首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The effects of ultraviolet radiation (UVR), desiccation and conditions in tidal pools on embryonic survival were examined for two common pulmonate limpets that lay intertidal benthic egg masses on rocky shores in New Zealand: Benhamina obliquata and Siphonaria australis. Field surveys and manipulative experiments were conducted between December 2006 and September 2007 in the Wellington region of New Zealand (41°17′S, 174°47′E). Egg mass deposition sites in the field were species-specific: B. obliquata deposited eggs primarily in shaded crevices, whereas S. australis predominantly deposited egg masses in the sun and in tidal pools. For both species, however, embryonic mortality was greater in egg masses that had been in full sun compared to shade. For S. australis, there was also high mortality in egg masses in tidal pools or desiccated compared to those that remained submerged in flowing seawater at low tide. In outdoor experiments, embryonic mortality was also always greatest for egg masses exposed to full sun, and lowest for those in shaded treatments. Mortality was also higher if egg masses were in simulated tidal pools, and for S. australis, if desiccated, compared to those submerged in flowing seawater. Periods of particularly sunny conditions with high temperatures also resulted in higher overall mortality. Finally, egg masses of both species that were initially deposited in the shade had greater mortality in response to subsequent UV exposure compared to egg masses initially deposited in full sun. Results from this study suggest that the egg masses of these two species are highly vulnerable to UVR, as well as other intertidal stressors. Embryos of both of these species may be at risk of high mortality particularly during summer when extreme conditions of UV intensity and high temperature coincide with low tide cycles. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
The occurrence of light-induced chromatophore displacements and concomitant transmittance changes in marine algae was investigated by microscope and photometrically with an automated recording microphotometer system; 16 brown, 6 green and 20 red algae were studied. In most of the brown algae, both phaeoplast displacements and transmittance changes were found. In some red algae which are frequently exposed to direct sun light during emergence at low tide, light-induced transmittance changes were measured, but they could not unequivocally be correlated with changes in the position of rhodoplasts. Among green algae, only Ulva lactuca shows chloroplast displacements which, however, follow circadian rhythms and are consequently not light-induced in the strict sense. The dose-response curves of light-induced chromatophore displacements were measured in the following Fucus and Laminaria species: F. spiralis, F. vesiculosus, F. serratus, L. digitata, L. saccharina and L. hyperborea. While in Fucus species correlations between light-induced transmittance changes and zonation of the intertidal area seem to exist, no significant differences have been found in the Laminaria species. The physiological role and ecological importance of light-induced chromatophore displacements for seaweeds living in the intertidal belt are discussed.  相似文献   

3.
Seasonal variations in the microphytobenthic diatom community were investigated in an intertidal sand flat of a tropical marine environment influenced by monsoons. Cores of sediments were collected along the beach gradient: low tide, mid tide and high tide zone up to a depth of 15 cm.. Diatom abundance was lowest during the monsoons and highest during the post-monsoons and the early pre-monsoon season throughout the intertidal transect. Diatom diversity was highest at the mid tide, followed by the high and low tide zones. Diatoms were viable up to a depth of 15 cm throughout the intertidal transect. The diatom community included the pennates, the permanent residents of this area, centric genera, which lead an attached mode of life and also some planktonic genera, brought in from ambient waters. Among the pennates, Navicula and Amphora were the dominant genera whereas in the case of centrics, Thalassiosira dominated the community throughout the intertidal transect down to a 15 cm depth. . Grain size fractions, which served as predictors of some diatom genera changed with tidal zones. The effect of winds on the resuspension of the pennate diatoms was evident only at the low tide zone down to a depth of 5 cm . Chlorophyll a concentration proved to be a good predictor of both pennate and centric diatom abundance at the low tide zone down to a depth of 10 cm and at the mid tide zone down to a depth of 5 cm.. However, even though chlorophyll a concentrations failed to reveal any positive correlation with the diatom abundance at both the deeper sediment layers and the high tide zone, the fact that viable cells were present at these areas reveal that the diatoms adopt survival strategies, contributing significantly to the carbon budgets of such unstable habitats.  相似文献   

4.
Larvae of marine organisms often need specific resources or environments at settlement, and their success at settlement might be strongly influenced by the abundance and distribution of such specific resources. The larvae of hermit crabs need small shells to settle, so it is thought that the distribution and abundance of small shells influence the settlement pattern of hermit crabs. To investigate the influence of small shell distribution on the settlement of pagurid hermit crab larvae, we conducted a field experiment at an intertidal rocky shore in Hakodate Bay, Japan. From the line-transect sampling in the field, we found that Pagurus middendorffii settled extensively in the offshore side of the intertidal zone while P. nigrofascia settled in the uppermost area of the intertidal zone. Small shells were most abundant in a narrow shallow trough, slightly offshore from the uppermost area of the intertidal zone. For both species, settler abundance was high where adults were abundant, but settler abundance did not appear to be related to shells abundance. An experiment to clarify settlement patterns showed that larval recruits tended to be similar to those in the line-transect sampling of settlers. Thus shells may not be a primary factor affecting settlement patterns at relatively large scale within the intertidal flat. However, when we analyzed the relationship of settlers and shells separately within each transect, the distribution of settlers was well explained by shell resource availability. Therefore on a smaller scale, shell availability may influence the number of settlers. Settlement periods of P. middendorffii and P. nigrofascia fully overlapped, so their larvae probably were affected by similar transport factors, such as current and tidal movement. Nevertheless they showed different spatial patterns of settlement.Communicated by T. Ikeda, Hakodate  相似文献   

5.
Feeding patterns during four 24-h periods, sampled at 3-h intervals, were investigated for the mummichog Fundulus heteroclitus, in a Delaware, USA tidal marsh. Two factors potentially influencing feeding patterns, time of day and tide height, were examined. On 2 of the sampling periods a low tide occurred in the morning, while on the other 2 sampling periods a high tide occurred in the morning. Results are reported as g-dry wt. of food per g-dry wt. of fish. F. heteroclitus is primarily a daytime feeder that most actively feeds at high tide, regardless of whether or not the high tide inundates marsh surface areas. When tide height was sufficient to inundate the marsh surface, fish invaded these areas and consumed prey characteristic of the marsh surface. F. heteroclitus is an important link in energy transfers between the marsh surface and subtidal systems, enhancing its own energy supplies by consuming marsh surface prey whenever available.  相似文献   

6.
Many eurythermal organisms alter composition of their membranes to counter perturbing effects of environmental temperature variation on membrane fluidity, a process known as homeoviscous adaptation. Marine intertidal gastropods experience uniquely large thermal excursions that challenge the functional integrity of their membranes on tidal and seasonal timescales. This study measured and compared membrane fluidity in marine intertidal snail species under three scenarios: (1) laboratory thermal acclimation, (2) thermal acclimatization during a hot midday low tide, and (3) thermal acclimatization across the vertical intertidal zone gradient in temperature. For each scenario, we used fluorescence polarization of the membrane probe DPH to measure membrane fluidity in individual samples of gill and mantle tissue. A four-week thermal acclimation of Tegula funebralis to 5, 15, and 25°C did not induce differences in membrane fluidity. Littorina keenae sampled from two thermal microhabitats at the beginning and end of a hot midday low tide exhibited no significant differences in membrane fluidity, either as a function of time of day or as a function of thermal microhabitat, despite changes in body temperature up to 24°C within 8 h. Membrane fluidities of a diverse group of snails collected from high, middle, and low vertical regions of the intertidal zone varied among species but did not correlate with thermal microhabitat. Our data suggest intertidal gastropod snails do not exhibit homeoviscous adaptation of gill and mantle membranes. We discuss possible alternatives for how these organisms counter thermal excursions characteristic of the marine intertidal zone.  相似文献   

7.
In Deception Bay, northern Australia, during 1979–1981, a study was made of the distribution of Scylla serrata (Forskal) in an area having a broad intertidal zone. Juveniles (20 to 99 mm carapace width) were resident in the mangrove zone, remaining there during low tide. The majority of subadult crabs (100 to 149 mm) migrated into the intertidal zone to feed at high tide and retreated to subtidal waters at low tide. Adults (150 mm and larger) were caught mainly subtidally and only small numbers were captured in the intertidal at high tide. Few crabs were captured in the coolest months (May to August). Adults were captured on the flats mainly in the warmest months (January to April), but subadults could be captured over the entire summer (September to March). Juveniles were found in the upper intertidal throughout the year.  相似文献   

8.
Since the substantial loss of subtidal eelgrass (Zostera marina L.) in the 1930s, seagrass beds in the Wadden Sea are limited to the intertidal zone and dominated by Z. noltii Hornem. This study deals with the effect of vegetated tidal flats on quantities of mobile epifauna and proves empirically the function of seagrass canopies as a refuge for marine animals remaining in the intertidal zone at ebb tide. Drop-trap samples were taken in the Sylt-Rømø Bight, a shallow tidal basin in the northern Wadden Sea, on vegetated and unvegetated tidal flats during July and August 2002, and during the entire growth period of Z. noltii from May to September in 2003. The species composition in Z. noltii and bare sand flats showed minor differences since only two isopod species (Idotea baltica and I. chelipes) occurred on Z. noltii flats exclusively. Juvenile shore crabs (Carcinus maenas L.), brown shrimps (Crangon crangon L.) and common gobies (Pomatoschistus microps Krøyer) were also found abundantly on bare sand flats. However, the results showed significantly higher abundances and production of these dominant species on vegetated tidal flats. Additionally, the analyses of faunal size classes indicated higher percentages of small individuals in the seagrass bed during the entire sampling period. Despite drastic diurnal fluctuations of dissolved oxygen at low tide, faunal density in the residual water layer remaining in seagrass canopies at ebb tide was found to be consistently higher than that found in artificially created tide-pool units. Although species composition of mobile epifauna did not basically differ between vegetated and unvegetated tidal flats, Z. noltii beds are considered to contribute quantitatively to the function of tidal flats, as an extended juvenile habitat for some of the most important species of the Wadden Sea food web.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

9.
10.
Extreme tidal events are one of the most predictable natural disturbances in marine benthic habitats and are important determinants of zonation patterns in intertidal benthic communities. On coral reefs, spring low tides are recurrent disturbances, but are rarely reported to cause mass mortality. However, in years when extremely low tides coincide with high noon irradiances, they have the potential to cause widespread damage. Here, we report on such an event on a fringing coral reef in the central Great Barrier Reef (Australia) in September 2005. Visual surveys of colony mortality and bleaching status of more than 13,000 corals at 14 reef sites indicated that most coral taxa at wave-protected sites were severely affected by the event. Between 40 and 75% of colonies in the major coral taxa (Acropora, Porites, Faviidae, Mussidae and Pocilloporidae) were either bleached or suffered partial mortality. In contrast, corals at wave-exposed sites were largely unaffected (<1% of the corals were bleached), as periodic washing by waves prevented desiccation. Surveys along a 1–9 m depth gradient indicated that high coral mortality was confined to the tidal zone. However, 20–30% of faviid colonies were bleached throughout the depth range, suggesting that the increase in benthic irradiances during extreme low tides caused light stress in deeper water. Analyses of an 8-year dataset of tidal records for the area indicated that the combination of extended periods of aerial exposure and high irradiances occurs during May–September in most years, but that the event in September 2005 was the most severe. We argue that extreme low-tide, high-irradiance events are important structuring forces of intertidal coral reef communities, and can be as damaging as thermal stress events. Importantly, they occur at a time of year when risks from thermal stress, cyclones and monsoon-associated river run-off are minimal.  相似文献   

11.
Harsh physical conditions in the intertidal zone are the cause of an ample amount of dead macroinvertebrates, which constitute a food source for carrion-feeders. In the European Wadden Sea, this trophic guild includes decapod crustaceans and fish when the tide is in, while during nocturnal low tides the polychaete Phyllodoce mucosa is attracted in large numbers by dead mollusks, crabs or worms on the sediment surface. Within 10 s worms emerged to the surface, crawled as far as 15 m on mucus trails towards the carcass, sucked in tissue up to one-third of their own weight, and then quickly retreated to below the surface. Abundance of P. mucosa was highest in the lower intertidal zone and winter. The seaward high abundance pattern, however, did not continue into the shallow subtidal. In summer, few were attracted during daytime or when the tide was in. However, up to 447 worms aggregated at a single crushed mussel within 20 min at dusk during low-tide exposure. This study suggests that during winter carrion-feeding is an important trophic niche on cold-temperate, intertidal mud flats occupied by a phyllodocid polychaete that is segregated in feeding time from most other scavengers and benefits from cold-sensitive benthic invertebrates.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

12.
G. Schulte 《Marine Biology》1976,37(3):265-277
Feeding, locomotory and defecatory activity of the algivorous orbatid mite Ameronothrus marinus have been measured under defined conditions in the laboratory. Of terrestrial origin, these mites inhabit the intertidal zone of rocky shores along the North and Baltic Seas. Under daylight cycles found at the sampling site and in the absence of tides, feeding and defecation follow an endogenous rhythm with a spontaneous period of 12.3 h; in the tideless littoral of the Baltic Sea these activities are synchronized with diurnal cycles. Feeding and defecation follow a definite sequential pattern, repeated on the average every 4 h, i.e., 3 times between two high tides. The phase of this tidal feeding-defecation rhythm is determined by the onset of the high tide, and different patterns of this rhythm can be observed according to the tidal zones. Inhabitants of the lower eulittoral exposed to longer periods of submersion start feeding earlier, take up more food at one time before the beginning of high tide, quickly defecate part of the food undigested after feeding, and later produce other faecal pellets which contain the real remains of digestion. Inhabitants of the upper eulittoral, exposed to shorter periods of submersion, start feeding later and extend their feeding activity over the whole period of low tide; the difference between faecal pellets with digested and undigested contents is indistinct. The occurrence of these different types of faecal pellets in inhabitants of the intertidal zone is interpreted as a compensatory physiological adaptation resulting from increasing periods of submersion.  相似文献   

13.
Repopulation of the polychaete fauna of a defaunated, marine, intertidal habitat was studied for 2 years.Monthly quantitative samples from 4 stations, from just below mean high water to approximately 10 m below mean low water, were analyzed for species composition, density and distributional relationships. Repopulation occurred most rapidly at the highest tide levels, with slower rates of colonization at lower tide levels. Two species, Apoprionospio pygmaea (Hartman) and Magelona pettiboneae Jones, were density dominants for all but the first month of study. These species partitioned the transect spatially, with M. pettiboneae concentrated at the higher tidal levels, and A. pygmaea concentrated at the lower levels. First-year density dominants, Eteone heteropoda Hartman, Gyptis vittata Webster and Benedict, Nereis succinea Frey and Leuckart, and Paraprionospio pinnata (Ehlers), acted opportunistically by arriving early, quickly increasing their populations, and expanding their habitat distributions.Second-year density dominants, Capitita ambiseta Hartman, Minuspio cirrifera (Wirén), and Travisia sp., arrived much later, took longer to significantly increase their densities, and did not show habitat expansion.  相似文献   

14.
Oxygen consumption of 3 species of Patella was measured in air and water at various temperatures. Measurements at constant temperature over a full tidal cycle showed no tidal or light-dark rhythms. Measurements under conditions simulating natural tidal, temperature and day-night cycles allowed calculation of daily respiratory energy budgets. P. cochlear occurs low on the shore, but experiences a food shortage due to intense intraspecific competition. Its rate of respiration is moderate, but metabolic expenditure is kept low because exposure to air is brief and body temperatures seldom rise above 23°C. P. cochlear has a respiratory rate-temperature (R-T) curve which peaks at 20°C and forms a plateau between 20° and 32.5°C. The midshore P. oculus has abundant food and adopts an exploitative strategy. Growth rate is very high, and this high turnover of energy is linked with a high metabolic rate, high Q10 (temperature coefficient) values, high body temperatures during the day-time low tide, and a respiratory R-T curve peaking at 32.5°C. Small P. oculus occur mainly in intertidal pools and respire faster in water, while larger individuals occur on bare rocks and respire faster in air over the upper temperature range. In contrast, the upper-shore P. granularis has little food, and conservation of energy is essential, particularly as its growth rate is moderate and its reprocurve output high. Respiratory losses are reduced by suppression of the R-T curve and low Q10 values, resulting in relative independence of temperature. Small P. granularis occur low on the shore and respire slower in water. Larger individuals occur at high levels due to migration, and respire slower in air. This further reduces respiratory energy losses. The patterns of respiration in these 3 species are thus related to food availability, resulting in exploitative or conservationist strategies.  相似文献   

15.
A simple tide-simulation apparatus was used to investigate the influence of emersion and temperature on the intertidal growth of Padina japonica Yamada in both the juvenile and adult growth phases. The upper zonation limits are not determined by the sensitivity of any particular growth phase, since all phases show the same emersion tolerance limits. The species grows best when continuously submerged, and growth rates decrease with increasing emersion up to a clear upper zonation boundary. High temperature reduces the emersion tolerance and is therefore an important factor in tropical intertidal zonation.  相似文献   

16.
The vertical zonation of the three common rocky shore neritids at Mkomani, Mombasa, Kenya, Nerita plicata Linnaeus, N. undata Linnaeus, and N. textilis Dillwyn, as a function of feeding migrations and of size, was studied from 28 February to 24 March 1983. These snails perform feeding migrations at night starting at around mid-ebb tide and return to their resting positions with the flood tide. They remain in their resting positions throughout the day until the next nocturnal ebb tide. The direction of migration is sizerelated, with the larger snails of each species moving in the opposite vertical direction to the smaller ones, so that the populations as a whole exhibit no statistically significant net vertical displacement. The larger individuals of two of the species, N. plicata and N. undata, invariably move downwards to their feeding levels, while the smaller individuals move upwards; the larger individuals of N. textilis display a different pattern of migration, moving downwards on and around spring-tide days and upwards on and around neap tide days, while the smaller individuals move in the opposite directions. N. textilis rest above their feeding level around spring tides, and below that level around neap tides. It is demonstrated how these nocturnal migratory feeding rhythms are integrated into the spring-neap and seasonal cycles of the snails' daytime resting positions. The adaptive significance of these migrations is also discussed.  相似文献   

17.
The physical factors that constrain the vertical foraging excursions of the keystone predator, the sea star Pisaster ochraceus, hold considerable interest because they indirectly shape the vivid patterns of zonation of rocky shore communities by impeding or enhancing the ability of P. ochraceus to traverse the intertidal zone. In this paper, we describe a study conducted in the Pacific Northwest of North America in which we examined, in the field and laboratory, the abiotic factors that can affect vertical excursions by P. ochraceus. Our field observations revealed that the extreme upward reach and average shore level height reached by P. ochraceus were significantly lower for daylight high tides than nocturnal high tides. Based on diver observations following a severe storm, it would also appear that these diurnal movements can be impeded by freshwater incursions into the intertidal zone; a regularly occurring event in the Pacific Northwest. As part of an experimental investigation into this phenomenon, we observed that sea stars maintained in tall cylindrical aquaria, without tidal flux, remained near the bottom during daylight and moved to the top of the column at night, suggesting that photoperiod alone can influence the cycle of vertical movement. Adding a freshwater layer to the aquaria restricted these vertical excursions. Our results suggest that on rocky coastlines susceptible to fresh water incursions, the suppression of foraging may be an important factor in the spatial and temporal variation in the intensity of predation. Furthermore, given the relative increase in frequency and intensity of freshwater incursions in the Pacific Northwest and the intolerance of P. ochraceus to lowered salinity, there is the long-term potential to significantly alter patterns of species zonation in this essential marine habitat.  相似文献   

18.
19.
Regular daylight sampling over 13 mo (February 1985–February 1986) in and adjacent to intertidal forested areas, in small creeks and over accreting mudbanks in the mainstream of a small mangrove-lined estuary in tropical northeastern Queensland, Australia, yielded 112 481 fish from 128 species and 43 families. Species of the families Engraulidae, Ambassidae, Leiognathidae, Clupeidae and Atherinidae were numerically dominant in the community. The same species, with the addition ofLates calcarifer (Latidae).Acanthopagrus berda (Sparidae) andLutjanus agentimaculatus (Lutjanidae) dominated total community biomass. During high-tide periods, intertidal forested areas were important habitats for juvenile and adult fish, with grand mean (±1 SE) density and biomass of 3.5±2.4 fish m–3 and 10.9±4.5 g m–3, respectively. There was evidence of lower densities and less fish species using intertidal forests in the dry season (August, October), but high variances in catches masked any significant seasonality in mean fish biomass in this habitat. On ebb tides, most fish species (major families; Ambassidae, Leiognathidae, Atherinidae, Melanotaeniidae) moved to small shallow creeks, where mean (±1 SE) low-tide density and biomass were 31.3±12.4 fish m–2 and 29.0±12.1 g m–2, respectively. Large variances in catch data masked any seasonality in densities and biomasses, but the mean number of species captured per netting in small creeks was lowest in the dry season (July, August). Species of Engraulidae and Clupeidae, which dominated high-tide catches in the forested areas during the wet season, appeared to move into the mainstream of the estuary on ebbing tides and were captured over accreting banks at low tide. Accreting banks supported a mean (±1 SE) density and biomass of 0.4±0.1 fish m–2 and 1.7±0.3 g m–2, respectively, at low tide. There were marked seasonal shifts in fish community composition in the estuary, and catches in succeeding wet seasons were highly dissimilar. Comparison of fish species composition in this and three other mangrove estuaries in the region revealed significant geographic and temporal (seasonal) variation in fish-community structure. Modifications and removal of wetlands proposed for north Queensland may have a devastating effect on the valuable inshore fisheries of this region, because mangrove forests and creeks support high densities of fish, many of which are linked directly, or indirectly (via food chains) to existing commercial fisheries.Contribution No. 493 from the Australian Institute of Marine Science  相似文献   

20.
Deployment of artificial substrata is a common method of investigating early community development and recruitment, but rarely are such experiments of long enough duration to include even year time scales. We placed replicate, machined-slate panels (15×15 cm) in the intertidal and at depths of 6 and 12 m at two sites of differing flow rate at Lough Hyne, SW Ireland. These were serially replaced every 30–60 days for a period of 5 years (1997–2002), except in the intertidal (2000–2002). The number and identity of all recruits were recorded. Recruitment varied over several orders of magnitude both on temporal and spatial scales. The greatest source of variability was between the intertidal (with few species or recruit numbers) and the subtidal zones (many species, some with thousands of recruits per panel per 30 days). Highest levels of recruitment occurred at the low-flow site (Labhra Cliff). Here, recruitment was dominated by the serpulid polychaete, Pomatoceros sp., reaching ~4000 individuals per panel per 30 days. Highest species richness occurred, however, at the high flow site (Whirlpool Cliff). At this site more colonial forms (e.g. bryozoans) settled. Season was found to be the dominant pattern explaining subtidal recruit and species number variability. Year, however, was the dominant temporal pattern explaining change in diversity (Shannon–Wiener H). In space, depth explained most variability of recruit numbers, whereas site explained more variation in species richness. Both these spatial factors contributed similarly to variability of diversity (H). Recruitment has long been known to vary considerably over large spatial scales, such as with latitude and isolation, but we that show changes of a similar magnitude in recruitment can occur across small spatial scales. Individual taxa showed varied temporal patterns of recruitment including continuous, regular seasonal fluctuations and irregular pulses in particular years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号