首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, a physical model of the dust cloud ignition process is developed for both cylindrical coordinates with a straight-line shaped ignition source and spherical coordinates with a point shaped ignition source. Using this model, a numerical algorithm for the calculation of the minimum ignition energy (MIE) is established and validated. This algorithm can evaluate MIEs of dusts and their mixtures with different dust concentrations and particle sizes. Although the average calculated cylindrical MIE (MIEcylindrical) of the studied dusts only amounts to 63.9% of the average experimental MIE value due to reasons including high idealization of the numerical model and possible energy losses in the experimental tests, the algorithm with cylindrical coordinates correctly predicts the experimental MIE variation trends against particle diameter and dust concentration. There is a power function relationship between the MIE and particle diameter of the type MIE ∝ dpk with k being approximately 2 for cylindrical coordinates and 3 for spherical coordinates. Moreover, as dust concentration increases MIE(conc) first drops because of the decreasing average distance between particles and, at fuel-lean concentrations the increasing dust cloud combustion heat; however, after the dust concentration rises beyond a certain value, MIE(conc) starts to increase as a result of the increasingly significant heat sink effect from the particles and, at fuel-rich concentrations the no longer increasing dust cloud combustion heat.  相似文献   

2.
随着现代工业的发展,粉尘爆炸事故发生的频率也逐年增加,因此,对粉尘云点火敏感程度进行测量和计算就变得十分重要。粉尘云最小点火能是粉尘爆炸重要的特性参数之一,是采取粉尘爆炸防护的基础。最小点火能在测量的过程中受到多个敏感条件的影响,其中湍流则是最复杂的影响因素之一。文中对实验过程中粉尘云的湍流进行了定义,并分析了湍流对粉尘云最小点火能影响的内在原因;同时对通过数值模拟计算粉尘云最小点火能过程中的湍流计算给出了数学模型。从实验和数学模型两个方向对湍流进行了全面描述,对粉尘云电火花点火过程中湍流影响的分析结论,可有效的指导实验。  相似文献   

3.
针对某不饱和聚酯树脂钮扣厂在除尘设备维修过程中发生的粉尘爆炸事故,探究静电引起此次事故的可能性并提出防护措施。通过实验测定不饱和聚酯树脂钮扣粉尘的爆炸特性参数,进而确定其静电爆炸敏感性。结果发现:不饱和聚酯树脂钮扣粉尘云最小点火能MIE为4~10 mJ、最低着火温度MIT为480 ℃、粉尘层最低着火温度LIT>400 ℃。表明,此粉尘属易燃粉尘,其粉尘爆炸敏感度极高,被静电火花点燃的可能性极大,在生产过程中,应采取静电防护措施。  相似文献   

4.
The Atex Directive specifically includes the explosion hazards arising from the presence of flammable dusts. The European standards body CENELEC proposed a research project to develop tests for assessing the ignition hazard due to electrical apparatus used in hazardous dusty environments. This paper describes the work done on developing a test for electrical spark ignitions of explosive dust atmospheres. A prototype apparatus incorporating the dust explosibility vertical tube and the STA break flash apparatus has been developed. Tests using three dusts showed sulphur dust had ignition characteristics close to those of gas Group B, while other dusts were much less easily ignitable than methane. Round robin tests using a duplicate apparatus and the proposed test method produced results very close to those obtained using the original apparatus.  相似文献   

5.
This paper presents a numerical model for the prediction of the minimum ignition temperature (MIT) of dust clouds. First, a physical model is developed for the dust cloud ignition in the Godbert-Greenwald furnace. A numerical approach is then applied for the MIT prediction based on the physical model. The model considers heat transfer between the air and dust particles, the dust particle reaction kinetics, and the residence times of dust clouds in the furnace. In general, for the 13 dusts studied, the calculated MIT data are in agreement with the experimental values. There is also great accordance between the experimental and numerical MIT variation trends against particle size. Two different ignition modes are discovered. The first one consists in ignition near the furnace wall for bigger particles characterized by rather short residence times. In the second mode, the ignition starts from the center of the furnace by self-heating of the dust cloud for smaller particles with longer residence times. For magnesium, as dust concentration increases, the lowest ignition temperature of the dust cloud IT(conc) decreases first, then transits to increase at a certain point. The transition happens at different dust concentrations for different particle sizes. Moreover, the MIT of the magnesium dust cloud generally increases as particle size increases, but the increasing trend stagnates within a certain medium particle size range.  相似文献   

6.
Powdery materials such as metallic or polymer powders play a considerable role in many industrial processes. Their use requires the introduction of preventive safeguard to control the plants safety. The mitigation of an explosion hazard, according to the ATEX 137 Directive (1999/92/EU), requires, among other things, the assessment of the dust ignition sensitivity. PRISME laboratory (University of Orléans) has developed an experimental set-up and methodology, using the Langlie test, for the quick determination of the explosion sensitivity of dusts. This method requires only 20 shots and ignition sensitivity is evaluated through the E50 (energy with an ignition probability of 0.5). A Hartmann tube, with a volume of 1.3 l, was designed and built. Many results on the energy ignition thresholds of partially oxidised aluminium were obtained using this experimental device (Baudry, 2007) and compared to literature. E50 evolution is the same as MIE but their respective values are different and MIE is lower than E50 however the link between E50 and MIE has not been elucidated.In this paper, the Langlie method is explained in detail for the determination of the parameters (mean value E50 and standard deviation σ) of the associated statistic law. The ignition probability versus applied energy is firstly measured for Lycopodium in order to validate the method. A comparison between the normal and the lognormal law was achieved and the best fit was obtained with the lognormal law.In a second part, the Langlie test was performed on different dusts such as aluminium, cornstarch, lycopodium, coal, and PA12 in order to determine E50 and σ for each dust. The energies E05 and E10 corresponding respectively to an ignition probability of 0.05 and 0.1 are determined with the lognormal law and compared to MIE find in literature. E05 and E10 values of ignition energy were found to be very close and were in good agreement with MIE in the literature.  相似文献   

7.
In general terms, the purpose of any safety standard is to define borderlines between safe and unsafe conditions, with reasonable safety margins. The electrical spark ignition sensitivity of dust clouds (MIE) varies over at least eight orders of magnitude. Therefore, in the case of intrinsically safe electrical apparatus to be used in the presence of explosive dust clouds, substantial differentiation of the minimum requirements to prevent ignition by electrical sparks is needed. The present paper proposes a method by which adequate differentiation of required maximum permissible currents and/or voltages in intrinsically safe electrical circuits to be used in explosive dust clouds can be achieved. In essence, the concept is to use conservative first-order ignition curves, calculated or estimated from the experimental MIE value of clouds in air of the actual dust. Charts to be used for design purposes are given in the paper. Internationally standardised test methods allow MIE for clouds of any dust to be determined, at least down to the range of a few mJ. There is, however, a need for a supplementary method covering the range of lower energies, down to 0.01 mJ.  相似文献   

8.
Accidental electrostatic sparks in industrial plant producing/handling powders/dusts occur whenever a non-earthed electrically conducting object has been charged tribo-electrically to a high voltage and suddenly discharges its energy to earth via an air gap of appropriate length. When assessing the electrostatic spark ignition hazard in an industrial plant, the parameters of prime concern are the capacitances C of electrically conducting plant items that may become charged tribo-electrically, the voltages U to which they may become charged, and the minimum electric spark ignition energies (MIE) of the dust clouds of concern. Whenever , there is a possibility of accidental electrostatic spark ignition.

Current standard apparatuses for determining MIE of dust clouds have a lower spark energy limit of 2–3 mJ. In an investigation by the present authors, discussed in detail elsewhere, a new spark generator capable of producing synchronized capacitive sparks of energies down to the order of 0.01 mJ was developed and used for testing a selection of ignition-sensitive powders for MIE. Several of the MIEs found were 1–2 orders of magnitude lower than the lower energy limit of current standard test apparatus. Other experiments by the present authors, also reported elsewhere, have shown that quite low MIEs can be found for some dusts even with a less optimal synchronization mechanism, which may occur accidentally in practice.

The main object of the present paper is to discuss possible practical concerns arising from the finding that clouds in air of some dusts can have very low MIEs. In such cases, one may have to pay attention to even minor C values, i.e. minor plant items. Alternatively, with larger C values, even quite low voltages may give rise to hazardous spark discharges.

However, some types of fine metal powders of low MIEs will quite readily form electrically conductive layers on the solid surfaces with which they make contact. Hence, electrostatic spark ignition inside process equipment containing such dusts may be less probable than in the case of process equipment containing non-conducting dusts of correspondingly low MIEs.

There may be a need for a new standard test method for determination of MIEs of dust clouds in the <1 mJ range.  相似文献   


9.
A dispersion of fine particles in the air is needed for a dust explosion to occur since an explosion is the fast combustion of particles in the air. When particles are poorly dispersed, agglomerated, or their concentration is low, the combustion velocity decreases, and deflagration would not occur. The combustion rate is strictly related to dust concentration. Therefore, the maximum explosion pressure rise occurs at dust concentration close to stoichiometric. Conversely, Minimum Explosion Concentration (MEC) is the lower limit at which self-sustained combustion and a pressure rise are possible. Dust explosion tests are designed to reproduce the dispersion and generation of dust clouds in industrial ambiences by using dispersion devices activated by pressurised air pulses. The resulting dust cloud, which has a marked transient character, is considered representative of real clouds by current standards. Over time, several studies have been carried out to optimise these devices (e.g. to reduce the inhomogeneity of the cloud in the 20 L sphere). The Minimum Ignition Energy (MIE) of dust is measured using the Mike3 modified Hartmann tube, where the ignition attempt is made 60–180 ms after dust dispersion regardless of dust characteristics.This work investigates the dust clouds’ actual behaviour inside the modified Hartmann tube before ignition using high-velocity video movies and a new image post-treatment method called Image Subtraction Method (ISM). Movies are recorded with high-speed cameras at a framerate of 2000 fps and elaborated with an on-purpose developed LabVIEW® code. Concentration (mass per volume) and dispersion pressure are varied to evaluate their effect on dust clouds. Maise starch, iron powder and silica powder are chosen to investigate the effect of particle density and size on the cloud structure and turbulence. This approach will help to investigate the structure of the dust cloud, the shape and size of the particle lumps and the change in dust concentration over time. In addition, information on the actual concentration and cloud turbulence at the ignition location and delay time were obtained, which may help identify the local turbulence scale and widen the characterisation of the cloud generated in the Hartmann tube.  相似文献   

10.
兽药制药粉尘加工工艺过程中,由于粉尘颗粒之间或颗粒与设备、管壁之间的碰撞、摩擦,导致装置内部静电荷量积聚,激发静电放电,粉尘燃烧或爆炸的事故频发。实验主要通过包括粉尘与管材摩擦的漏电电流测试和静电放电火花对粉尘云点燃敏感性测试两部分。结果表明:单一药物药粉的静电漏电电流随着管材管径的增大,管长的增长,静电漏电电流逐渐变大;随着倾斜角的增大,静电漏电电流先增大后降低;镀锌铁管的漏电电流大于PVC管,电荷逸散速度更快。单一兽药粉的粉尘云放电火花最小点燃能量随质量浓度的变化,呈现二次曲线的变化趋势。混合兽药粉与单一兽药粉的漏电电流和粉尘云放电火花最小点燃能量的测试结果的变化趋势是一致的。  相似文献   

11.
An experimental device for evaluating the minimum ignition energy (MIE) of LDPE dust/ethylene hybrid mixture was built with the innovative mixing mode. The MIE of the hybrid mixture that contained ethylene below its lower explosive limit (LEL) was studied. The result indicated that adding a small amount of ethylene significantly reduced the MIE of the original dust cloud. All the MIEs with five different particle sizes were found to show similar trends of exponential attenuation with the increase of ethylene concentration; such attenuating effect grew as the dust particle size rose. When ethylene concentration increased and approached to its LEL, the reaction mechanism dominated by combustible dust turned into one dominated by combustible gas. The MIE decreased first and then increased with the dust mass and increased with the dust particle size. A multifactor mathematical correlation model of the MIE with the dust particle size and ethylene concentration was developed.  相似文献   

12.
Current standard test methods for electric-spark minimum ignition energies (MIEs) of dust clouds in air require that a series inductance of at least 1–2 mH be included in the electric-spark discharge circuit. The reason is to prolong the spark discharge duration and thus minimize the spark energy required for ignition. However, when assessing the minimum electrostatic energy ½CU2 for dust cloud ignition by accidental electrostatic-spark discharges, current testing standards require that the series inductance of at least 1–2 mH be removed from the spark discharge circuit. No other changes of apparatus and test procedure are required. The present paper questions whether this simple approach is always adequate. The reason is that in practice in industry accidental electrostatic-spark discharge circuits may contain large ohmic resistances due to corrosion, poor electrical grounding connections, poorly electrically conducting construction materials etc. The result is increased spark discharge durations and reduced mechanical disturbance of the dust cloud by the blast wave emitted by the spark. Therefore, testing for minimum ½CU2 for ignition by accidental electrostatic spark discharges may not only require removal of the series inductance of 1–2 mH from the standard MIE spark discharge circuit. Additional tests may be needed with one or more quite large series resistances Rs inserted into the spark discharge circuit. The present paper proposes a modified standard test procedure for measurement of the minimum electrostatic-spark ignition energy of dust clouds that accounts for these effects.  相似文献   

13.
Hybrid mixtures – mixtures of burnable dusts and burnable gases – pose special problems to industries, as their combined Lower Explosion Limit (LEL) can lie below the LEL of the single substances. Different mathematical relations have been proposed by various authors in literature to predict the Lower Explosion Limit of hybrid mixtures (LELhybrid). The aim of this work is to prove the validity or limitations of these formulas for various combinations of dusts and gases. The experiments were executed in a standard 20 L vessel apparatus used for dust explosion testing. Permanent spark with an ignition energy of 10 J was used as ignition source. The results obtained so far show that, there are some combinations of dust and gas where the proposed mathematical formulas to predict the lower explosible limits of hybrid mixtures are not safe enough.  相似文献   

14.
In real conditions, the surface temperature of an equipment enclosure covered with a combustible dust layer can significantly rise due to insulating properties of the dust layer. To assess this effect, the measurements of minimum ignition temperature of dust layer at constant temperature of the heated plate tt min (standard method) and the same ignition temperature at constant rate of heat generation th min for two coal dusts were made. Dust layers of thickness between 5 and 50 mm were tested. For each dust, tt min was higher than th min for every tested thickness of the layer. The difference was biggest for thin layers and decreased with increase of the layer thickness. The results suggest a deficiency of the standard procedure of measuring minimum ignition temperature of a dust layer.  相似文献   

15.
Most industrial powder processes handle mixtures of various flammable powders. Consequently, hazard evaluation leads to a reduction of the disaster damage that arises from dust explosions. Determining the minimum ignition energy (MIE) of flammable mixtures is critical for identifying possibility of accidental hazard in industry. The aim of this work is to measure the critical ignition energy of different kinds of pure dusts with various particle sizes as well as mixtures thereof.The results show that even the addition of a modest amount of a highly flammable powder to a less combustible powder has a significant impact on the MIE. The MIE varies considerably when the fraction of the highly flammable powder exceeds 20%. For dust mixtures consisting of combustible dusts, the relationship between the ignition energy of the mixture and the minimum ignition energy of the components follows the so-called harmonic model based upon the volume fraction of the pure dusts in the mixture. This correlation provides results which show satisfactory agreement with the experimental values.  相似文献   

16.
A novel apparatus for testing the minimum ignition energies of flammable dusts is introduced. Unlike the conventional apparatus (the Hartmann tube), this new apparatus employs a vibrating mesh to produce a dust cloud. Using three kinds of powders, namely lycopodium, anthraquinone and polyacrylonitrile, which are designated as the samples for calibration by the International Electrotechnical Commission (IEC, 1994) standards, fundamental characteristics were experimentally investigated. Concerning the minimum ignition energies (MIEs), the new testing apparatus worked well for two samples, lycopodium and polyacrylonitrile. The MIE for anthraquinone, however, was by far larger than the expected value. We concluded that the aggregation of anthraquinone particles is the main cause of the difference and is attributable to both the tribo-charges acquired by the particles when passing through the mesh and the filamentary shape of the crystal. Other essential factors for characterizing the testing apparatus, such as the concentration of dust, the shape and spacing of the sparking electrode system, and the impedance of the sparking circuit are discussed.  相似文献   

17.
Experiment-based investigations of magnesium dust explosion characteristics   总被引:1,自引:0,他引:1  
An experimental investigation was carried out on magnesium dust explosions. Tests of explosion severity, flammability limit and solid inerting were conducted thanks to the Siwek 20 L vessel and influences of dust concentration, particle size, ignition energy, initial pressure and added inertant were taken into account. That magnesium dust is more of an explosion hazard than coal dust is confirmed and quantified by contrastive investigation. The Chinese procedure GB/T 16425 is overly conservative for LEL determination while EN 14034-3 yields realistic LEL data. It is also suggested that 2000-5000 J is the most appropriate ignition energy to use in the LEL determination of magnesium dusts, using the 20 L vessel. It is essential to point out that the overdriving phenomenon usually occurs for carbonaceous and less volatile metal materials is not notable for magnesium dusts. Trends of faster burning velocity and more efficient and adiabatic flame propagation are associated with fuel-rich dust clouds, smaller particles and hyperbaric conditions. Moreover, Inerting effectiveness of CaCO3 appears to be higher than KCl values on thermodynamics, whereas KCl represents higher effectiveness upon kinetics. Finer inertant shows better inerting effectiveness.  相似文献   

18.
为准确评价高密度聚乙烯(HDPE)粉尘爆炸敏感性和开展有效的粉尘防爆工作,采用Godbert-Greenwald恒温炉标准实验装置研究了典型HDPE粉尘云最低着火温度的分布特性,着重探讨了粉尘云浓度对不同喷尘压力条件下HDPE粉尘云最低着火温度的影响规律。研究表明:测试条件下HDPE粉尘云最低着火温度的变化处于360~445 ℃范围,随粉尘云浓度的增加呈现先降低后升高的总体趋势,粉尘云浓度为1.111 kg/m3时出现拐点,且粉尘云最低着火温度随喷尘压力的增加而降低。  相似文献   

19.
Paying attention to the ignition potentiality of static electricity, the relation between the discharge characteristics and the ignition of a dust cloud and the gas produced was studied, applying an electrical power supply of which the electrical circuit is adjustable. The effect of ignition characteristics on dust and gas explosions was investigated. The results of the study indicate that the probability of an explosion is influenced by the minimum ignition energy, spark duration time, feeding rate of ignition energy, circuit capacitance, ignition voltage, etc.  相似文献   

20.
Nearly 130 years ago Holtzwart and von Meyer (1891) demonstrated by experiments that explosible dust clouds could be ignited by inductive electric sparks. Then more than half a century passed before the publication of the important quantitative research of Boyle and Llewellyn (1950) and Line et al. (1959). They worked with capacitive electric sparks and found that the minimum capacitor energies ½CU2 required for ignition of various dust clouds in air decreased substantially when a large series resistance, in the range 104–107 Ω, was introduced in the discharge circuit. When considering that the net energies of the sparks themselves were only of the order of 10% of the ½CU2 discharged, the minimum net spark energies required for ignition with a large series resistance were only a few per cent of the net energies required without such a resistance.Line et al. observed that the essential effect of increasing the series resistance, and hence increasing the discharge time of the sparks, was to reduce the disturbance of the dust cloud by the blast wave from the spark. This phenomenon was explored further by Eckhoff (1970, 2017), and subsequently by some simple experiments by Eckhoff and Enstad (1976). Franke (1974, 1977) and Laar (1980) confirmed the additional finding of Line et al. (1959) that the minimum ½CU2 for ignition is also substantially reduced by including a series inductance in the discharge circuit, rather than a series resistance. The basic reason is the same as with a large series resistance, viz. increased spark discharge time and hence decreased disturbance of the dust cloud by blast wave from the spark. For this reason inclusion of an appreciable series inductance in the spark discharge circuit is an essential element in current standard MIE test methods.In experiments with spark ignition of transient dust clouds produced by a blast of air in a closed vessel, it is necessary to synchronize the occurrence of the spark with the formation of the dust cloud. The precision required from this type of synchronization is typically of the order of 10 ms, which can be obtained even by mechanical arrangements, such as rapid change of spark gap length, or of the distance between two capacitor plates. The present paper reviews some methods that have been/are being used for achieving adequate synchronization of dust cloud appearance and spark discharge. Some current standard experimental methods for determining MIEs of dust clouds experimentally have also been reviewed. The same applies to some theories of electric-spark ignition of dust clouds.At the end of paper some suggestions for possible future modifications of current standard methods for measuring MIEs of explosible dust clouds are presented. With regard to justifying significant modifications of existing standard methods, the “bottom line” is, as quite often in many connections, that any modifications should be based on realistic cost/benefit evaluations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号