首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Pieces of the reef coral Montipora verrucosa (Lam.), collected from Kaneohe Bay, Oahu, Hawaii in 1982, were grown in four low-light treatments (11% sunlight): blue, green, red and the full spectrum of photosynthetically active radiation (PAR); and at high-intensity full PAR (90% sunlight). These acclimated corals were then tested for photosynthetic ability in blue, green, red, and white light. The photosynthetic parameters that were measured were; ligh-saturated photosynthetic rate, the initial slope of the photosynthesis/irradiance curve, the light intensity where these two lines crossed, and dark respiration. While acclimation intensity had a pronounced effect, the results also showed that the color of the acclimation treatment influenced the photosynthetic responses of the corals. The color of the light used in the measurements of photosynthesis had much less effect on the photosynthetic responses of the corals.Contribution No. 729 of the Hawaii Institute of Marine Biology  相似文献   

2.
K. H. Dunton 《Marine Biology》1994,120(3):479-489
Continuous year-round measurements of photosynthetically active radiation (PAR) were collected in relation to leaf elongation and plant biomass in the shoal-grass,Halodule wrightii Aschers., within three different estuarine systems on the south Texas coast (Laguna Madre: May 1989 to September 1993; Corpus Christi Bay: February 1990 to September 1993; San Antonio Bay; May 1990 to April 1991). Large differences in water transparency at all three sites masked seasonal variations in surface insolation as reflected in average diffuse attenuation coefficient (k) values ranging from 0.7 to 2.9 and differences in the maximum depth penetration ofH. wrightii, which varied from 0.6 to about 1.3 m. The continuous presence of a chrysophyte (brown tide) algal bloom in Laguna Madre since 1990 led to significant decreases in spring leaf elongation rates and a nearly 50% decline in below-ground biomass, which was reflected in root:shoot ratio (RSR) values that declined from 5.4 in 1989 to 2.3 in 1992. Increased turbidity and lower light levels in San Antonio Bay also corresponded with diminished plant biomass and the subsequent loss of plants; at both locations, the annual quantum flux ranged from 2200 to 2400 mol m-2yr-1, or about 18% of surface irradiance (SI). In contrast,H. wrightii populations growing at ca.1.2 m depths and characterized by high RSR values (4.0) were exposed to 5100 to 5700 mol m-2yr-1, or about 41 to 46% SI. Under these conditions, plants were exposed to daily saturating levels of PAR (H sat) of 3 to 8 h during the spring/summer period of maximum growth, compared to an average of 2 h in Laguna Madre (after 1990) and San Antonio Bay based on field-derived measurements of photosynthetic parameters. Leaf elongation inH. wrightii exhibited a clear circannual rhythm at all sites, regardless of underwater light levels and therefore was not a sensitive indicator of light stress. Instead, chronic long-term reductions in underwater PAR were most strongly reflected in total plant biomass. The higher light demand (18% SI) forH. wrightii in relation to many other seagrasses (11% SI; Duarte 1991) may be related to its higher photosynthetic light requirement, but may also reflect the different methods used to evaluate the minimum light requirements of seagrasses. In estuarine and coastal waters, which are characterized by large and unpredictable variations in water transparency, continuous measurements of in situ PAR are invaluable in assessing the growth and photosynthetic response of seagrasses to variations in underwater irradiance.The University of Texas at Austin, Marine Science Institute Contribution No. 913  相似文献   

3.
The photosynthetic responses of the south Pacific kelp Lessonia nigrescens of the coast of Valdivia, Chile (40°S), were investigated by exposing its different thallus parts, fronds, stipes and holdfasts, to UV radiation in the laboratory. Biologically effective doses (BEDphotoinhibition300) between 400 and 800 kJ m−2 were required for a 40% inhibition in photosynthesis under UVA+UVB radiation. At BEDphotoinhibition300 close to 250 kJ m−2 (in treatments without UVB), the inhibition of photosynthesis did not exceed 20%. These UV doses were in the range of current daily doses measured in Valdivia on cloudless summer days. In general, exposure to UVB for periods longer than 12 h reduced photosynthesis, measured as maximal quantum yield (F v/F m) and electron transport. The fronds were the most UV-sensitive section of this alga, coinciding with the highest pigments contents and carbon fixation. Evidence of a photodamage was also seen. After a 48 h exposure to PAR+UVA+UVB, a decrease of F v/F m in the fronds was close to 41%, while in the stipes and holdfasts it was 12 and 18%, respectively. Although the thalli from the different size classes showed marked differences in their morphology and morphometry, no obvious differences in the UV tolerance of the fronds were detected. The results indicated that the UV-related responses are integrated in the suite of morpho-functional adaptations of the alga. Although the fronds are spatially more exposed to solar radiation than basal structures (stipes and holdfast), due their high turnover rate they may compensate better detrimental effects of UV. In contrast, stipes and the holdfast are key support structures characterized by low replacement rates and designed to confer hydrodynamic resistance to drag forces.  相似文献   

4.
We conducted a study of the relationship between changes in photosynthetic pigment content and water depth in Great Harbor near Woods Hole, Massachusetts, USA, on the green algae Ulva lactuca and Codium fragile and the red algae Porphyra umbilicalis and Chondrus crispus. A calibrated underwater photometer equipped with spectral band filters measured light attenuation by the water column. The depth required for a 10-fold diminution of photon flux was 3.6, 5.3, 6.0 and 6.0 m for red, blue, yellow and green light, respectively. Seaweeds were attached to vertically buoyed lines and left to adapt for 7 days; then, with their positions reversed, they were allowed to readapt for 7 days. All species showed greater photosynthetic pigment content with increased depth. Further, the ratio of phycobiliproteins and chlorophyll b to chlorophyll a increased with depth. Changes in pigment content were reversible and occurred in the absence of cell division. There was a net loss of pigments near the surface (high irradiance), and subsequent synthesis when seaweeds were transferred to a position deep in the water column (low irradiance). In contrast, seaweeds which were found in intertidal habitats changed only their pigment concentration, and not pigment ratio, a phenomena analogous to higher plant sun and shade adaptation. Therefore, seaweeds modify their photon-gathering photosynthetic antennae to ambient light fields in the water column by both intensity adaptation and complementary chromatic adaptation.  相似文献   

5.
Cnidarians which contain symbiotic algae are constantly faced with the challenges of a changing photic regime and a hyperoxic environment. Zooxanthellae (Symbiodinium sp.) from the sea anemone Aiptasia pallida (Verrill), collected and cultured at Bermuda Biological Station in 1986, exhibit a suite of compensatory responses to changes in irradiance, ultraviolet radiation (UV), and to the toxicity resulting from their interaction with photosynthetically produced oxygen. Superoxide dismutase (SOD) and catalase inactivate superoxide radicals (O2 -) and hydrogen peroxide (H2O2), which are mediators of oxygen toxicity, show an increase in specific activity with irradiance and in response to UV, both in cultured zooxanthellae (CZ) and freshly isolated zooxanthellae (FIZ) from acclimated anemones. CZ and FIZ exposed to environmentally realistic UV levels show a 30 to 40% increase in SOD activities compared with zooxanthellae exposed to similar irradiances without UV. CZ consistently show higher activities of both SOD and catalase compared to FIZ. Both CZ and FIZ exhibit changes in chlorophyll content and in the relationship between photosynthesis and irradiance which suggest photoadaptive changes in CO2-fixing enzymes, the photosynthetic-electron transport system, or in photosynthetic unit size (PSU). UV has a greater effect on the photosynthetic capacity (P max) of FIZ when compared to CZ acclimated at an equivalent irradiance with or without a UV component. UV also enhances the photoinhibition observed at high irradiance in both CZ and FIZ. Differences in enzyme activity between CZ and FIZ suggest an important role for the host in the protection of zooxanthellae against the direct effects of environmentally realistic UV while the photosynthetic performance of zooxanthellae in situ may not be as well protected.  相似文献   

6.
Postelsia palmaeformis were collected from the lower intertidal at Pigeon Point, California, USA, in May 1987, and the proximate composition and allocation of energy to the various body components were determined. The holdfast and stipe have a proximate composition (% dry weight) of ca. 40% ash, 5.3% protein, 1% lipid, 2% soluble carbohydrate, and 55% insoluble carbohydrate. The fronds have a proximate composition of ca. 25% ash, 6.5% protein, 2% lipid, 3% soluble carbohydrate, and 65% insoluble carbohydrate. The energetic level was ca. 12 kJ g-1 dry wt and ca. 19 kJ g-1 ash-free dry wt. The relative proportion of three plant components varied, comprising 26, 39, and 35% wet wt and 20, 42, and 38% kJ for the holdfast, stipe, and fronds, respectively. A plant with a basal stipe diameter of 33 mm contains 114 g wet wt and 266 kJ. The maximal density found in May 1987 was 826 plants, 49 301 g wet wt, and 106 157 kJ m-2.P. palmaeformis differs in these characteristics from another intertidal pheophyte,Durvillaea antarctica, that is found in a high-energy intertidal zone.  相似文献   

7.
Species-specific rates of photosynthetic carbon uptake (P), chlorophyll a content and P versus irradiance (P-I), have been measured for cells of Pyrocystis noctiluca and P. fusiformis isolated from natural populations collected in the euphotic zone within and below the surface mixed layer in the Sargasso Sea. These same measurements and the assay for ribulose bis-phosphate carboxylase (RuBP-Case), have been made for cultures of P. noctiluca in a 12 h L: 12 h D photoperiod at 9 different constant or at changing light intensities. In nature chl a cell-1 was constant throughout the euphotic zone. The photosynthetic capacity (Pmax), of cells captured below the surface mixed layer was lower by a factor of 10 compared with cells collected from the surface mixed layer. The Pmax for P. noctiluca collected and incubated within the surface mixed layer was the same as for cell cultures grown under high light, non nutrient-limiting conditions, suggesting that photosynthesis in the natural system was not nutrient limited. In laboratory cultures under constant low light intensities, chl a cell-1 increased by a factor of 5 while both Pmax and RuBPCase activity decreased by a factor of ca 4 compared with high light intensities. In changing light intensities both Pmax and RuBPCase activities were decreased by factors of 4 during low light intervals while chl a cell-1 approached a constant intermediate value. The change in chl a cell-1 in response to prolonged exposure to constant low light intensities was first order with a rate constant of 0.33 d-1. For all irradiance conditions in culture, the P-I dependence could be described by the simple Michaelis-Menten formula. The ratio of Pmax to KI, (the light intensity where P=Pmax/2) was a constant with a Coefficient of Variation of 12%: The constancy of this ratio, the parallel changes in RuBPCase activity with Pmax and the constant chl a cell-1 in the Sargasso Sea imply that for P. noctiluca and presumably P. fusiformis in nature, a dark enzymatic step rather than changes in photosynthetic pigment concentrations may regulate the photosynthetic capacity in the changing photic environment.Contribution no. 1141 from McCollum-Pratt Institute and Department of Biology, The Johns Hopkins University. Supported by DOE contract no. EY 76S20 3278, NSF no. OCE 76-02571 and ONR no. N300014-81-C-0062  相似文献   

8.
Photosynthetic performance in the kelp Laminaria solidungula J. Agardh was examined from photosynthesis irradiance (P-I) parameters calculated from in situ 14C uptake experiments, using whole plants in the Stefansson Sound Boulder Patch, Alaskan Beaufort Sea, in August 1986. Rates of carbon fixation were determined from meristematic, basal blade, and second blade tissue in young and adult sporophytes. Differences in saturating irradiance (I k, measured as photosynthetically active radiation, PAR), photosynthetic capacity (P max), and relative quantum efficiency () were observed both between young and adult plants and between different tissue types. I k was lowest in meristematic tissue (20 to 30 E m–2 s–1) for both young and adult plants, but consistently 8 to 10 E m–2 s–1 higher in young plants compared to adults in all three tissues. Average I k for non-meristematic tissue in adult plants was 38 E m–2 s–1. Under saturating irradiances, young and adult plants exhibited similar rates of carbon fixation on an area basis, but under light limitation, fixation rates were highest in adult plants for all tissues. P max was generally highest in the basal blade and lowest in meristematic tissue. Photosynthetic efficiency () ranged between 0.016 and 0.027 mol C cm–2 h–1/E m–2 s–1, and was highest in meristematic tissue. The relatively lower I k and higher exhibited by L. solidungula in comparison to other kelp species are distinct adaptations to the near absence of light during the eight-month ice-covered period and in summer when water turbidity is high. Continuous measurement of in situ quantum irradiance made in summer showed that maximum PAR can be less than 12 E m–2 s–1 for several days when high wind velocities increase water turbulence and decrease water transparency.The Univeristy of Texas Marine Science Institute Contribution No. 695  相似文献   

9.
The induction of in vivo chlorophyll a (chl a) fluorescence (change in fluorescence intensity during a time-scale of ms to s) was measured to determine the potential of this technique for assessing the physiological condition of the macroalgae Chondrus crispus and Ulva sp. A gradient in variable fluorescence (P-F 0 =peak minus initial fluorescence, a measure of Photosystem II activity) was found along the frond of C. crispus, the values increasing with distance from the thallus apex. No gradient was observed for Ulva sp. thalli. Nitrogen- or phosphorus-depleted Ulva sp. required a longer dark-conditioning period and had lower values of P-F 0 than did controls. In contrast, no differences were found in P-F 0 of N- or P-depleted C. crispus unless values were normalized to chl a. The irradiance history of C. crispus strongly influenced P-F 0 , even after dark-conditioning: P-F 0 declined by about 70% as the mean daily natural irradiance increased between 2 February and 14 March 1986; a negative correlation was observed between P-F 0 and the photon flux density 1 d prior to the measurement; P-F 0 remained elevated when C. crispus was grown under a low photon flux density; and P-F 0 decreased in thalli within 5 d of transfer from growth under natural irradiance to an incubator with artificial irradiance. Changes in variable fluorescence at different growth irradiances of C. crispus may be due to adaptive changes in the relative absorption cross-section of this alga. The influence of irradiance history on Ulva sp. was minimal in comparison.Issued as NRCC No. 28730Part of this study was carried out while employed by Focal Marine Ltd., Bedford, Nova Scotia, Canada  相似文献   

10.
The effect of photosynthetic available radiation (PAR) levels, light quality, ultraviolet (UV) radiation, and temperature on photosynthesis, growth, and chlorophyll fluorescence was evaluated in red and green morphotypes of the rhodophyte Kappaphycus alvarezii (Doty) Doty under controlled conditions. Chlorophyll a and phycoerythrin (PE) levels were similar in the red and green morphotypes cultured under the same conditions, but phycocyanin (PC) and allophycocyanin (APC) levels were 2-fold greater in the green than in the red morphotype. Pigment characterization indicated that the overexpression of PC and APC masked the red pigmentation in the green morphotype. Maximum photosynthesis and photosynthetic efficiency were similar between the two morphotypes assayed at a wide temperature range, which was reflected in the similar growth rates observed in outdoor culture systems. In the green morphotype, photosynthetic efficiency increased 2-fold relative to the red morphotype when assayed with red light (λ > 600 nm), indicating that photosynthetic characteristics are modified as a result of pigment variation in these morphotypes. Such increase in photosynthetic efficiency in the green morphotype, however, did not result in greater growth rates when cultured under white light. Short exposure to high levels of solar radiation (UV-A + UV-B + PAR), and filtered solar radiation (UV-A + PAR or PAR) decreased effective quantum yield (ΔF/F m′) in both morphotypes. The reduction of ΔF/F m′ values in the red and green morphotypes was accounted for by high levels of PAR and not by the UV-A + UV-B + PAR and UV-A + PAR treatments. Photoinhibition caused by UV-A, UV-B, or PAR was completely reversed within 30 h after incubations. Recovery rates from photoinhibition, however, were significantly reduced in the green morphotype when incubated with UV-B radiation. The results here suggest that the overexpression of pigments do not necessarily increase photosynthesis and growth in these morphotypes. Received: 19 June 2000 / Accepted: 28 November 2000  相似文献   

11.
B. R. Oates 《Marine Biology》1985,89(2):109-119
Rates of gross photosynthesis for the intertidal saccate alga Colpomenia peregrina (Sauv.) Hamel were determined under submersed and emersed conditions. Maximal photosynthetic rates were lower than for most seaweeds but comparable with other saccate members of the genus. By fitting the data to a hyperbolic tangent function, maximal photosynthetic rates were estimated to be 5.29 mmol CO2 m-2 h-1 under submersed conditions and 2.06 mmol CO2 m-2 h-1 under emersed conditions. Ik for submersed thalli was 69.1 E m-2 s-1, wherea for emersed thalli it was 149.0 E m-2 s-1, or 2.2 times higher. At low tide in the field and under saturating irradiance, carbon from seawater retained within the thallus cavity was assimilated at 0.9 mmol CO2 m-2 h-1. In the laboratory under emersed conditions, carbon from this source was taken up at 0.6 mmol CO2 m-2 h-1 at 20°C and at 0.34 mmol CO2 m-2 h-1. Retained seawater also greatly reduced drying under desiccating conditions. Experimental thalli from which seawater had been removed lost thallus water continuously throughout the drying period (120 min). On the other hand, control, thalli lost water for the first 15 min, after which no further water loss occurred. At the termination of the experiment, control thalli had lost 7.2% of their water, whereas experimental thalli had lost 39.2%. Desiccation affected the emersed photosynthetic rate of experimental and control thalli. Emersed photosynthetic rates for thalli dried for 15 min were higher than for fullyhydrated thalli. However, emersed photosynthesis of thalli dried for longer than 15 min was lower than fully-hydrated rates and was directly related to percent water loss. Utilizing data from this study, a model was constructed to determine total photosynthetic production of C. peregrina over a single daylight period. From these calculations it was determined that emersed photosynthesis can increase daily photosynthetic production of C. peregrina by 50%.  相似文献   

12.
Non-motile organisms of intertidal shores such as seaweeds have to cope with a great variability of environmental factors. In this survey, we studied whether different morphotypes of the intertidal seaweed Fucus spiralis L. are also reflected in a characteristic performance. Desiccation and recovery of this Phaeophyceae were investigated in field experiments near Aljezur, Portugal. Fucus spiralis is exposed to serious desiccation during periods of falling tide, resulting in a tissue water loss of about 90%. Due to large semidiurnal tidal ranges in this area, two morphotypes can be distinguished: F. spiralis growing in the lower intertidal (LZ) is thicker and fleshier compared with plants in the upper intertidal (HZ), and this is reflected in a significant difference in fresh and dry mass. During sunny days and at low tide, effective quantum yields (ΦPSII) decreased significantly after 2 h desiccation. This continued until re-submersion. The photosynthetic performances of HZ and LZ plants also differed significantly after LZ plants were already submerged and photosynthetisizing, but the HZ specimens still exposed to air. Recovery experiments after desiccation treatments showed fast recovery within 6 min after re-submersion in both morphotypes. HZ specimens showed a slower recovery, which indicates a protection measure to the adverse conditions in the upper intertidal. In 24 h desiccation treatments, however, HZ specimens expressed a significantly higher maximum fluorescence yield F v /F m recovery. Simulated rainfalls during low tides caused photosynthetic activity to drop to 50% of initial F v /F m , independent of the length of the rain period. Treated plants also fully recovered after 6 min re-submersion in seawater. A comparison of single fronds and tufts clearly indicated advantages of the tuft growth strategy: tufts showed higher ΦPSII at prolonged emersion times. Our study indicated a clear relationship between size and drought resistance, which was primarily due to the smaller and hardy HZ plants that withstand longer desiccation times without damage.  相似文献   

13.
The effects of salinity, temperature, and pH variations on growth, survival, and photosynthetic rates of the seagrass Halophila johnsonii Eiseman were examined. Growth and survival responses to salinity were characterized by aquarium experiments in which plants were exposed to seven different salinity treatments (0, 10, 20, 30, 40, 50, and 60 psu) during 15 days. Photosynthetic behavior was assessed for short-term salinity exposures (1 or 20 h) by incubation experiments in biological oxygen demand (BOD) bottles and by measuring photosynthesis versus irradiance (PI) responses in an oxygen electrode chamber. In the bottle experiments the possible effects of interactions between salinity and temperature (15, 25, and 35°C) or pH (5, 6, 7, and 8.2) were also examined. Growth and survival of H. johnsonii were significantly affected by salinity, with maximum rates obtained at 30 psu. Salinity also altered the parameters of the PI curves. Light-saturated photosynthesis (P max) and the photosynthetic efficiency at subsaturating light (α) increased significantly up to an optimum of 40 psu, decreasing again at the highest salinities. Dark respiration rates and compensating irradiance (I c) showed minimum values at 40 and 50 psu, while light-saturation point (I k) was maximum at 30–50 psu. An interaction between salinity and temperature was not found although an increase of temperature alone produced an increase in α, P max, respiration rates, and I k. An interaction between salinity and pH was only found in the P max response: P max increased with pH=5 at 30 psu. In addition, reducing the pH increased α significantly. In the BOD bottles experiment a significant reduction in the dark respiration with decreasing pH was observed, but the opposite trend was observed in the photosynthetic rate. These results suggest that the endemic seagrass H. johnsonii could be negatively affected by hypo- or hypersalinity conditions, although salinity changes did not seem to alter the tolerance of this species to other environmental factors, such as temperature or pH.  相似文献   

14.
We compared the effect of habitat and water depth on the light-harvesting pigment content for Ascophyllum nodosum and Fucus vesiculosus at two near-shore stations in Long Island Sound (USA). Excised pieces of seaweeds were attached at depth intervals to a vertically buoyed line, and left in situ for 7 days. For comparison, fronds were collected from sun and shade habitats in the littoral zone. The three major antenna (light-harvesting) pigments increased in concentration with depth or shade. Chlorophyll c to a ratios remained stable at about 0.2. Fucoxanthin to chlorophyll a ratios decreased by 20 to 30% with depth or shade. Although pigment composition for the two rockweed species was equivalent, the maximum photosynthetic performance of F. vesiculosus exceeded that of A. nodosum by a factor of 2, while the compensation depths for 4 m-adapted A. nodosum and F. vesiculosus under natural limiting light conditions were equivalent. Plants held at 4 m had higher photosynthetic rates compared with plants held at 0 m, no matter the depth of measurement. Indirect evidence indicates that the enhanced photosynthesis of 4 m-adapted plants is due not only to higher concentrations of antenna pigments but to other physiological factors as well. We conclude that the clearly delineated vertical distribution of these two canopy species, the F. vesiculosus zone over the A. nodosum zone, is not determined by light quantity or quality, but by biotic factors as evidenced by the experiments of Menge which are cited herein.  相似文献   

15.
Light-related traits were compared for Laminaria saccharina Lamour. collected from three habitats in Maine and New York, USA, with different ambient light regimes. Light-level, expressed as a proportion of surface irradiance (I0), ranged from 0.04 to 0.32 I0 in the shallow habitat, but rarely exceeded 0.04 I0 in the deep and turbid habitats. Juvenile sporophytes collected from each habitat in April, 1985, were grown at four acclimation light-levels (0.065, 0.12, 0.26, and 0.54 I0) in a common-garden, laboratory experiment. Photosynthesis vs irradiance (PI) parameters, light-harvesting characteristics, and rates of carbon-assimilation and growth were determined for each group of plants. The results indicated that ecotypic differentiation had occurred among the three kelp populations. Photosynthetic capacity (Pmax) and photosynthetic efficiency () were generally highest for plants from the turbid habitat, lowest for deep plants, and intermediate for shallow plants. These differences were largely attributable to variations in light-harvesting characteristics. The nature and magnitude of photoacclimation responses also differed among populations. Population differences in photosynthetic parameters resulted in different rates of C-assimilation and growth by plants from shallow, deep, and turbid habitats. Predictions of in situ growth rates indicated that the severity of light-limitation and, therefore, the adaptive significance of efficient light-utilization vary among the three populations. It is concluded that ecotypic differentiation in light-related traits is important to the broad environmetal range of L. saccharina.  相似文献   

16.
S. Taguchi 《Marine Biology》1976,37(3):197-207
Harmonic regression analysis has been used to determine the short-term variability in the photosynthetic rate (mgC/mg chlorophyll a/h) of phytoplankton in three inlets of Japan. In natural water without large zooplankton present, the photosynthetic rate [log P=log (100xmgC/mg chlorophyll a/h)] can be expressed as (B+A cos T). Factor B represents the average photosynthetic rate, of which the maximum is usually designated as P max, and Factor A corresponds to the slope of the regression line. The phase of the periodicity, represented by T, is adjusted to give the highest correlation: usually T is expressed as [360/24 x (local time + 4)] in degrees. The correlation between Factors A and B is very high (r=0.95, P<0.001), indicating that Factor A may depend upon Factor B (potential activity of chlorophyll a). Both Factors A and B decrease with decreasing irradiance, but the slope of each regression between Factor A and irradiance varies with season. Continuous darkness reduces the phase of the periodicity to one cycle a day when phytoplankton has multiple cycles of photosynthetic rate per day. Adequate nutrient supply from zooplankton regeneration may cause an increase in Factor B; however, excess density of zooplankton decreases Factor A.  相似文献   

17.
The effect of ammonium concentration on photosynthetic activity estimated as in vivo chlorophyll fluorescence, i.e. maximal quantum yield (Fv/Fm) and electron transport rate (ETR) and on the accumulation of mycosporine-like amino acids (MAAs), chlorophyll a (chl a), biliproteins (BP) and soluble proteins (SP) in the red algae Porphyra leucosticta Thuret in Le Jolis collected from Lagos (Málaga, Spain) and Porphyra umbilicalis (Linnaeus) J. Agardh from Helgoland (Germany) was evaluated. Discs of both species were incubated with three ammonium concentrations (0, 100 and 300 µM) under artificial PAR and UV radiation for 7 days. Photosynthetic activity decreased under the culture conditions due to UV radiation and ammonium availability. The decrease of both Fv/Fm and maximal ETR was related to ammonium supply, i.e. the lowest decrease occurred in algae growing with the highest concentration of ammonium. In both species, after 7 days of culture, the content of chl a, BP and SP was higher under 300 µM than that under 0 and 100 µM ammonium. In both species, the content of MAAs was increased under 300 µM ammonium compared to the initial value, whereas a decrease under 0 and 100 µM ammonium was observed only in P. leucosticta. The content of MAAs in P. umbilicalis did not present significant differences compared to the initial value, probably because of the high initial content of MAAs. In both Porphyra species, four MAAs were identified: shinorine, porphyra-334, palythine and asterina-330. However, P. leucosticta modified its MAA pattern during the incubation time, reaching the same percentages found for P. umbilicalis, which did not show any change during the experimental period. P. leucosticta exhibited a decrease in BP/SP and BP/chl a ratios through the incubation time and an increase in MAAs/BP. The ratio MAAs/chl a did not show any variation with time or treatment, as was also true for all ratios in P. umbilicalis. In summary, ammonium supply diminished the decrease of Fv/Fm, increased the content of photosynthetic pigments (chlorophyll and biliprotein) and soluble protein, and stimulated of the accumulation of MAAs in the red algae P. leucosticta and P. umbilicalis.Communicated by O. Kinne, Oldendorf/Luhe  相似文献   

18.
Solar radiation as a primary abiotic factor affecting productivity of seaweeds was monitored in the Arctic Kongsfjord on Spitsbergen from 1996 to 1998. The radiation was measured in air and underwater, with special emphasis on the UV-B (ultraviolet B, 280–320 nm) radiation, which may increase under conditions of stratospheric ozone depletion. The recorded irradiances were related to ozone concentrations measured concurrently in the atmosphere above the Kongsfjord with a balloon-carried ozone probe and by TOMS satellite. For comparison, an ozone index (a spectroradiometrically determined irradiance of a wavelength dependent on ozone concentration, standardized to a non-affected wavelength) was used to indicate the total ozone concentration present in the atmosphere. Weather conditions and, hence, solar irradiance measured at ground level were seldom stable throughout the study. UV-B irradiation was clearly dependent on the actual ozone concentration in the atmosphere with a maximal fluence rate of downward irradiance of 0.27 W m−2 on the ground and a maximal daily fluence (radiation exposure) of 23.3 kJ m−2. To characterize the water body, the light transmittance, temperature and salinity were monitored at two different locations: (1) at a sheltered shallow-water bay and (2) at a wave-exposed, deep-water location within the Kongsfjord. During the clearest water conditions in spring, the vertical attenuation coefficient (K d) for photosynthetically active radiation (PAR) was 0.12 m−1 and for UV-B 0.34 m−1. In spring, coinciding with low temperatures and clear water conditions, the harmful UV radiation penetrated deeply into the water column and the threshold irradiance negatively affecting primary plant productivity was still found at about 5–6 m depth. The water body in spring was characterized as a Jerlov coastal water type 1. With increasing temperature in summer, snow layers and glacier ice melted, resulting in a high discharge of turbid fresh water into the fjord. This caused a stratification in the optical features, the salinity and temperature of the water body. During melt-water input, a turbid freshwater layer was formed above the more dense sea water. Under these conditions, light attenuation was stronger than defined for a Jerlov coastal water type 9. Solar radiation was strongly attenuated in the first few metres of the water column. Consequently, organisms in deeper water are protected against harmful UV-B radiation. In the surface water, turbidity decreased when rising tide caused an advection of clearer oceanic water. In the course of the summer season, salinity continuously decreased and water temperature increased particularly in shallow water regions. The impact of global climate change on the radiation conditions under water and its effects on primary production of seaweeds are discussed, since organisms in the eulittoral and upper sublittoral zones are affected by UV radiation throughout the polar day. In clearer water conditions during spring, this may also apply to organisms inhabiting greater depths. Received: 20 June 2000 / Accepted: 17 October 2000  相似文献   

19.
To be able to survive, marine macroalgae in shallow coastal waters need mechanisms for short-term acclimation to fast changes in their environment. Of major importance are mechanisms that regulate the efficiency of photosynthesis by protecting PS II from photo-oxidative damage. Carotenoids, xanthophyll cycles and non-photochemical quenching (NPQ) are central constituents of such protection mechanisms. Red algae as a group do not have a universal carotenoid composition. We screened ten red algal species and selected two species, originating from similar ecological conditions but with different carotenoid compositions, for use in irradiance-acclimation experiments. We selected the tropical intertidal species Gracilaria domingensis and Kappaphycus alvarezii with antheraxanthin and lutein as major xanthophylls, respectively. Simultaneous in vivo fluorescence and O2 evolution experiments were performed at different irradiance levels, which allowed a direct comparison of overall photosynthetic performance with NPQ. Interconversions of xanthophylls (violaxanthin, zeaxanthin, β-cryptoxanthin and one unidentified carotenoid) did occur in G. domingensis, but not in response to sudden exposure to light. Thus, NPQ was not correlated with any xanthophyll cycle during short-term acclimation to light. G. domingensis had five times higher weight-specific photosynthetic rates than K. alvarezii, which can be explained by the thicker thallus of K. alvarezii. Chlorophyll-specific gross photosynthetic rates were higher in K. alvarezii, but net rates were the same for both species. G. domingensis showed an immediate strong onset of NPQ upon exposure to irradiance, followed by downregulation to the NPQ level required. In K. alvarezii NPQ increased slowly until the required NPQ level was reached. At high irradiance G. domingensis downregulated photosynthesis while K. alvarezii continued to produce O2 even at 2,000 μmol photons m−2 s−1 without NPQ increase. The strategy of K. alvarezii may provide short-term gains but with the risk of oxidative damage. The fast onset of NPQ in G. domingensis even at subsaturating irradiance as well as downregulation of photosynthesis when NPQ is saturated might provide this species with a competitive advantage under conditions of changing irradiance in the field.  相似文献   

20.
To determine how the animal and algal components of the symbiotic sea anemone Aiptasia pulchella respond to changes in food availability and culture irradiance, sea anemones from a single clone were maintained at four irradiance levels (320, 185, 115, and 45 E m-2 s-1) and either starved or fed for 5 wk. Changes in protein biomass of sea anemones maintained under these conditions were not related to the productivity of zooxanthellae, since the protein biomass of fed A. pulchella decreased with increase in irradiance and there was no difference in protein biomass among starved sea anemones at the four irradiance levels. Except for the starved high-light sea anemones, the density of symbiotic zooxanthellae was independent of culture irradiance within both starved and fed. A. pulchella. Starved sea anemones contained over twice the density of zooxanthellae as fed sea anemones. Within both starved and fed individuals, chlorophyll per zooxanthella increased with decreasing culture irradiance while algal size remained constant (in fed sea anemones) at about 8.80 m diameter. Chlorophyll a: c 2 ratios of zooxanthellae increased with decreasing culture irradiance in zooxanthellae from starved sea anemones but remained constant in zooxanthellae from fed sea anemones. As estimated from mitotic index data, the in situ growth rates of zooxanthellae averaged 0.007 d-1 and did not vary with irradiance or feeding regime. Photosynthesis-irradiance (P-I) responses of fed A. pulchella indicated an increase in photosynthetic efficiency with decreasing culture irradiance. But there was no consistent pattern in photosynthetic capacity with culture irradiance. Respiration rates of fed sea anemones also did not vary in relation to culture irradiance. The parameter I k , defined as the irradiance at which light-saturated rates of photosynthesis are first attained, was the only parameter from the P-I curves which increased linearly with increasing culture irradiance. The daily ratio of net photosynthesis to respiration for A. pulchella ranged from 1.6 to 2.8 for sea anemones maintained at the three higher irradiances, but was negative for those maintained at 45 E m-2 s-1. Since the final protein biomass was greatest for sea anemones maintained at the lowest irradiance, these results indicate that sea anemone growth cannot be directly related to productivity of zooxanthellae in this symbiotic association.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号