首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A quantitative risk assessment (QRA) tool has been developed by TNO for the external safety of industrial plants with a dust explosion hazard. As a first step an industrial plant is divided into groups of modules, defined by their size, shape, and constructional properties. Then the relevant explosion scenarios are determined, together with their frequency of occurrence. These include scenarios in which one module participates, as well as domino scenarios. The frequency is partly based on casuistry.

A typical burning velocity is determined depending on the ignition type, the dust properties and the local conditions for flame acceleration. The resulting pressure development is predicted with the ‘thin flame model’. Module failure occurs when the explosion load exceeds thresholds, which are derived from single degree of freedom (SDOF) calculations for various types of modules. A model has been developed to predict the process of pressure venting after module failure and the related motion of launched module parts.

The blast effects of the primary explosion are based on results from calculations with BLAST3D. The blast and flame effects of the secondary external explosion due to venting are calculated using existing models. The throw of fragments and debris is quantified with a recently developed model. This model is based on trajectory calculations and gives the impact densities, velocities, and angles as output. Furthermore the outflow of bulk material is taken into account. The consequences for external objects and human beings are calculated using existing models. Finally the risk contours and the Societal risk (FN curve) are calculated, which can be compared to regulations.  相似文献   


2.
The future widespread use of hydrogen as an energy carrier brings in safety issues that have to be addressed before public acceptance can be achieved. The prediction of the consequences of a major accident release of hydrogen into the atmosphere or the contamination of high-pressure hydrogen storage facilities by air entrainment requires a good knowledge of the explosion parameters of hydrogen–air mixtures. The present paper reviews and comments on the current knowledge of dynamic parameters of hydrogen detonation for hazard assessment. The major problem that remains to be resolved involves the understanding of the effect of turbulence on the cellular detonation structure, the propagation of high-speed deflagrations and the transition from deflagration to detonations. It is recommended that future research should be aimed towards experiments that permit the quantitative understanding of the mechanisms of high-speed turbulent combustion rather towards large-scale tests in complex geometries where minimal quantitative information of fundamental significance could be extracted. In spite of its wide flammability and sensitivity to ignition and detonation initiation, it is felt that hydrogen can be produced, stored and handled safely with the appropriate considerations in the design of the hydrogen facilities.  相似文献   

3.
Investigation of explosion characteristics of coal dust was undertaken as a part of regular research program at CSIR-CBRI, Roorkee, India, for designing explosion safety measures for coal dust handling installations. This paper presents results of detailed experimental work on determination of Limiting Oxygen Concentration (LOC) and influence of reduced oxygen levels on explosion severity data for two types of coals with varying volatile matter as 27.18% (coal A) and 19.69% (coal B) from Jharia coalfield of India determined at ambient conditions with 20-L Spherical Vessel established at CSIR-CBRI. The effects of coal particle size and moisture content were evaluated. Data presented will be used for hazard analysis, designing explosion preventive measures, and explosion severity reduction by involving the use of inert gases for installations handling pulverized coal with similar nature. The importance of ignition source energy in determining LOC data is highlighted. The data collected lead to an extension of the current data for coal dusts as found in the literature. Limiting oxygen concentrations were found as 7% for coal A and 8% for coal B for the size representative to that used in pulverized coal boilers and moisture content ~4%.  相似文献   

4.
Thermal runaway hazard assessment provides the basis for comparing the hazard levels of different chemical processes. To make an overall evaluation, hazard of materials and reactions should be considered. However, most existing methods didn't take the both into account simultaneously, which may lead the assessment to a deviation from the actual hazard. Therefore, an integrated approach called Inherent Thermal-runaway Hazard Index (ITHI) was developed in this paper. Similar to Dow Fire and Explosion Index(F&EI) function, thermal runaway hazard of chemical process in ITHI was the product of material factor (MF) and risk index (RI) of reaction. MF was an indicator of material thermal hazards, which can be determined by initial reaction temperature and maximum power density. RI, which was the product of probability and severity, indicated the risk of thermal runaway during the reaction stage. Time to maximum rate under adiabatic conditions and criticality classes of scenario were used to indicate the runaway probability of the chemical process. Adiabatic temperature rise and heat of the desired reaction and secondary reaction were used to determine the severity of runaway reaction. Finally, predefined hazard classification criteria was used to classify and interpret the results obtained by this method. Moreover, the method was validated by case studies.  相似文献   

5.
The growing scale and complexity of process industries have brought safety, health, and environmental issues to the forefront. As a result, proactive risk reduction strategies (RRSs) are commonly employed to address these issues by reducing the frequency or mitigating the consequences of potential incidents. Among these strategies, inherent safety, which is a proactive measure of loss prevention and risk management, is considered to be the most effective method. This review aims to provide a comprehensive analysis of RRSs for achieving inherency, as well as techniques for evaluating the performance of inherent safety, health, and environmental aspects. Background information is presented, including the development and implementation of the inherently safer process design, as well as the approaches for achieving inherently healthier and environmentally friendlier processes. Subsequently, the execution approaches and practical applications of other RRSs are discussed to highlight the distinctiveness and benefits of inherent safety. Next, this study examined the characteristics of inherency assessment tools (IATs) based on available information at different process stages. Furthermore, the evaluation methods and historical development of IATs are investigated from the perspectives of safety, occupational health, and environmental considerations, followed by a statistical analysis of IATs. It is concluded that the no-chemical hazards-based IATs have not been extensively studied yet, which may improve the safety level of process plants from the perspective of comprehensive inherency risk reduction. As a way forward, future research opportunities are proposed to promote the implementation of greater optimized risk management.  相似文献   

6.
为提高航空装备的本质安全管理水平,奠定新一代航空装备安全服役的良好基础,基于目前本质安全管理理论片面强调组成元素自身本质安全度的提高,忽略系统组元间耦合交互作用的现实,提出了一种基于风险耦合理论的航空装备本质安全管理模型。对航空事故本质致因和耦合风险理论进行了分析,指出耦合风险的原因主要在于各系统组元在容错性、兼容性和标准化等方面存有缺陷。构建了基于耦合理论的飞机本质安全管理图示模型,强调系统宏观安全度的提高在于组元的本质安全化和对组元内部及组元之间耦合风险的有效管控,建立了系统安全度和耦合风险度计算模型,为航空装备服役安全性的提高提供了新理念。  相似文献   

7.
8.
为了准确评价化工工艺本质安全,通过分析国内外化工工艺本质安全的相关文献资料,选取可燃性、爆炸性、毒性、反应性、工艺温度、工艺压力和存储量等7个指标作为化工工艺本质安全评价指标.采用物元可拓理论和熵权法建立了化工工艺本质安全熵权物元可拓评价模型,并应用该模型对甲基丙烯酸甲酯(MMA)的3条工艺路线进行分析,结果与PIIS、ISI以及模糊综合评价等方法所得结果相吻合,表明该方法适用于化工工艺本质安全评价.  相似文献   

9.
The utilisation of computational fluid dynamics (CFD) in process safety has increased significantly in recent years. The modelling of accidental explosion via CFD has in many cases replaced the classical Multi Energy and Brake Strehlow methods. The benefits obtained with CFD modelling can be diminished if proper modelling of the initial phase of explosion is neglected. In the early stages of an explosion, the flame propagates in a quasi-laminar regime. Proper modelling of the initial laminar phase is a key aspect in order to predict the peak pressure and the time to peak pressure. The present work suggests a modelling approach for the initial laminar phase in explosion scenarios. Findings are compared with experimental data for two classical explosion test cases which resemble the common features in chemical process areas (confinement and congestion). A detailed analysis of the threshold for the transition from laminar to turbulent regime is also carried out. The modelling is implemented in a fully 3D Navier–Stokes compressible formulation. Combustion is treated using a laminar flamelet approach based on the Bray, Moss and Libby (BML) formulation. A novel modified porosity approach developed for the unstructured solver is also considered. Results agree satisfactorily with experiments and the modelling is found to be robust.  相似文献   

10.
为了研究隔爆产品内部的爆炸压力,选取了圆管状隔爆产品,设计了隔爆产品爆炸压力测试装置,测试记录了在常温和低温2种环境温度下,乙烯和氢气2种典型可燃性气体在不同内部结构的隔爆产品中的爆炸压力。研究结果表明:相同初始压力条件下,温度越低,气体的爆炸压力越大;在国际标准推荐的试验条件下,低浓度乙烯可以产生与高浓度氢气相同的爆炸压力;隔爆产品结构的变化会导致压力重叠的现象,显著影响爆炸压力的大小。  相似文献   

11.
For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested.The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out but are not standardized yet. Using the exploding wire, the ignition energy can be varied from 2 J to 10 000 J (2 x 5000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system.Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results.  相似文献   

12.
The aim of the current work is to explicitly link the inherent safety principles of minimization, substitution, moderation and simplification with strategies for dust explosion prevention and mitigation. A brief review of inherent safety and its basic principles is first given. This is followed by a discussion of various ways in which the dust explosion hazard can be minimized, substituted, moderated and simplified. Particular attention is paid to the relationship between each inherent safety principle and (i) various dust explosibility parameters, (ii) alternate methods of processing, (iii) selection of process equipment, and (iv) development and implementation of safe-work procedures. Original research results are presented, along with industrial case studies and previously published results that have been reinterpreted in terms of inherent safety and its basic principles. It is anticipated that this research will be of value to industry as a complement to the relatively well-established suite of engineered and procedural dust explosion risk reduction measures.  相似文献   

13.

Problem

Psychometrically validated measurement tools are needed to evaluate an organization's safety climate. In 2000, Gershon and colleagues published a new healthcare safety climate measurement tool to determine its relationship to safe work behavior (Gershon, R., Karkashian, C., Grosch, J., Murphy, L., Escamilla-Cejudo, A., Flanagan, P., et al. (2000). Hospital safety climate and its relationship with safe work practices and workplace exposure incidents. American Journal of Infection Control, 28, 211-21). The present study evaluated the psychometric properties of the Gershon tool when modified to address respiratory rather than bloodborne pathogen exposures.

Method

Medical practitioners, nurses, and nurse aides (n = 460) were surveyed using the modified Gershon tool. Data were analyzed by factor analysis and psychometric properties of the tool evaluated.

Results

Eight safety climate dimensions were extracted from 25 items (Cronbach's alpha range: 0.62 - 0.88). Factor extractions and psychometric properties were reasonably consistent with those of the Gershon tool.

Impact on Industry

The Gershon safety climate tool appears to have sufficient reliability and validity for use by healthcare decision makers as an indicator of employee perceptions of safety in their institution.  相似文献   

14.
INTRODUCTION: Companies that use forklifts to load and unload trucks at loading docks are well aware of the main danger associated with this type of activity (i.e., the possibility of the forklift falling or tipping over when the truck suddenly moves away from the dock). Even if various truck restraint measures can be implemented to reduce the possibility of this type of accident, a number of hazardous incidents that result in a forklift tipping over from a loading dock still do occur regularly in day-to-day activities. This situation has brought experts to examine and evaluate the effectiveness of different measures and systems depending on the context in which they are used. METHODS: The present study touched upon both the technical and the organizational aspects of the restraint measures that could have an impact on safety. Certain elements were examined very closely, especially the failure of mechanical devices and their relation to the environment in which they are used, as well as the systemic interaction between people and the various restraint measures in use in a given context. CONCLUSION: This article presents a safety evaluation tool regarding restraint measures or systems for trucks docked at loading platforms - a tool that, of course, would take into consideration both the specific contextual aspects related to the docking bay itself, and to the plant. IMPACT ON INDUSTRY: This tool is designed to help companies choose the optimal safety measures to implement, while remaining realistic in terms of the technical and economic aspects of any given situation.  相似文献   

15.
A tragic explosion resulting from a runaway chemical reaction occurred at the T2 Laboratories, Inc. facility in December 2007. The U.S. Chemical Safety Board (CSB) completed an incident investigation of the T2 explosion, identifying the root cause as a failure to recognize the runaway reaction hazard associated with the chemical it was producing. Understanding the consequences of process upset conditions is critical to determine risk. This paper will focus on lessons learned from this incident including a comprehensive hazard assessment for reactive chemicals as well as proper collection and application of adiabatic calorimetry data to characterize the chemical reaction and determine appropriate mitigation strategies. Examples will be provided to establish safer operating conditions, implement safeguards and reduce the overall risk.  相似文献   

16.
对宣钢石灰石矿的爆破进行分类,根据各类爆破的不同特点实行分级安全管理,降低爆破事故.  相似文献   

17.
A tool has been developed for supporting practitioners when assessing manual pushing and pulling operations based on an initiative by two global companies in the manufacturing industry. The aim of the tool is to support occupational health and safety practitioners in risk assessment and risk management of pushing and pulling operations in the manufacturing and logistics industries. The tool is based on a nine-multiplier equation that includes a wide range of factors affecting an operator’s health risk and capacity in pushing and pulling. These multipliers are based on psychophysical, physiological and biomechanical studies in combination with judgments from an expert group consisting of senior researchers and ergonomists. In order to consider usability, more than 50 occupational health and safety practitioners (e.g., ergonomists, managers, safety representatives and production personnel) participated in the development of the tool. An evaluation by 22 ergonomists supports that the push/pull tool is user friendly in general.  相似文献   

18.
19.
为研究抛光铝粉的爆炸危险和ABC粉体的抑爆特性,在对实验粉体粒径分布进行分析的基础上,采用20 L粉尘爆炸特性实验装置,分别对不同铝粉尘浓度、不同抑爆剂浓度条件下的爆炸特性参数进行测试。研究结果表明:在实验条件下,铝粉的爆炸下限为45 g/m3<C<60 g/m3;随铝粉浓度增加,爆炸烈度呈现出先增强后减弱的变化趋势,在浓度为400 g/m3时爆炸烈度最大。ABC抑爆剂能够有效抑制铝粉爆炸超压和爆炸反应进程,随着惰性粉体浓度的增加,抑制效果愈加明显,爆炸逐渐减弱。当ABC惰性粉体的质量占比增加到50%时,相较单一铝粉爆炸,反应过程时间由72 ms增加至785 ms,爆炸最大压力、最大压力上升速率分别下降了61.7%,89.5%;当ABC粉体质量占比为53%时,铝粉被完全惰化,未发生爆炸。  相似文献   

20.
This paper reports a comparison of simulations and published data from experiments carried out by TNO Prins Maurits Laboratory on geometric configurations that involved safety gaps of various separation distances. The Computational Fluid Dynamics (CFD) based software – FLACS is utilized to conduct the numerical simulations. In the majority of cases, good agreement is found between the simulated results and those obtained by experiment in both the donor and acceptor modules. However, a large discrepancy in the overpressures in the acceptor module is seen when the size of the separation gap approaches one or two times of the module size. A Data-dump technique is used in this study to reset the turbulence length scale for these cases with different separation distances, five sets of explosion scenarios are then numerically simulated and the overpressures are compared with experimentally measured explosion overpressures. The overall results indicate that the software with the Data-dump technique is still an extremely effective tool when it comes to the evaluation of gas explosion overpressures in areas with large separation gaps.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号