首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Since the late 1980s, Brazilian free‐tailed bats (Tadarida brasiliensis) have increasingly used bridges as roosts in the southern United States. We examined differences in blood cortisol levels, body condition, and parasite load, as measures of physiological stress in bats roosting in bridges and bats roosting in caves. We collected data during three periods, coinciding with female phases of reproduction. For all measures, bats were captured during the nightly emergence from the roost and immediately sampled. Cortisol levels were significantly higher during pregnancy and lactation and in individuals with lower body‐condition scores (length of forearm to mass ratio) and significantly higher in bats roosting in caves than in those roosting in bridges. Thus, we concluded that individuals of this species that roost in bridges are not chronically stressed and seem to be unaffected by human activities present at bridges. This is a rare documented instance where a human‐dominated environment does not appear to be adversely affecting the physiological health of a free‐ranging animal.  相似文献   

2.
Abstract: The probability of persistence of many species of hibernating bats in the United States is greatly reduced by an emerging infectious disease, white‐nose syndrome (WNS). In the United States WNS is rapidly spreading and is associated with a psychrophilic fungus, Geomyces destructans. WNS has caused massive mortality of bats that hibernate. Efforts to control the disease have been ineffective. The culling of bats in hibernacula has been proposed as a way to break the transmission cycle or slow the spread of WNS. We formulated a disease model to examine the efficacy of culling to abate WNS in bat populations. We based the model dynamics on disease transmission in maternity roosts, swarms, and hibernacula, which are the arenas of contact among bats. Our simulations indicated culling will not control WNS in bats primarily because contact rates are high among colonial bats, contact occurs in multiple arenas, and periodic movement between arenas occurs. In general, culling is ineffective in the control of animal diseases in the wild.  相似文献   

3.
Cover Caption     
Cover : Little brown bats (Myotis lucifugus) hibernating in Aeolis Cave, Bennington County, Vermont (U.S.A.), March 2009. The probability of persistence of many species of hibernating bats in the eastern United States and Canada is greatly decreased by white‐nose syndrome, a rapidly emerging infectious disease that is causing mass mortality. Culling of bats in hibernacula has been proposed as a mechanism to control the disease. On pages 189‐194, Hallam and McCracken present a simulation model that suggests culling is unlikely to reduce spread of white‐nose syndrome.  相似文献   

4.
Ecological factors generally affect population viability on rapid time scales. Traditional population viability analyses (PVA) therefore focus on alleviating ecological pressures, discounting potential evolutionary impacts on individual phenotypes. Recent studies of evolutionary rescue (ER) focus on cases in which severe, environmentally induced population bottlenecks trigger a rapid evolutionary response that can potentially reverse demographic threats. ER models have focused on shifting genetics and resulting population recovery, but no one has explored how to incorporate those findings into PVA. We integrated ER into PVA to identify the critical decision interval for evolutionary rescue (DIER) under which targeted conservation action should be applied to buffer populations undergoing ER against extinction from stochastic events and to determine the most appropriate vital rate to target to promote population recovery. We applied this model to little brown bats (Myotis lucifugus) affected by white‐nose syndrome (WNS), a fungal disease causing massive declines in several North American bat populations. Under the ER scenario, the model predicted that the DIER period for little brown bats was within 11 years of initial WNS emergence, after which they stabilized at a positive growth rate (λ = 1.05). By comparing our model results with population trajectories of multiple infected hibernacula across the WNS range, we concluded that ER is a potential explanation of observed little brown bat population trajectories across multiple hibernacula within the affected range. Our approach provides a tool that can be used by all managers to provide testable hypotheses regarding the occurrence of ER in declining populations, suggest empirical studies to better parameterize the population genetics and conservation‐relevant vital rates, and identify the DIER period during which management strategies will be most effective for species conservation.  相似文献   

5.
6.
Assessing the scope and severity of threats is necessary for evaluating impacts on populations to inform conservation planning. Quantitative threat assessment often requires monitoring programs that provide reliable data over relevant spatial and temporal scales, yet such programs can be difficult to justify until there is an apparent stressor. Leveraging efforts of wildlife management agencies to record winter counts of hibernating bats, we collated data for 5 species from over 200 sites across 27 U.S. states and 2 Canadian provinces from 1995 to 2018 to determine the impact of white-nose syndrome (WNS), a deadly disease of hibernating bats. We estimated declines of winter counts of bat colonies at sites where the invasive fungus that causes WNS (Pseudogymnoascus destructans) had been detected to assess the threat impact of WNS. Three species undergoing species status assessment by the U.S. Fish and Wildlife Service (Myotis septentrionalis, Myotis lucifugus, and Perimyotis subflavus) declined by more than 90%, which warrants classifying the severity of the WNS threat as extreme based on criteria used by NatureServe. The scope of the WNS threat as defined by NatureServe criteria was large (36% of Myotis lucifugus range) to pervasive (79% of Myotis septentrionalis range) for these species. Declines for 2 other species (Myotis sodalis and Eptesicus fuscus) were less severe but still qualified as moderate to serious based on NatureServe criteria. Data-sharing across jurisdictions provided a comprehensive evaluation of scope and severity of the threat of WNS and indicated regional differences that can inform response efforts at international, national, and state or provincial jurisdictions. We assessed the threat impact of an emerging infectious disease by uniting monitoring efforts across jurisdictional boundaries and demonstrated the importance of coordinated monitoring programs, such as the North American Bat Monitoring Program (NABat), for data-driven conservation assessments and planning.  相似文献   

7.
A central premise of conservation biology is that small populations suffer reduced viability through loss of genetic diversity and inbreeding. However, there is little evidence that variation in inbreeding impacts individual reproductive success within remnant populations of threatened taxa, largely due to problems associated with obtaining comprehensive pedigree information to estimate inbreeding. In the critically endangered black rhinoceros, a species that experienced severe demographic reductions, we used model selection to identify factors associated with variation in reproductive success (number of offspring). Factors examined as predictors of reproductive success were age, home range size, number of nearby mates, reserve location, and multilocus heterozygosity (a proxy for inbreeding). Multilocus heterozygosity predicted male reproductive success (p< 0.001, explained deviance >58%) and correlated with male home range size (p < 0.01, r2 > 44%). Such effects were not apparent in females, where reproductive success was determined by age (p < 0.01, explained deviance 34%) as females raise calves alone and choose between, rather than compete for, mates. This first report of a 3‐way association between an individual male's heterozygosity, reproductive output, and territory size in a large vertebrate is consistent with an asymmetry in the level of intrasexual competition and highlights the relevance of sex‐biased inbreeding for the management of many conservation‐priority species. Our results contrast with the idea that wild populations of threatened taxa may possess some inherent difference from most nonthreatened populations that necessitates the use of detailed pedigrees to study inbreeding effects. Despite substantial variance in male reproductive success, the increased fitness of more heterozygous males limits the loss of heterozygosity. Understanding how individual differences in genetic diversity mediate the outcome of intrasexual competition will be essential for effective management, particularly in enclosed populations, where individuals have restricted choice about home range location and where the reproductive impact of translocated animals will depend upon the background distribution in individual heterozygosity. Efectos de la Endogamia Sesgada por el Sexo sobre el Éxito Reproductivo y el Rango del Tamaño de Hábitat del Rinoceronte Negro, Especie en Peligro Crítico  相似文献   

8.
Introduced disease has been implicated in recent wildlife extinctions and population declines worldwide. Both anthropogenic‐induced change and natural environmental features can affect pathogen spread. Furthermore, environmental disturbance can result in changes in stress physiology, nutrition, and social structure, which in turn can suppress immune system function. However, it remains unknown whether landscape variation results in heterogeneity in host resistance to pathogens. Avian pox virus, a pathogen implicated in avian declines and extinctions in Hawaii, was introduced to the Galapagos in the 1890s, and prevalence (total number of current infections) has increased recently in finches. We tested whether prevalence and recovery trends in 7 species of Galapagos finches varied by elevation or human land use. To do so, we used infection data obtained from 545 wild‐caught birds. In addition, we determined whether annual changes in 4 aspects of innate immune function (complement protein activity, natural antibody activity, concentration of PIT54 protein, and heterophil:lymphocyte ratio) varied by elevation or land use. Prevalence and recovery rates did not vary by elevation from 2008 to 2009. Avian pox prevalence and proportion of recovered individuals in undeveloped and urban areas did not change from 2008 to 2009. In agricultural areas, avian pox prevalence increased 8‐fold (from 2% to 17% of 234 individuals sampled) and proportion of recovered individuals increased (11% to 19%) from 2008 to 2009. These results suggest high disease‐related mortality. Variation in immune function across human land‐use types correlated with variation in both increased prevalence and susceptibility, which indicates changes in innate immune function may underlie changes in disease susceptibility. Our results suggest anthropogenic disturbance, in particular agricultural practices, may underlie immunological changes in host species that themselves contribute to pathogen emergence. Variación con el Uso de Suelo de la Función Inmune y la Prevalencia de la Varicela Aviar en Pinzones de las Galápagos  相似文献   

9.
Despite differences in focus, goals, and strategies between conservation biology and animal welfare, both are inextricably linked in many ways, and greater consideration of animal welfare, although important in its own right, also has considerable potential to contribute to conservation success. Nevertheless, animal welfare and animal ethics are not always considered explicitly within conservation practice. We systematically reviewed the recent scientific peer‐reviewed and online gray literature on reintroductions of captive‐bred and wild‐caught animals (mammals, birds, amphibians, and reptiles) to quantify the occurrence of animal welfare issues. We considered monitoring that could be indicative of the animal's welfare status and supportive management actions that could improve animal welfare (regardless of whether the aim was explicitly animal‐welfare orientated). Potential welfare issues (of variable nature and extent) were recorded in 67% of 199 projects reviewed; the most common were mortality >50%, dispersal or loss of animals, disease, and human conflict. Most (>70%) projects monitored survival, 18% assessed body condition, and 2% monitored stress levels. Animal welfare, explicitly, was referred to in 6% of projects. Supportive actions, most commonly use of on‐site prerelease pens and provision of supplemental food or water, were implemented in 79% of projects, although the extent and duration of support varied. Practitioners can address animal‐welfare issues in reintroductions by considering the potential implications for individual animals at all stages of the release process using the decision tree presented. We urge practitioners to report potential animal‐welfare issues, describe mitigation actions, and evaluate their efficacy to facilitate transparent evaluation of common moral dilemmas and to advance communal strategies for dealing with them. Currently, comparative mortality rates, health risks, postrelease stress, effectiveness of supportive measures, and behavior of individuals warrant further research to improve animal welfare in reintroductions and to increase success of such projects. Ética Conflictiva y Complementaria al Considerar el Bienestar Animal en Reintroducciones  相似文献   

10.
Abstract: Conservation actions need to account for and be adapted to address changes that will occur under global climate change. The identification of stresses on biological diversity (as defined in the Convention on Biological Diversity) is key in the process of adaptive conservation management. We considered any impact of climate change on biological diversity a stress because such an effect represents a change (negative or positive) in key ecological attributes of an ecosystem or parts of it. We applied a systemic approach and a hierarchical framework in a comprehensive classification of stresses to biological diversity that are caused directly by global climate change. Through analyses of 20 conservation sites in 7 countries and a review of the literature, we identified climate‐change‐induced stresses. We grouped the identified stresses according to 3 levels of biological diversity: stresses that affect individuals and populations, stresses that affect biological communities, and stresses that affect ecosystem structure and function. For each stress category, we differentiated 3 hierarchical levels of stress: stress class (thematic grouping with the coarsest resolution, 8); general stresses (thematic groups of specific stresses, 21); and specific stresses (most detailed definition of stresses, 90). We also compiled an overview of effects of climate change on ecosystem services using the categories of the Millennium Ecosystem Assessment and 2 additional categories. Our classification may be used to identify key climate‐change‐related stresses to biological diversity and may assist in the development of appropriate conservation strategies. The classification is in list format, but it accounts for relations among climate‐change‐induced stresses.  相似文献   

11.
Abstract: Species distribution models are critical tools for the prediction of invasive species spread and conservation of biodiversity. The majority of species distribution models have been built with environmental data. Community ecology theory suggests that species co‐occurrence data could also be used to predict current and potential distributions of species. Species assemblages are the products of biotic and environmental constraints on the distribution of individual species and as a result may contain valuable information for niche modeling. We compared the predictive ability of distribution models of annual grassland plants derived from either environmental or community‐composition data. Composition‐based models were built with the presence or absence of species at a site as predictors of site quality, whereas environment‐based models were built with soil chemistry, moisture content, above‐ground biomass, and solar radiation as predictors. The reproductive output of experimentally seeded individuals of 4 species and the abundance of 100 species were used to evaluate the resulting models. Community‐composition data were the best predictors of both the site‐specific reproductive output of sown individuals and the site‐specific abundance of existing populations. Successful community‐based models were robust to omission of data on the occurrence of rare species, which suggests that even very basic survey data on the occurrence of common species may be adequate for generating such models. Our results highlight the need for increased public availability of ecological survey data to facilitate community‐based modeling at scales relevant to conservation.  相似文献   

12.
Bayesian network analyses can be used to interactively change the strength of effect of variables in a model to explore complex relationships in new ways. In doing so, they allow one to identify influential nodes that are not well studied empirically so that future research can be prioritized. We identified relationships in host and pathogen biology to examine disease‐driven declines of amphibians associated with amphibian chytrid fungus (Batrachochytrium dendrobatidis). We constructed a Bayesian network consisting of behavioral, genetic, physiological, and environmental variables that influence disease and used them to predict host population trends. We varied the impacts of specific variables in the model to reveal factors with the most influence on host population trend. The behavior of the nodes (the way in which the variables probabilistically responded to changes in states of the parents, which are the nodes or variables that directly influenced them in the graphical model) was consistent with published results. The frog population had a 49% probability of decline when all states were set at their original values, and this probability increased when body temperatures were cold, the immune system was not suppressing infection, and the ambient environment was conducive to growth of B. dendrobatidis. These findings suggest the construction of our model reflected the complex relationships characteristic of host–pathogen interactions. Changes to climatic variables alone did not strongly influence the probability of population decline, which suggests that climate interacts with other factors such as the capacity of the frog immune system to suppress disease. Changes to the adaptive immune system and disease reservoirs had a large effect on the population trend, but there was little empirical information available for model construction. Our model inputs can be used as a base to examine other systems, and our results show that such analyses are useful tools for reviewing existing literature, identifying links poorly supported by evidence, and understanding complexities in emerging infectious‐disease systems.  相似文献   

13.
Abstract: Widespread poaching prior to the 1989 ivory ban greatly altered the demographic structure of matrilineal African elephant (Loxodonta africana) family groups in many populations by decreasing the number of old, adult females. We assessed the long‐term impacts of poaching by investigating genetic, physiological, and reproductive correlates of a disturbed social structure resulting from heavy poaching of an African elephant population in Mikumi National Park, Tanzania, prior to 1989. We examined fecal glucocorticoid levels and reproductive output among 218 adult female elephants from 109 groups differing in size, age structure, and average genetic relatedness over 25 months from 2003 to 2005. The distribution in group size has changed little since 1989, but the number of families with tusked old matriarchs has increased by 14.2%. Females from groups that lacked an old matriarch, first‐order adult relatives, and strong social bonds had significantly higher fecal glucocorticoid values than those from groups with these features (all females R2= 0.31; females in multiadult groups R2= 0.46). Females that frequented isolated areas with historically high poaching risk had higher fecal glucocorticoid values than those in low poaching risk areas. Females with weak bonds and low group relatedness had significantly lower reproductive output (R2[U]=0.21). Females from disrupted groups, defined as having observed average group relatedness 1 SD below the expected mean for a simulated unpoached family, had significantly lower reproductive output than females from intact groups, despite many being in their reproductive prime. These results suggest that long‐term negative impacts from poaching of old, related matriarchs have persisted among adult female elephants 1.5 decades after the 1989 ivory ban was implemented.  相似文献   

14.
Although interwetland dispersal is thought to play an important role in regional persistence of pond‐breeding amphibians, few researchers have modeled amphibian metapopulation or source‐sink dynamics. Results of recent modeling studies suggest anthropogenic stressors, such as pollution, can negatively affect density and population viability of amphibians breeding in isolated wetlands. Presumably population declines also result in reduced dispersal to surrounding (often uncontaminated) habitats, potentially affecting dynamics of nearby populations. We used our data on the effects of mercury (Hg) on the American toad ( Bufo americanus) as a case study in modeling the effects of anthropogenic stressors on landscape‐scale amphibian dynamics. We created a structured metapopulation model to investigate regional dynamics of American toads and to evaluate the degree to which detrimental effects of Hg contamination on individual populations can disrupt interpopulation dynamics. Dispersal from typical American toad populations supported nearby populations that would otherwise have been extirpated over long time scales. Through support of such sink populations, dispersal between wetland‐associated subpopulations substantially increased overall productivity of wetland networks, but this effect declined with increasing interwetland distance and decreasing wetland size. Contamination with Hg substantially reduced productivity of wetland‐associated subpopulations and impaired the ability of populations to support nearby sinks within relevant spatial scales. Our results add to the understanding of regional dynamics of pond‐breeding amphibians, the wide‐reaching negative effects of environmental contaminants, and the potential for restoration or remediation of degraded habitats. Evaluación de los Efectos de Estresantes Antropogénicos sobre la Dinámica Fuente‐Vertedero en Anfibios que se Reproducen en Charcas  相似文献   

15.
Abstract: Some species have insufficient defenses against climate change, emerging infectious diseases, and non‐native species because they have not been exposed to these factors over their evolutionary history, and this can decrease their likelihood of persistence. Captive breeding programs are sometimes used to reintroduce individuals back into the wild; however, successful captive breeding and reintroduction can be difficult because species or populations often cannot coexist with non‐native pathogens and herbivores without artificial selection. In captive breeding programs, breeders can select for host defenses that prevent or reduce pathogen or herbivore burden (i.e., resistance) or traits that limit the effects of parasitism or herbivory on host fitness (i.e., tolerance). We propose that selection for host tolerance may enhance the success of reintroduction or translocation because tolerant hosts generally have neutral effects on introduced pathogens and herbivores. The release of resistant hosts would have detrimental effects on their natural enemies, promoting rapid evolution to circumvent the host resistance that may reduce the long‐term probability of persistence of the reintroduced or translocated species. We examined 2 case studies, one on the pathogenic amphibian chytrid fungus ( Batrachochytrium dendrobatidis [Bd]) and the other on the herbivorous cactus moth ( Cactoblastis cactorum) in the United States, where it is not native. In each case study, we provide recommendations for how captive breeders and managers could go about selecting for host tolerance. Selecting for tolerance may offer a promising tool to rescue hosts species from invasive natural enemies as well as new natural enemies associated with climate change‐induced range shifts.  相似文献   

16.
Conservationists are increasingly engaging with the concept of human well‐being to improve the design and evaluation of their interventions. Since the convening of the influential Sarkozy Commission in 2009, development researchers have been refining conceptualizations and frameworks to understand and measure human well‐being and are starting to converge on a common understanding of how best to do this. In conservation, the term human well‐being is in widespread use, but there is a need for guidance on operationalizing it to measure the impacts of conservation interventions on people. We present a framework for understanding human well‐being, which could be particularly useful in conservation. The framework includes 3 conditions; meeting needs, pursuing goals, and experiencing a satisfactory quality of life. We outline some of the complexities involved in evaluating the well‐being effects of conservation interventions, with the understanding that well‐being varies between people and over time and with the priorities of the evaluator. Key challenges for research into the well‐being impacts of conservation interventions include the need to build up a collection of case studies so as to draw out generalizable lessons; harness the potential of modern technology to support well‐being research; and contextualize evaluations of conservation impacts on well‐being spatially and temporally within the wider landscape of social change. Pathways through the smog of confusion around the term well‐being exist, and existing frameworks such as the Well‐being in Developing Countries approach can help conservationists negotiate the challenges of operationalizing the concept. Conservationists have the opportunity to benefit from the recent flurry of research in the development field so as to carry out more nuanced and locally relevant evaluations of the effects of their interventions on human well‐being. Consideración del Impacto de la Conservación sobre el Bienestar Humano  相似文献   

17.
Abstract: Disruption of gene flow among demes after landscape fragmentation can facilitate local adaptation but increase the effect of genetic drift and inbreeding. The joint effects of these conflicting forces on the mean fitness of individuals in a population are unknown. Through simulations, we explored the effect of increased isolation on the evolution of genetic load over the short and long term when fitness depends in part on local adaptation. We ignored genetic effects on demography. We modeled complex genomes, where a subset of the loci were under divergent selection in different localities. When a fraction of the loci were under heterogeneous selection, isolation increased mean fitness in larger demes made up of hundreds of individuals because of improved local adaptation. In smaller demes of tens of individuals, increased isolation improved local adaptation very little and reduced overall fitness. Short‐term improvement of mean fitness after fragmentation may not be indicative of the long‐term evolution of fitness. Whatever the deme size and potential for local adaptation, migration of one or two individuals per generation minimized the genetic load in general. The slow dynamics of mean fitness following fragmentation suggests that conservation measures should be implemented before the consequences of isolation on the genetic load become of concern.  相似文献   

18.
Abstract: Studies comparing dispersal in fragmented versus unfragmented landscapes show that habitat fragmentation alters the dispersal behavior of many species. We used two complementary approaches to explore Florida Scrub‐Jay (Aphelocoma c?rulescens) dispersal in relation to landscape fragmentation. First, we compared dispersal distances of color‐marked individuals in intensively monitored continuous and fragmented landscapes. Second, we estimated effective dispersal relative to the degree of fragmentation (as inferred from two landscape indexes: proportion of study site covered with Florida Scrub‐Jay habitat and mean distance to nearest habitat patch within each study site) by comparing genetic isolation‐by‐distance regressions among 13 study sites having a range of landscape structures. Among color‐banded individuals, dispersal distances were greater in fragmented versus continuous landscapes, a result consistent with other studies. Nevertheless, genetic analyses revealed that effective dispersal decreases as the proportion of habitat in the landscape decreases. These results suggest that although individual Florida Scrub‐Jays may disperse farther as fragmentation increases, those that do so are less successful as breeders than those that disperse short distances. Our study highlights the importance of combining observational data with genetic inferences when evaluating the complex biological and life‐history implications of dispersal.  相似文献   

19.
Climate changes impose requirements for many species to shift their ranges to remain within environmentally tolerable areas, but near‐continuous regions of intense human land use stretching across continental extents diminish dispersal prospects for many species. We reviewed the impact of habitat loss and fragmentation on species’ abilities to track changing climates and existing plans to facilitate species dispersal in response to climate change through regions of intensive land uses, drawing on examples from North America and elsewhere. We identified an emerging analytical framework that accounts for variation in species' dispersal capacities relative to both the pace of climate change and habitat availability. Habitat loss and fragmentation hinder climate change tracking, particularly for specialists, by impeding both propagule dispersal and population growth. This framework can be used to identify prospective modern‐era climatic refugia, where the pace of climate change has been slower than surrounding areas, that are defined relative to individual species' needs. The framework also underscores the importance of identifying and managing dispersal pathways or corridors through semi‐continental land use barriers that can benefit many species simultaneously. These emerging strategies to facilitate range shifts must account for uncertainties around population adaptation to local environmental conditions. Accounting for uncertainties in climate change and dispersal capabilities among species and expanding biological monitoring programs within an adaptive management paradigm are vital strategies that will improve species' capacities to track rapidly shifting climatic conditions across landscapes dominated by intensive human land use.  相似文献   

20.
Rising temperatures, a widespread consequence of climate change, have been implicated in enigmatic amphibian declines from habitats with little apparent human impact. The pathogenic fungus Batrachochytrium dendrobatidis (Bd), now widespread in Neotropical mountains, may act in synergy with climate change causing collapse in thermally stressed hosts. We measured the thermal tolerance of frogs along a wide elevational gradient in the Tropical Andes, where frog populations have collapsed. We used the difference between critical thermal maximum and the temperature a frog experiences in nature as a measure of tolerance to high temperatures. Temperature tolerance increased as elevation increased, suggesting that frogs at higher elevations may be less sensitive to rising temperatures. We tested the alternative pathogen optimal growth hypothesis that prevalence of the pathogen should decrease as temperatures fall outside the optimal range of pathogen growth. Our infection‐prevalence data supported the pathogen optimal growth hypothesis because we found that prevalence of Bd increased when host temperatures matched its optimal growth range. These findings suggest that rising temperatures may not be the driver of amphibian declines in the eastern slopes of the Andes. Zoonotic outbreaks of Bd are the most parsimonious hypothesis to explain the collapse of montane amphibian faunas; but our results also reveal that lowland tropical amphibians, despite being shielded from Bd by higher temperatures, are vulnerable to climate‐warming stress. Fisiología Termal, Enfermedades y Disminuciones de Anfibios en las Laderas Orientales de los Andes  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号