首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Remote sensing has been used from the 1980s to study inland water quality. However, it was not until the beginning of the twenty-first century that CHRIS (an experimental multi-angle sensor with good spectral and spatial resolutions) and MERIS (with good temporal and spectral resolutions) started to acquire imagery with very good resolutions, which allowed to develop a reliable imagery acquisition system so as to consider remote sensing as an inland water management tool. This paper presents the methodology developed, from the field data acquisition with which to build a freshwater spectral library and the study of different atmospheric correction systems for CHRIS mode 2 and MERIS images, to the development of algorithms to determine chlorophyll-a and phycocyanin concentrations and bloom sites. All these algorithms allow determining water eutrophic and ecological states, apart from generating surveillance maps of toxic cyanobacteria with the main objective of Assessment of the Water Quality as it was used for Monitoring Ecological Water Quality in smallest Mediterranean Reservoirs integrated in the Intercalibration Exercise of European Union Water Framework Directive (WFD). We keep on using it to monitor the Ecological Quality Ratio (EQR) in Spain inland water.  相似文献   

2.
Coastline mapping and coastline change detection are critical issues for safe navigation, coastal resource management, coastal environmental protection, and sustainable coastal development and planning. Changes in the shape of coastline may fundamentally affect the environment of the coastal zone. This may be caused by natural processes and/or human activities. Over the past 30 years, the coastal sites in Turkey have been under an intensive restraint associated with a population press due to the internal and external touristic demand. In addition, urbanization on the filled up areas, settlements, and the highways constructed to overcome the traffic problems and the other applications in the coastal region clearly confirm an intensive restraint. Aerial photos with medium spatial resolution and high resolution satellite imagery are ideal data sources for mapping coastal land use and monitoring their changes for a large area. This study introduces an efficient method to monitor coastline and coastal land use changes using time series aerial photos (1973 and 2002) and satellite imagery (2005) covering the same geographical area. Results show the effectiveness of the use of digital photogrammetry and remote sensing data on monitoring large area of coastal land use status. This study also showed that over 161 ha areas were filled up in the research area and along the coastal land 12.2 ha of coastal erosion is determined for the period of 1973 to 2005. Consequently, monitoring of coastal land use is thus necessary for coastal area planning in order to protecting the coastal areas from climate changes and other coastal processes.  相似文献   

3.
The use of airborne hyperspectral remote sensing imagery for automated mapping of submerged aquatic vegetation (SAV) in the tidal Potomac River was investigated for near to real-time resource assessment and monitoring. Airborne hyperspectral imagery and field spectrometer measurements were obtained in October of 2000. A spectral library database containing selected ground-based and airborne sensor spectra was developed for use in image processing. The spectral library is used to automate the processing of hyperspectral imagery for potential real-time material identification and mapping. Field based spectra were compared to the airborne imagery using the database to identify and map two species of SAV (Myriophyllum spicatum and Vallisneria americana). Overall accuracy of the vegetation maps derived from hyperspectral imagery was determined by comparison to a product that combined aerial photography and field based sampling at the end of the SAV growing season. The algorithms and databases developed in this study will be useful with the current and forthcoming space-based hyperspectral remote sensing systems.  相似文献   

4.
Structural physical habitat attributes include indices of stream size, channel gradient, substrate size, habitat complexity, and riparian vegetation cover and structure. The Environmental Monitoring and Assessment Program (EMAP) is designed to assess the status and trends of ecological resources at different scales. High-resolution remote sensing provides unique capabilities in detecting a variety of features and indicators of environmental health and condition. LIDAR is an airborne scanning laser system that provides data on topography, channel dimensions (width, depth), slope, channel complexity (residual pools, volume, morphometric complexity, hydraulic roughness), riparian vegetation (height and density), dimensions of riparian zone, anthropogenic alterations and disturbances, and channel and riparian interaction. Hyperspectral aerial imagery offers the advantage of high spectral and spatial resolution allowing for the detection and identification of riparian vegetation and natural and anthropogenic features at a resolution not possible with satellite imagery. When combined, or fused, these technologies comprise a powerful geospatial data set for assessing and monitoring lentic and lotic environmental characteristics and condition.  相似文献   

5.
Shoreline change analysis of Vedaranyam coast, Tamil Nadu, India   总被引:2,自引:0,他引:2  
The coastal zone is one of the nation’s greatest environmental and economic assets. The present research aims at studying the shoreline changes along Vedaranyam coast using conventional and modern techniques including field sampling, remote sensing, and geographical information system (GIS). The study area was divided into three zones. Dynamic Land/Sea polygon analysis was performed to obtain the shore line changes at different time periods between 1930 and 2005. From the multidate shoreline maps, the rate of shoreline change was computed using linear regression rate and end point rate. Further, the shoreline was classified into eroding, accreting, and stable regions through GIS analysis. The eroding, accreting, and stable coastal stretch along Vedaranyam is observed as 18 %, 80.5 %, and 1.5 %, respectively. Net shoreline movement is seaward, i.e., the coast is progressive with an average rate of 5 m/year. A maximum shoreline displacement of 1.3 km towards the sea is observed near Point Calimere. During the Asian Tsunami 2004, the eastern part of the study area showed high erosion. Sediment transport paths derived from the grain size analysis of beach sediments collected during different seasons help to identify the major sediment source and sinks. Point Calimere acts as the major sink for sediments whereas Agastiyampalli and Kodiakkarai are found to be the major sources for the sediment supply along the Vedaranyam coast. Shoreline change study from field and satellite data using GIS analysis confirms that Vedaranyam coast is accreting in nature.  相似文献   

6.
Complex optical properties, such as non-pigment suspension and colored dissolved organic matter (CDOM), make it difficult to achieve accurate estimations of remotely sensed chlorophyll a (Chla) content of inland turbidity. Recent attempts have been made to estimate Chla based on red and near-infrared regions where non-pigment suspension and CDOM have little effect on water reflectance. The objective of this study is to validate the applicability of WV-2 imagery with existing effective estimation methods from MERIS when estimating Chla content in inland turbidity waters. The correlation analysis of measured Chla content and WV-2 imagery bands shows that the Chla sensitive bands of WV-2 are red edge, NIR 1, and NIR 2. The coastal band is designed for seawater Chla detection. However, the high correlation with turbidity data and low correlation with Chla made coastal band unsuitable for estimating Chla in inland waters. The high-resolution water body images were extracted by combining the spectral products (NDWI) with the spatial morphological products (sobel edge detection). The estimation results show that the accuracy of the single band and NDCI is not as good as the two-band method, three-band method, stepwise regression algorithm (SRA) and support vector machines (SVM). The SVM estimation accuracy was the highest with an R2, RMSE, and URMSE of 0.8387, 0.4714, and 19.11%, respectively. This study demonstrates that the two-band and three-band methods are effective for estimating Chla in inland water for WV-2 imagery. As a high-precision estimation method, SVM has great potential for inland turbidity water Chla estimation.  相似文献   

7.
Remote sensing is an important tool for studying patterns in surface processes on different spatiotemporal scales. However, differences in the spatiospectral and temporal resolution of remote sensing data as well as sensor-specific surveying characteristics very often hinder comparative analyses and effective up- and downscaling analyses. This paper presents a new methodical framework for combining hyperspectral remote sensing data on different spatial and temporal scales. We demonstrate the potential of using the “One Sensor at Different Scales” (OSADIS) approach for the laboratory (plot), field (local), and landscape (regional) scales. By implementing the OSADIS approach, we are able (1) to develop suitable stress-controlled vegetation indices for selected variables such as the Leaf Area Index (LAI), chlorophyll, photosynthesis, water content, nutrient content, etc. over a whole vegetation period. Focused laboratory monitoring can help to document additive and counteractive factors and processes of the vegetation and to correctly interpret their spectral response; (2) to transfer the models obtained to the landscape level; (3) to record imaging hyperspectral information on different spatial scales, achieving a true comparison of the structure and process results; (4) to minimize existing errors from geometrical, spectral, and temporal effects due to sensor- and time-specific differences; and (5) to carry out a realistic top- and downscaling by determining scale-dependent correction factors and transfer functions. The first results of OSADIS experiments are provided by controlled whole vegetation experiments on barley under water stress on the plot scale to model LAI using the vegetation indices Normalized Difference Vegetation Index (NDVI) and green NDVI (GNDVI). The regression model ascertained from imaging hyperspectral AISA-EAGLE/HAWK (DUAL) data was used to model LAI. This was done by using the vegetation index GNDVI with an R 2 of 0.83, which was transferred to airborne hyperspectral data on the local and regional scales. For this purpose, hyperspectral imagery was collected at three altitudes over a land cover gradient of 25 km within a timeframe of a few minutes, yielding a spatial resolution from 1 to 3 m. For all recorded spatial scales, both the LAI and the NDVI were determined. The spatial properties of LAI and NDVI of all recorded hyperspectral images were compared using semivariance metrics derived from the variogram. The first results show spatial differences in the heterogeneity of LAI and NDVI from 1 to 3 m with the recorded hyperspectral data. That means that differently recorded data on different scales might not sufficiently maintain the spatial properties of high spatial resolution hyperspectral images.  相似文献   

8.
Remote sensing of local environmental conditions is not accessible if substrates are covered with vegetation. This study explored the relationship between vegetation spectra and karst eco-geo-environmental conditions. Hyperspectral remote sensing techniques showed that there were significant differences between spectral features of vegetation mainly distributed in karst and non-karst regions, and combination of 1,300- to 2,500-nm reflectance and 400- to 680-nm first-derivative spectra could delineate karst and non-karst vegetation groups. Canonical correspondence analysis (CCA) successfully assessed to what extent the variation of vegetation spectral features can be explained by associated eco-geo-environmental variables, and it was found that soil moisture and calcium carbonate contents had the most significant effects on vegetation spectral features in karst region. Our study indicates that vegetation spectra is tightly linked to eco-geo-environmental conditions and CCA is an effective means of studying the relationship between vegetation spectral features and eco-geo-environmental variables. Employing a combination of spectral and spatial analysis, it is anticipated that hyperspectral imagery can be used in interpreting or mapping eco-geo-environmental conditions covered with vegetation in karst region.  相似文献   

9.
Habitat preserve systems have been established adjacent to the densely populated regions of southern California to support indigenous plant and animal species that are listed as rare, threatened, or endangered. Monitoring the condition of habitat across these broad preserves is necessary to ensure their long-term viability and may be effectively accomplished using remote sensing techniques with high spatial resolution visible and near-infrared (VNIR) multispectral imagery. The utility of 1 m spatial resolution VNIR imagery for detailed change detection and monitoring of Mediterranean-type ecosystems is assessed here. Image acquisition and preprocessing procedures were conducted to ensure that image-detected changes represented real changes and not artifacts. Change classification products with six spectral-based transition classes were generated using multiband image differencing (MID) for three change periods: 1998-1999, 1998-2001, and 1998-2005. Land cover changes relevant to habitat quality monitoring such as human-induced disturbance, fire, vegetation growth/recovery, and drought related vegetation stress were readily detected using the multitemporal VNIR imagery. Suggestions for operational habitat monitoring using image products and mobile geographic information system technologies are provided.  相似文献   

10.
A new algorithm was developed for retrieving sea surface temperature (SST) in coastal waters using satellite remote sensing data from Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Aqua platform. The new SST algorithm was trained using the Artificial Neural Network (ANN) method and tested using 8 years of remote sensing data from MODIS Aqua sensor and in situ sensing data from the US coastal waters in Louisiana, Texas, Florida, California, and New Jersey. The ANN algorithm could be utilized to map SST in both deep offshore and particularly shallow nearshore waters at the high spatial resolution of 1 km, greatly expanding the coverage of remote sensing-based SST data from offshore waters to nearshore waters. Applications of the ANN algorithm require only the remotely sensed reflectance values from the two MODIS Aqua thermal bands 31 and 32 as input data. Application results indicated that the ANN algorithm was able to explaining 82–90% variations in observed SST in US coastal waters. While the algorithm is generally applicable to the retrieval of SST, it works best for nearshore waters where important coastal resources are located and existing algorithms are either not applicable or do not work well, making the new ANN-based SST algorithm unique and particularly useful to coastal resource management.  相似文献   

11.
遥感在生态与环境监测中的主要应用领域   总被引:4,自引:2,他引:4  
遥感是一种以物理手段、数学方法和地学分析为基础的综合应用技术 ,具有宏观、综合、动态和快速的特点。在解决宏观尺度的环境问题时 ,卫星遥感可重复获取多种空间、不同时相和不同波谱分辨率的地球信息 ,是适宜于调查和研究这些主题的唯一的、最有效的工具。本文通过对遥感在环境与生态监测的主要应用领域进行概要阐述 ,旨在抛砖引玉 ,推动遥感在环境与生态监测中的广泛应用。  相似文献   

12.
In the event of a natural or anthropogenic disturbance, environmental resource managers require a reliable tool to quickly assess the spatial extent of potential damage to the seagrass resource. The temporal availability of the Landsat 5 Thematic Mapper (TM) imagery provided a suitable option to detect and assess damage of the submerged aquatic vegetation (SAV). This study examined Landsat TM imagery classification techniques to create two-class (SAV presence/absence) and three-class (SAV estimated coverage) SAV maps of the seagrass resource. The Mahalanobis Distance method achieved the highest overall accuracy (86%) and validation accuracy (68%) for delineating the seagrass resource (two-class SAV map). The Maximum Likelihood method achieved the highest overall accuracy (74%) and validation accuracy (70%) for delineating the seagrass resource three-class SAV map. The Landsat 5 TM imagery classification provided a seagrass resource map product with similar accuracy to the aerial photointerpretation maps (validation accuracy 71%). The results support the application of remote sensing methods to analyze the spatial extent of the seagrass resource.  相似文献   

13.
The mangrove formations of Godavari estuary are due to silting over many centuries. The estuary covers an area of 62,000 ha of which dense Coringa mangrove forest spread in 6,600 ha. Satellite sensor data was used to detect change in the mangrove cover for a period of 12 years (1992-2004). It was found that an area of about 1,250 ha of mangroves was destroyed by anthropogenic interference like aquaculture, and tree felling etc. It was found that mangrove's spectral response/digital number (DN) value is much lower than non-mangrove vegetation such as plantation and paddy fields in SWIR band. By taking this as an advantage, spectral data was utilized for clear demarcation of mangroves from nearby paddy fields and other vegetation. Simpson's diversity index, which is a measure of biodiversity, was found to be 0.09, showing mangroves dominance. Ecological parameters like mud-flats/swamps, mangrove cover alterations, and biodiversity status are studied in detail for a period of 12 years. The increase in mangrove front towards coast was delineated using remote sensing data. The major advantages of remote sensing data is monitoring of change periodically. The combination of moderate and high-resolution data provided detailed coastal land use maps for implementing coastal regulation measures. The classification accuracy has been achieved is 90%. Overall, simple and viable measures are suggested based on multi-spectral data to sustain this sensitive coastal ecology.  相似文献   

14.
Management of coral reef resources is a challenging task, in many cases, because of the scarcity or inexistence of accurate sources of information and maps. Remote sensing is a not intrusive, but powerful tool, which has been successfully used for the assessment and mapping of natural resources in coral reef areas. In this study we utilized GIS to combine Landsat TM imagery, aerial photography, aerial video and a digital bathymetric model, to assess and to map submerged habitats for Alacranes reef, Yucatán, México. Our main goal was testing the potential of aerial video as the source of data to produce training areas for the supervised classification of Landsat TM imagery. Submerged habitats were ecologically characterized by using a hierarchical classification of field data. Habitats were identified on an overlaid image, consisting of the three types of remote sensing products and the bathymetric model. Pixels representing those habitats were selected as training areas by using GIS tools. Training areas were used to classify the Landsat TM bands 1, 2 and 3 and the bathymetric model by using a maximum likelihood algorithm. The resulting thematic map was compared against field data classification to improve habitats definition. Contextual editing and reclassification were used to obtain the final thematic map with an overall accuracy of 77%. Analysis of aerial video by a specialist in coral reef ecology was found to be a suitable source of information to produce training areas for the supervised classification of Landsat TM imagery in coral reefs at a coarse scale.  相似文献   

15.
The ecological and economic impacts associated with invasive species are of critical concern to land managers. The ability to map the extent and severity of invasions would be a valuable contribution to management decisions relating to control and monitoring efforts. We investigated the use of hyperspectral imagery for mapping invasive aquatic plant species in the Sacramento-San Joaquin Delta in the Central Valley of California, at two spatial scales. Sixty-four flightlines of HyMap hyperspectral imagery were acquired over the study region covering an area of 2,139 km2 and field work was conducted to acquire GPS locations of target invasive species. We used spectral mixture analysis to classify two target invasive species; Brazilian waterweed (Egeria densa), a submerged invasive, and water hyacinth (Eichhornia crassipes), a floating emergent invasive. At the relatively fine spatial scale for five sites within the Delta (average size 51 ha) average classification accuracies were 93% for Brazilian waterweed and 73% for water hyacinth. However, at the coarser, Delta-wide scale (177,000 ha) these accuracy results were 29% for Brazilian waterweed and 65% for water hyacinth. The difference in accuracy is likely accounted for by the broad range in water turbidity and tide heights encountered across the Delta. These findings illustrate that hyperspectral imagery is a promising tool for discriminating target invasive species within the Sacramento-San Joaquin Delta waterways although more work is needed to develop classification tools that function under changing environmental conditions.  相似文献   

16.
The vast coastal and marine resources that occur along the southern edge of Bangladesh make it one of the most productive areas of the world. However, due to growing anthropogenic impacts, this area is under considerable environmental pressure from both physical and chemical stress factors. Ship breaking, or the dismantling and demolition of out-of-service ocean-going vessels, has become increasingly common in many coastal areas. To investigate the extent of ship breaking activities in Bangladesh along the Sitakunda coast, various spatial and non-spatial data were obtained, including remote sensing imagery, statistical records and published reports. Impacts to coastal and marine life were documented. Available data show that ship breaking activities cause significant physical disturbance and release toxic materials into the environment, resulting in adverse effects to numerous marine taxonomic groups such as fish, mammals, birds, reptiles, plants, phytoplankton, zooplankton and benthic invertebrates. Landsat imagery illustrates that the negatively impacted coastal area has grown 308.7 % from 367 ha in 1989 to 1,133 ha in 2010. Physicochemical and biological properties of coastal soil and water indicate substantially elevated pollution that poses a risk of local, regional and even global contamination through sea water and atmospheric transport. While damage to the coastal environment of Bangladesh is a recognized hazard that must be addressed, the economic benefits of ship breaking through job creation and fulfilling the domestic demand for recycled steel must be considered. Rather than an outright ban on beach breaking of ships, the enterprise must be recognized as a true and influential industry that should be held responsible for developing an economically viable and environmentally proactive growth strategy. Evolution of the industry toward a sustainable system can be aided through reasonable and enforceable legislative and judicial action that takes a balanced approach, but does not diminish the value of coastal conservation.  相似文献   

17.
核电站温排水卫星遥感监测应用研究   总被引:1,自引:0,他引:1  
选取我国 HJ-1 B卫星红外相机为遥感数据源,在介绍了温排水卫星遥感监测的技术流程和基本原理之后,重点论述了海表温度反演的算法和基准温度提取的基本原则。以2013年1月17日大亚湾核电站和2013年5月22日田湾核电站2景 HJ-1 B红外相机数据为应用实例,说明了卫星遥感监测可作为开展核电站温排水影响监测与热污染评价的首选技术方向和主要监测手段,阐述了其在核电站温排水影响后评估中的作用和意义。  相似文献   

18.
The usability of high-resolution satellite imagery for estimating spatial water quality patterns in urban water bodies is evaluated using turbidity in the lower Charles River, Boston as a case study. Water turbidity was surveyed using a boat-mounted optical sensor (YSI) at 5 m spatial resolution, resulting in about 4,000 data points. The ground data were collected coincidently with a satellite imagery acquisition (IKONOS), which consists of multispectral (R, G, B) reflectance at 1 m resolution. The original correlation between the raw ground and satellite data was poor (R2 = 0.05). Ground data were processed by removing points affected by contamination (e.g., sensor encounters a particle floc), which were identified visually. Also, the ground data were corrected for the memory effect introduced by the sensor's protective casing using an analytical model. Satellite data were processed to remove pixels affected by permanent non-water features (e.g., shoreline). In addition, water pixels within a certain buffer distance from permanent non-water features were removed due to contamination by the adjacency effect. To determine the appropriate buffer distance, a procedure that explicitly considers the distance of pixels to the permanent non-water features was applied. Two automatic methods for removing the effect of temporary non-water features (e.g., boats) were investigated, including (1) creating a water-only mask based on an unsupervised classification and (2) removing (filling) all local maxima in reflectance. After the various processing steps, the correlation between the ground and satellite data was significantly better (R2 = 0.70). The correlation was applied to the satellite image to develop a map of turbidity in the lower Charles River, which reveals large-scale patterns in water clarity. However, the adjacency effect prevented the application of this method to near-shore areas, where high-resolution patterns were expected (e.g., outfall plumes).  相似文献   

19.
Biological infestations in forests, e.g. the insect outbreaks, have been shown as favoured by future climate change trends. In Europe, the European spruce bark beetle (Ips typographus L.) is one of the main agents causing substantial economic disturbances in forests. Therefore, studies on spatio-temporal characterization of the area affected by bark beetle are of major importance for rapid post-attack management. We aimed at spatially detecting damage classes by combining multidate remote sensing data and a non-parametric classification. As study site served a part of the Bavarian Forest National Park (Germany). For the analysis, we used 10 geometrically rectified scenes of Landsat and SPOT sensors in the period between 2001 and 2011. The main objective was to explore the potential of medium-resolution data for classifying the attacked areas. A further aim was to explore if the temporally adjacent infested areas are able to be separated. The random forest (RF) model was applied using the reference data drawn from high-resolution aerial imagery. The results indicate that the sufficiently large patches of visually identifiable damage classes can be accurately separated from non-attacked areas. In contrast to those, the other mortality classes (current year, current year 1 and current year 2 infested classes) were mostly classified with higher commission or omission errors as well as higher classification biases. The available medium-resolution satellite images, combined with properly acquired reference data, are concluded to be adequate tools to map area-based infestations at advanced stages. However, the quality of reference data, the size of infested patches and the spectral resolution of remotely sensed data are the decisive factors in case of smaller areas. Further attempts using auxiliary height information and spatially enhanced data may refine such an approach.  相似文献   

20.
This study compared performance of four change detection algorithms with six vegetation indices derived from pre- and post-Katrina Landsat Thematic Mapper (TM) imagery and a composite of the TM bands 4, 5, and 3 in order to select an optimal remote sensing technique for identifying forestlands disturbed by Hurricane Katrina. The algorithms included univariate image differencing (UID), selective principal component analysis (PCA), change vector analysis (CVA), and postclassification comparison (PCC). The indices consisted of near-infrared to red ratios, normalized difference vegetation index, Tasseled Cap index of greenness, brightness, and wetness (TCW), and soil-adjusted vegetation index. In addition to the satellite imagery, the “ground truth” data of forest damage were also collected through field investigation and interpretation of post-Katrina aerial photos. Disturbed forests were identified by classifying the composite and the continuous change imagery with the supervised classification method. Results showed that the change detection techniques exerted apparent influence on detection results with an overall accuracy varying between 51% and 86% and a kappa statistics ranging from 0.02 to 0.72. Detected areas of disturbed forestlands were noticeable in two groups: 180,832–264,617 and 85,861–124,205 ha. The landscape of disturbed forests also displayed two unique patterns, depending upon the area group. The PCC algorithm along with the composite image contributed the highest accuracy and lowest error (0.5%) in estimating areas of disturbed forestlands. Both UID and CVA performed similarly, but caution should be taken when using selective PCA in detecting hurricane disturbance to forests. Among the six indices, TCW outperformed the other indices owing to its maximum sensitivity to forest modification. This study suggested that compared with the detection algorithms, proper selection of vegetation indices was more critical for obtaining satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号