservation of Nature (IUCN) Red List provides an accepted, objective framework for the assessment of extinction risk. Assessments based on data collected in the field are the best option, but the field data to base these on are often limited. Information collected through remote sensing can be used in place of field data to inform assessments. Forests are perhaps the best‐studied land‐cover type for use of remote‐sensing data. Using an open‐access 30‐m resolution map of tree cover and its change between 2000 and 2012, we assessed the extent of forest cover and loss within the distributions of 11,186 forest‐dependent amphibians, birds, and mammals worldwide. For 16 species, forest loss resulted in an elevated extinction risk under red‐list criterion A, owing to inferred rapid population declines. This number increased to 23 when data‐deficient species (i.e., those with insufficient information for evaluation) were included. Under red‐list criterion B2, 484 species (855 when data‐deficient species were included) were considered at elevated extinction risk, owing to restricted areas of occupancy resulting from little forest cover remaining within their ranges. The proportion of species of conservation concern would increase by 32.8% for amphibians, 15.1% for birds, and 24.7% for mammals if our suggested uplistings are accepted. Central America, the Northern Andes, Madagascar, the Eastern Arc forests in Africa, and the islands of Southeast Asia are hotspots for these species. Our results illustrate the utility of satellite imagery for global extinction‐risk assessment and measurement of progress toward international environmental agreement targets.  相似文献   

8.
Abstract: Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate‐change‐induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate‐change‐related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate‐change‐induced stresses.  相似文献   

9.
Abstract: Since the late 1980s, Brazilian free‐tailed bats (Tadarida brasiliensis) have increasingly used bridges as roosts in the southern United States. We examined differences in blood cortisol levels, body condition, and parasite load, as measures of physiological stress in bats roosting in bridges and bats roosting in caves. We collected data during three periods, coinciding with female phases of reproduction. For all measures, bats were captured during the nightly emergence from the roost and immediately sampled. Cortisol levels were significantly higher during pregnancy and lactation and in individuals with lower body‐condition scores (length of forearm to mass ratio) and significantly higher in bats roosting in caves than in those roosting in bridges. Thus, we concluded that individuals of this species that roost in bridges are not chronically stressed and seem to be unaffected by human activities present at bridges. This is a rare documented instance where a human‐dominated environment does not appear to be adversely affecting the physiological health of a free‐ranging animal.  相似文献   

10.
Many of the challenges conservation professionals face can be framed as scale mismatches. The problem of scale mismatch occurs when the planning for and implementation of conservation actions is at a scale that does not reflect the scale of the conservation problem. The challenges in conservation planning related to scale mismatch include ecosystem or ecological process transcendence of governance boundaries; limited availability of fine‐resolution data; lack of operational capacity for implementation; lack of understanding of social‐ecological system components; threats to ecological diversity that operate at diverse spatial and temporal scales; mismatch between funding and the long‐term nature of ecological processes; rate of action implementation that does not reflect the rate of change of the ecological system; lack of appropriate indicators for monitoring activities; and occurrence of ecological change at scales smaller or larger than the scale of implementation or monitoring. Not recognizing and accounting for these challenges when planning for conservation can result in actions that do not address the multiscale nature of conservation problems and that do not achieve conservation objectives. Social networks link organizations and individuals across space and time and determine the scale of conservation actions; thus, an understanding of the social networks associated with conservation planning will help determine the potential for implementing conservation actions at the required scales. Social‐network analyses can be used to explore whether these networks constrain or enable key social processes and how multiple scales of action are linked. Results of network analyses can be used to mitigate scale mismatches in assessing, planning, implementing, and monitoring conservation projects. Discordancia de Escalas, Planificación de la Conservación y el Valor del Análisis de Redes Sociales  相似文献   

11.
The establishment of protected areas is a critical strategy for conserving biodiversity. Key policy directives like the Aichi targets seek to expand protected areas to 17% of Earth's land surface, with calls by some conservation biologists for much more. However, in places such as the United States, Germany, and Australia, attempts to increase protected areas are meeting strong resistance from communities, industry groups, and governments. We examined case studies of such resistance in Victoria, Australia, Bavaria, Germany, and Florida, United States. We considered 4 ways to tackle this problem. First, broaden the case for protected areas beyond nature conservation to include economic, human health, and other benefits, and translate these into a persuasive business case for protected areas. Second, better communicate the conservation values of protected areas. This should include highlighting how many species, communities, and ecosystems have been conserved by protected areas and the counterfactual (i.e., what would have been lost without protected area establishment). Third, consider zoning of activities to ensure the maintenance of effective management. Finally, remind citizens to think about conservation when they vote, including holding politicians accountable for their environmental promises. Without tackling resistance to expanding the protected estate, it will be impossible to reach conservation targets, and this will undermine attempts to stem the global extinction crisis.  相似文献   

12.
For decades conservation biologists have proposed general rules of thumb for minimum viable population size (MVP); typically, they range from hundreds to thousands of individuals. These rules have shifted conservation resources away from small and fragmented populations. We examined whether iteroparous, long‐lived species might constitute an exception to general MVP guidelines. On the basis of results from a 10‐year capture‐recapture study in eastern New York (U.S.A.), we developed a comprehensive demographic model for the globally threatened bog turtle (Glyptemys muhlenbergii), which is designated as endangered by the IUCN in 2011. We assessed population viability across a wide range of initial abundances and carrying capacities. Not accounting for inbreeding, our results suggest that bog turtle colonies with as few as 15 breeding females have >90% probability of persisting for >100 years, provided vital rates and environmental variance remain at currently estimated levels. On the basis of our results, we suggest that MVP thresholds may be 1–2 orders of magnitude too high for many long‐lived organisms. Consequently, protection of small and fragmented populations may constitute a viable conservation option for such species, especially in a regional or metapopulation context. Reexaminando el Concepto de Población Mínima Viable para Especies Longevas Resumen  相似文献   

13.
Abstract: Despite the growing interest in conservation approaches that include payments for environmental services (PES), few evaluations of the influence of such interventions on behaviors of individuals have been conducted. We used self‐reported changes in six legal and illegal forest‐use behaviors to investigate the way in which a PES for biodiversity conservation intervention in Menabe, Madagascar, influenced behavior. Individuals (n =864) from eight intervention communities and five control communities answered questions on their forest‐use behaviors before and after the intervention began, as well as on their reasons for changing and their attitudes to various institutions. The payments had little impact on individuals’ reported decisions to change behaviors, but it had a strong impact on individuals’ attitudes. Payments appeared to legitimize monitoring of behaviors by the implementing nongovernmental organization (NGO), but did not act as a behavioral driver in their own right. Although there were no clear differences between changes in behaviors in the intervention and control communities, the intervention did influence motivations for change. Fear of local forest associations and the implementing NGO were strong motivators for changing behavior in communities with the PES intervention, whereas fear of the national government was the main reason given for change in control communities. Behavioral changes were most stable where fear of local organizations motivated the change. Our results highlight the interactions between different incentives people face when making behavioral decisions and the importance of considering the full range of incentives when designing community‐based PES interventions.  相似文献   

14.
Abstract: Photography, including remote imagery and camera traps, has contributed substantially to conservation. However, the potential to use photography to understand demography and inform policy is limited. To have practical value, remote assessments must be reasonably accurate and widely deployable. Prior efforts to develop noninvasive methods of estimating trait size have been motivated by a desire to answer evolutionary questions, measure physiological growth, or, in the case of illegal trade, assess economics of horn sizes; but rarely have such methods been directed at conservation. Here I demonstrate a simple, noninvasive photographic technique and address how knowledge of values of individual‐specific metrics bears on conservation policy. I used 10 years of data on juvenile moose (Alces alces) to examine whether body size and probability of survival are positively correlated in cold climates. I investigated whether the presence of mothers improved juvenile survival. The posited latter relation is relevant to policy because harvest of adult females has been permitted in some Canadian and American jurisdictions under the assumption that probability of survival of young is independent of maternal presence. The accuracy of estimates of head sizes made from photographs exceeded 98%. The estimates revealed that overwinter juvenile survival had no relation to the juvenile's estimated mass (p < 0.64) and was more strongly associated with maternal presence (p < 0.02) than winter snow depth (p < 0.18). These findings highlight the effects on survival of a social dynamic (the mother‐young association) rather than body size and suggest a change in harvest policy will increase survival. Furthermore, photographic imaging of growth of individual juvenile muskoxen (Ovibos moschatus) over 3 Arctic winters revealed annual variability in size, which supports the idea that noninvasive monitoring may allow one to detect how some environmental conditions ultimately affect body growth.  相似文献   

15.
Linking diversity to biological processes is central for developing informed and effective conservation decisions. Unfortunately, observable patterns provide only a proportion of the information necessary for fully understanding the mechanisms and processes acting on a particular population or community. We suggest conservation managers use the often overlooked information relative to species absences and pay particular attention to dark diversity (i.e., a set of species that are absent from a site but that could disperse to and establish there, in other words, the absent portion of a habitat‐specific species pool). Together with existing ecological metrics, concepts, and conservation tools, dark diversity can be used to complement and further develop conservation prioritization and management decisions through an understanding of biodiversity relativized by its potential (i.e., its species pool). Furthermore, through a detailed understanding of the population, community, and functional dark diversity, the restoration potential of degraded habitats can be more rigorously assessed and so to the likelihood of successful species invasions. We suggest the application of the dark diversity concept is currently an underappreciated source of information that is valuable for conservation applications ranging from macroscale conservation prioritization to more locally scaled restoration ecology and the management of invasive species.  相似文献   

16.
Despite international waters covering over 60% of the world's oceans, understanding of how fisheries in these regions shape ecosystem processes is surprisingly poor. Seabirds forage at fishing vessels, which has potentially deleterious effects for their population, but the extent of overlap and behavior in relation to ships is poorly known. Using novel biologging devices, which detect radar emissions and record the position of boats and seabirds, we measured the true extent of the overlap between seabirds and fishing vessels and generated estimates of the intensity of fishing and distribution of vessels in international waters. During breeding, wandering albatrosses (Diomedea exulans) from the Crozet Islands patrolled an area of over 10 million km2 at distances up to 2500 km from the colony. Up to 79.5% of loggers attached to birds detected vessels. The extent of overlap between albatrosses and fisheries has widespread implications for bycatch risk in seabirds and reveals the areas of intense fishing throughout the ocean. We suggest that seabirds equipped with radar detectors are excellent monitors of the presence of vessels in the Southern Ocean and offer a new way to monitor the presence of illegal fisheries and to better understand the impact of fisheries on seabirds.  相似文献   

17.
To counteract global species decline, modern biodiversity conservation engages in large projects, spends billions of dollars, and includes many organizations working simultaneously within regions. To add to this complexity, the conservation sector has hierarchical structure, where conservation actions are often outsourced by funders (foundations, government, etc.) to local organizations that work on‐the‐ground. In contrast, conservation science usually assumes that a single organization makes resource allocation decisions. This discrepancy calls for theory to understand how the expected biodiversity outcomes change when interactions between organizations are accounted for. Here, we used a game theoretic model to explore how biodiversity outcomes are affected by vertical and horizontal interactions between 3 conservation organizations: a funder that outsourced its actions and 2 local conservation organizations that work on‐the‐ground. Interactions between the organizations changed the spending decisions made by individual organizations, and thereby the magnitude and direction of the conservation benefits. We showed that funders would struggle to incentivize recipient organizations with set priorities to perform desired actions, even when they control substantial amounts of the funding and employ common contracting approaches to enhance outcomes. Instead, biodiversity outcomes depended on priority alignment across the organizations. Conservation outcomes for the funder were improved by strategic interactions when organizational priorities were well aligned, but decreased when priorities were misaligned. Meanwhile, local organizations had improved outcomes regardless of alignment due to additional funding in the system. Given that conservation often involves the aggregate actions of multiple organizations with different objectives, strategic interactions between organizations need to be considered if we are to predict possible outcomes of conservation programs or costs of achieving conservation targets.  相似文献   

18.
One of the key determinants of success in biodiversity conservation is how well conservation planning decisions account for the social system in which actions are to be implemented. Understanding elements of how the social and ecological systems interact can help identify opportunities for implementation. Utilizing data from a large‐scale conservation initiative in southwestern of Australia, we explored how a social–ecological system framework can be applied to identify how social and ecological factors interact to influence the opportunities for conservation. Using data from semistructured interviews, an online survey, and publicly available data, we developed a conceptual model of the social–ecological system associated with the conservation of the Fitz‐Stirling region. We used this model to identify the relevant variables (remnants of vegetation, stakeholder presence, collaboration between stakeholders, and their scale of management) that affect the implementation of conservation actions in the region. We combined measures for these variables to ascertain how areas associated with different levels of ecological importance coincided with areas associated with different levels of stakeholder presence, stakeholder collaboration, and scales of management. We identified areas that could benefit from different implementation strategies, from those suitable for immediate conservation action to areas requiring implementation over the long term to increase on‐the‐ground capacity and identify mechanisms to incentivize implementation. The application of a social–ecological framework can help conservation planners and practitioners facilitate the integration of ecological and social data to inform the translation of priorities for action into implementation strategies that account for the complexities of conservation problems in a focused way.  相似文献   

19.
We investigated whether the impact of conservation science is greater for research conducted in countries with more pressing conservation problems. We quantified research impact for 231 countries based on 2 citation metrics (mean cites per paper and h index) and fitted models predicting research impact based on number of threatened bird and mammal species (as a measure of conservation importance of a country) and a range of demographic variables. Citation rates of conservation research increased as a country's conservation need increased and as human population, quality of governance, and wealth increased. Even after accounting for these factors, citation rates among regions and countries within regions varied significantly. The conservation research community needs to consider ways to begin addressing the entrenched disadvantages some countries have when it comes to initiating projects and producing high‐quality research.  相似文献   

20.
Abstract Spatial prioritization techniques are applied in conservation‐planning initiatives to allocate conservation resources. Although typically they are based on ecological data (e.g., species, habitats, ecological processes), increasingly they also include nonecological data, mostly on the vulnerability of valued features and economic costs of implementation. Nevertheless, the effectiveness of conservation actions implemented through conservation‐planning initiatives is a function of the human and social dimensions of social‐ecological systems, such as stakeholders’ willingness and capacity to participate. We assessed human and social factors hypothesized to define opportunities for implementing effective conservation action by individual land managers (those responsible for making day‐to‐day decisions on land use) and mapped these to schedule implementation of a private land conservation program. We surveyed 48 land managers who owned 301 land parcels in the Makana Municipality of the Eastern Cape province in South Africa. Psychometric statistical and cluster analyses were applied to the interview data so as to map human and social factors of conservation opportunity across a landscape of regional conservation importance. Four groups of landowners were identified, in rank order, for a phased implementation process. Furthermore, using psychometric statistical techniques, we reduced the number of interview questions from 165 to 45, which is a preliminary step toward developing surrogates for human and social factors that can be developed rapidly and complemented with measures of conservation value, vulnerability, and economic cost to more‐effectively schedule conservation actions. This work provides conservation and land management professionals direction on where and how implementation of local‐scale conservation should be undertaken to ensure it is feasible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号