首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
An aerosol time-of-flight mass spectrometer (ATOFMS) was used to determine, in real time, the size and chemical composition of individual particles in the atmosphere at the remote inland site of Eskdalemuir, Scotland. A total of 51,980 particles, in the size range 0.3-7.4 microm, were detected between the 25th and 30th June 2001. Rapid changes in the number density, size and chemical composition of the atmospheric aerosol were observed. These changes are attributed to two distinct types of air mass; a polluted air mass that had passed over the British mainland before reaching Eskdalemuir, interposed between two cleaner air masses that had arrived directly from the sea. Such changes in the background aerosol could clearly be very important to studies of urban aerosols and attempts at source apportionment. The results of an objective method of data analysis are presented. Correlations were sought between the occurrence of: lithium, potassium, rubidium, caesium, beryllium, strontium, barium, ammonium, amines, nitrate, nitrite, boron, mercury, sulfate, phosphate, fluorine, chlorine, bromine, iodine and carbon (both elemental and organic hydrocarbon) in both fine (d < 2.5 microm) and coarse (d > 2.5 microm) particle fractions. Several previously unreported correlations were observed, for instance between the elements lithium, beryllium and boron. The results suggest that about 2 in 3 of all fine particles (by number rather than by mass), and 1 in 2 of all coarse particles containing carbon, consisted of elemental carbon rather than organic hydrocarbon (although a bias in the sensitivity of the ATOFMS could have affected these numbers). The ratio of the number of coarse particles containing nitrate anions to the number of particles containing chloride anions exceeded unity when the air mass had travelled over the British mainland. The analysis also illustrates that an air mass of marine origin that had travelled slowly over agricultural land can accumulate amines and ammonium.  相似文献   

2.
Water-soluble inorganic ions in aerosol samples have been studied. The sample collection took place during summer in 2003 at a European background site which is operating within the framework of the European Monitoring and Evaluation Program. Gent type PM10 stacked filter unit (SFU) samplers were operated in parallel on a day and night basis to collect particles in separate coarse (2.0-10 microm) and fine (<2.0 microm) size fractions. Particulate masses were measured gravimetrically; the filters from one of the SFU samplers were analyzed by particle-induced X-ray emission spectrometry (PIXE) and instrumental neutron activation analysis (INAA). Filters from the other SFU sampler were analyzed by ion chromatography (IC) for major inorganic anions (MSA-, NO2(-), NO3(-), Cl-, Br-, SO4(2-), oxalate) and cations (Na+, K+, NH4(+), Mg2+, Ca2+). The water-soluble inorganic ions measured were responsible for 44% and 16% of the total fine and coarse particulate mass, respectively. In the fine size fraction, the main ionic components were SO4(2-) and NH4(+) accounting for about 90% of fine ionic mass. In the coarse fraction the main ionic components were Ca2+ and NO3(-), followed by SO4(2-). Significant day and night difference in the mass concentrations was observed only for fine NO3(-). The molar ratios of fine NH4(+) to SO4(2-) indicated their complete neutralization to (NH4)2SO4. According to the cation-to-anion ratios the coarse particles were alkaline, while the fine particles were slightly acidic or neutral. By comparing the corresponding concentrations obtained from PIXE/INAA and IC, we determined the water-extractable part of the individual species. We also investigated the effect of long-range transported air masses on the local air concentrations, and we found that the air quality of this background monitoring station was affected by regional pollution sources.  相似文献   

3.
Soil dust particles transported from loess regions of the Asian continent, called Asian dust, highly influences the air quality of north-eastern Asia and the northern Pacific Ocean. In order to investigate the effects of these dust storms on the chemical composition of atmospheric aerosol particles with different size, measurements of size distributions of total aerosol and major ion species were carried out on Jeju Island, Korea during April 2001. Juju Island was chosen for the study because the levels of emissions of anthropogenic air pollutants are very low. A 5-stage cascade impactor was used to sample size-fractionated aerosol particles. Samples were analyzed for major water-soluble ions using Dionex DX-120 ion chromatograph. The average mass concentration of total aerosol was found to be 24.4 and 108.3 microg m(-3) for non-Asian dust and Asian dust periods, respectively. The total aerosol size distribution, measured during the non-Asian dust period, was bimodal, whereas the coarse particles dominated the size distribution of total aerosol during the Asian dust period. It was found that SO4(2-), NH4+ and K+ were mainly distributed in fine particles, while Cl-, NO3-, Na+, Mg2+ and Ca2+ were in coarse particles. Although SO4(2-) was mainly distributed in fine particles, during the Asian dust period, the concentrations in coarse particles were significantly increased. This indicates heterogeneous oxidation of SO2 on wet surfaces of basic soil dust particles. The NH4+ was found to exist as (NH4)2SO4 in fine particles, with a molar ratio of NH4+ to SO4(2-) of 2.37 and 1.52 for non-Asian dust and Asian dust periods, respectively. Taking into account the proximity of the sampling site to the sea, and the observed chloride depletion, coarse mode nitrate, during the non-Asian dust period, is assumed to originate from the reaction of nitric acid with sodium chloride on the surfaces of sea-salt particles although the chloride depletion was not shown to be large enough to prove this assumption. During the Asian dust period, however, chloride depletion was much smaller, indicating coarse nitrate particles were mainly produced by the reaction of nitric acid with surfaces of basic soil particles. Most chloride and sodium components were shown to originate from sea-salt particles. Asian dust aerosols, arriving at Jeju Island, contained considerable amounts of sea-salt particles as they passed over the Yellow Sea. Ca2+ was shown to be the most abundant species in Asian dust particles.  相似文献   

4.
武汉地区沙尘天气气溶胶粒径分布特性研究   总被引:1,自引:0,他引:1  
通过利用湖北省大气复合污染自动监控预警中心的振荡天平法颗粒物监测仪、光散射法气溶胶粒径谱仪,对武汉地区一次典型沙尘天气过程中记录的不同粒径气溶胶颗粒数量浓度、相对质量浓度进行研究。结果表明,在武汉地区沙尘天气过程中,粗颗粒显著增多,而细颗粒显著减少,这与部分研究发现的沙尘天气过程中粗颗粒与细颗粒共同显著增多的结论有所不同。粒径谱仪分析显示,大于PM5颗粒的增多对粗颗粒浓度增加有显著贡献,而小于PM0.5颗粒的减少则对细颗粒浓度降低有主要贡献,这可能是武汉地区沙尘天气过程颗粒物的变化特点。  相似文献   

5.
Mass size distributions of total suspended particulate matter (TSPM) was measured from Sep 2002 to April 2003 in indoor kitchen environments of five locations in Jawaharlal Nehru University (JNU), New Delhi, with the help of a high volume cascade impactor. Particulate matters were separated in five different size ranges, i.e. >10.9 microm, 10.9-5.4 microm, 5.4-1.6 microm, 1.6-0.7 microm and <0.7 microm. The particle size distribution at various sites appears to follow uni-modal trend corresponding to fine particles i.e. size range <0.7 microm. The contributions of fine particles are estimated to be approximately 50% of TSPM and PM10.9, while PM10.9 comprises 80% of TSPM. Good correlations were observed between various size fractions. Regression results reveal that TSPM can adequately act as a surrogate for PM10.9 and fine particles, while PM10.9 can also act as surrogate for fine particles. The concentrations of heavy metals are found to be dominantly associated with fine particles. However, the concentration of some metals and their size distribution, to some extent is also site specific (fuel type used).  相似文献   

6.
Solid speciation of some trace metals (Pb, Cd, Fe, Mn, Cu) having environmental relevance was studied in coastal particulate sampled during the Austral Spring 2000/2001. A nearshore station situated in the Gerlache Inlet of Terra Nova Bay (Ross Sea, Antarctica) was sampled from November to February. Samples were collected using the in situ filtration system FIS500, equipped with polycarbonate membrane filters having different pore sizes (10 microm, 2 microm and 0.4 microm) for the size fraction analysis of particles. The total concentration of metals was determined both in dissolved and particulate fractions, while speciation was determined on particulate by applying a sequential extraction procedure. Concerning the surface and sub-surface layers, it has been observed that concentration of elements is mainly affected by the dynamic of the pack ice melting and by phytoplankton activity.The solid speciation in November and December is similar for all the studied elements, while some differences can be noted in February, when the pack has completely melted and phytoplankton bloom occurs. With the exception of iron, during this sampling period the quantity of metal associated to the labile fraction increases.  相似文献   

7.
The size distribution of aerosols was measured near traffic intersections of Marol link road in air quality control region (AQCR1), which is a moderately industrial area and Dadar Khodad circle in AQCR2, which is a heavily commercial core of the Mumbai City. The reason behind selecting the two unidentical regions was to study the contribution from vehicles to the size separated PM10 and that of Pb. It is recognised that particulates in urban air are responsible for serious health effects. As very small particles are assumed to be important for the adverse health effects, the particle size distribution is thus an important factor that needs to be addressed whenever the particulates pollution is concerned. The size measurements were done with a cascade impactor of eight stages with a back-up filter. It effectively separates the particulate matter into nine-sizes ranging from 0.0-0.4 to 9.0-10.0 microm. Samples were analysed in nine-particle size fractions with special reference to a toxic metal - lead (Pb) by atomic absorption spectrophotometry (AAS). It was found that PM10 and Pb at both the intersections could easily be classified by the size distribution. The fractions of the PM10 and that of Pb showing a tendency of trimodal distributions with the first peak at coarse mode approximately 9.0-10.0 microm, second at approximately 5.8 microm and the third at coarse mode approximately1.1 microm. The significant percentage of Pb was found in the range below 2.5 microm at both the intersections. However, Pb in AQCR1 is found in the coarser range as well, which could probably be the influence of various industrial activities in the area. PM10 concentration values in the coarser range in AQCR2 are associated with the resuspension of dust particles and mechanical erosions.  相似文献   

8.
Ambient aerosol number concentrations and size distributions were measured in both indoor and outdoor environments using two identical co-located and concurrently operated optical particle counters (OPCs). Indoor measurements were performed in a research laboratory, whereas two different locations were used for outdoor measurements; the sampling duration exceeded 12 hours and one hour respectively. Results from the two OPCs have been presented for eight size classes between 0.5 and 20 [micro sign]m, represented by central value diameters 0.875, 1.5, 2.75, 4.25, 6.25, 8.75, 12.5 and 15 microm. Overall, for the six indoor and outdoor experiments conducted at different times of day, the mean particle count ratios from the two OPCs for the individual samples showed +/-20% variation for indoor experiments and +/-50% variations for outdoor experiments. Significant random departures of the mean ratios from unity at all size classes were noticed even for indoor sample periods exceeding 20 hours. However, the coefficient of determination (R(2)) for the plots of readings from the two OPCs indicated higher consistency for "fine" particles (0.5-3.5 microm) than for "coarse" particles (10-20 microm), with average R(2) > 0.8 and R(2) < 0.5 respectively. Poisson counting statistics help to explain the divergence in the latter case where number concentrations were very low for the outdoor experiments. However, it cannot explain the divergence for indoor measurements where the concentrations were much higher. Increasing the averaging period reduced the scatter, especially in size classes with low number concentration. However, this procedure may lead to over-smoothing of data for environments with rapidly changing number concentration. These results indicate that, when two such analysers are used for comparative studies, the divergence between their responses may generate significant values of source contribution or deposition flux, even for nominally similar aerosol populations.  相似文献   

9.
The hygroscopic properties of individual aerosol particles (1-35 microm equivalent projected area diameter) from the Roasting, Anode Casting and Electrorefining Departments of two Ni refineries were studied by environmental scanning electron microscopy (ESEM) and energy-dispersive X-ray microanalysis (EDX) at a relative humidity of 96-98% (at a temperature of 5 degrees C). In the Roasting and Anode Casting Departments, most particles (60-85% by number) showed no visible change in size or surface morphology when exposed to high relative humidity. Approximately 15-30% of the particles developed a thin water film (growth factors between 1.006 and 1.06) indicating the presence of thin surface coatings of sulfates. About 10% of the particles in the Roasting Department formed droplets (growth factors between 1.1 and 2.6) which always contained a large portion of insoluble material. In the Electrorefining Department, most particles (approximately 60%) were residues from the electrolysis bath solution. At a relative humidity of 96-98% these particles formed a solution which contained only small insoluble inclusions. About 30% of the particles in the Electrorefining Department developed thin water films. As only a small fraction of the particles increased substantially in size when exposed to high relative humidity, the deposition pattern of the total aerosol mass fraction will not be changed substantially by hygroscopic growth. The frequent occurrence of thin surface coatings of soluble material on insoluble Ni compounds has to be considered for health assessment purposes.  相似文献   

10.
Scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX) was used to understand the differences in morphology, elemental composition and particle density of aerosols in different five size ranges to further investigate the potential sources as well as transport of pollutants from/at a much polluted and a very clean area of Delhi. Aerosol samples were obtained in five different size ranges viz. > or = 10.9, 10.9-5.4, 5.4-1.6, 1.6-0.7 and < or = 0.7 microm from a considerably very clean and a much polluted area of Delhi. It was observed that at polluted area most of the particles irrespective of size are of anthropogenic origin. At clean area, in coarse size fractions particles are of natural origin while in fine size range the presence of anthropogenic particles suggests the transport of particles from one area to the other.  相似文献   

11.
Personal aerosol samplers are widely used to monitor human exposure to airborne materials. For bioaerosols, interest is growing in analyzing samples using molecular and immunological techniques. This paper presents a personal sampler that uses a two-stage cyclone to collect bioaerosols into disposable 1.5 ml Eppendorf-type microcentrifuge tubes. Samples can be processed in the tubes for polymerase chain reaction (PCR) or immunoassays, and the use of multiple stages fractionates aerosol particles by aerodynamic diameter. The sampler was tested using fluorescent microspheres and aerosolized fungal spores. The sampler had first and second stage cut-off diameters of 2.6 microm and 1.6 microm at 2 l min(-1)(geometric standard deviation, GSD = 1.45 and 1.75), and 1.8 microm and 1 microm at 3.5 l min(-1)(GSD = 1.42 and 1.55). The sampler aspiration efficiency was >or=98% at both flow rates for particles with aerodynamic diameters of 3.1 microm or less. For 6.2 microm particles, the aspiration efficiency was 89% at 2 l min(-1) and 96% at 3.5 l min(-1). At 3.5 l min(-1), the sampler collected 92% of aerosolized Aspergillus versicolor and Penicillium chrysogenum spores inside the two microcentrifuge tubes, with less than 0.4% of the spores collecting on the back-up filter. The design and techniques given here are suitable for personal bioaerosol sampling, and could also be adapted to design larger aerosol samplers for longer-term atmospheric and indoor air quality sampling.  相似文献   

12.
Measurements of aerosols were made in 2001 and 2002 at Dunhuang (40 degrees 00'N, 94 degrees 30'E), China to understand the nature of atmospheric particles over the desert areas in the Asian continent. Balloon-borne measurements with an optical particle counter suggested that particle size and concentration had noticeable peaks in super micron size range not only in the boundary mixing layer but also in the free troposphere. Super-micron particle concentration largely decreased in the mid tropopause (from 5 to 10 km; above sea level, a.s.l.). Lidar measurements made during August 2002 at Dunhuang suggested the possibility that mixing of dust particles occurred from near the ground to about 6 km even under calm weather conditions, and a large depolarization ratio of particulate matter was found in the aerosol layer. The top of the aerosol layer was found at heights of nearly 6 km (a.s.l.). It is strongly suggested that nonspherical dust particles (Kosa particles) frequently diffused in the free atmosphere over the Taklamakan desert through small-scale turbulences and are possible sources of dust particles of weak Kosa events that have been identified in the free troposphere not only in spring but also in summer over Japanese archipelago. Electron microscopic experiments of the particles collected in the free troposphere confirmed that coarse and nonspherical particles observed by the mineral particle were major components of coarse mode (diameter larger than 1 microm) below about 5 km over Dunhuang, China.  相似文献   

13.
To analyze polycyclic aromatic hydrocarbons (PAHs) at an urban site in Seoul, South Korea, 24-hr ambient air PM2.5 samples were collected during five intensive sampling periods between November 1998 and December 1999. To determine the PAH size distribution, 3-day size-segregated aerosol samples were also collected in December 1999. Concentrations of the 16 PAHs in the PM2.5 particles ranged from 3.9 to 119.9 ng m−3 with a mean of 24.3 ng m−3.An exceptionally high concentration of PAHs(∼120 ng m−3) observed during a haze event in December 1999 was likely influenced more by diesel vehicle exhaust than by gasoline exhaust, as well as air stagnation, as evidenced by the low carbon monoxide/elemental carbon (CO/EC) ratio of 205 found in this study and results reported by previous studies. The total PAHs associated with the size-segregated particles showed unimodal distributions. Compared to the unimodal size distributions of PAHs with modal peaks at < 0.12 μm measured in highway tunnels in Los Angeles (Venkataraman and Friedlander, 1994), four- to six-ring PAHs in our study had unimodal size distributions, peaking at the larger size range of 0.28–0.53 μm, suggesting the coagulation of freshly emitted ultrafine particles during transport to the sampling site. Further, the fraction of PAHs associated with coarse particles(> 1.8 μm) increased as the molecular weight of the PAHs decreased due to volatilization of fine particles followed by condensation onto coarse particles.  相似文献   

14.
The particulate emissions from biomass burning are a growing concern due to the recent evidence of their ubiquitous and important contribution to the ambient aerosol load. A possible strategy to apportion the biomass burning share of particulate matter is the use of organic molecular tracers. Anhydrosugars (levoglucosan, mannosan and galactosan), together with two organic acids (dehydroabietic and pimaric acids), were previously reported as organic markers for particulate wood burning emissions. These five compounds were studied in four European cities (Helsinki, Copenhagen, Birmingham and Oporto), at both a Roadside and an Urban Background station, during a summer and a winter campaign in the fine (PM(2.5)) and the coarse (PM(10-2.5)) size-fractions of the ambient aerosol. Levoglucosan concentrations were highest in the city of Oporto. In winter, levoglucosan was more present in the fine fraction but in summer, concentrations were similar in both size fractions. Levoglucosan concentrations in the fine size fraction were higher in winter, but no seasonal differences were observed for the coarse size fraction. The lack of difference between the Roadside and Urban Background levoglucosan concentrations points towards a regional nature of this type of pollution. Wood burning was estimated to contribute to about 3.1% of the winter PM(10) mass in Oporto, and to 3.7% in Copenhagen. Mannosan followed the trends exhibited by levoglucosan. The ratio between the levoglucosan and mannosan concentrations allowed determination of a preference for softwood over hardwood in all four cities. Galactosan, pimaric acid and dehydroabietic acid were found to be minor compounds.  相似文献   

15.
Visibility impairing aerosols in the urban atmosphere of Delhi   总被引:1,自引:0,他引:1  
To study the visual air quality of Delhi, size fractionated aerosols – coarse and fine fractions of PM10 – were collected and analysed for and EC at three sites with different background activities. The analysed species constitute a smaller portion of coarse fraction (39%) but a larger portion of fine fraction (69%). The sampling was performed from June 2003 to November 2003 which covers monsoon and post monsoon seasons.Aerosol data was used to describe the spatial variation of Visibility Range as a function of chemical composition of visibility impairing aerosols. During the study period, visibility was found to be poor varying between 4.7 and 13 km with an average value of 9.4 km. It is observed that visibility impairment was more due to carbonaceous aerosol followed by sulphate.  相似文献   

16.
大连市区大气气溶胶的无机化学特征分析   总被引:5,自引:0,他引:5  
通过对大连市的两个采样点从2002年4月至12月三个期间的气溶胶的三种粒径的采样分析,结果表明,大连市区气溶胶中PM10质量浓度约占TSP的50%,PM2.5质量浓度约占TSP的30%;8种可溶性离子在不同粒径气溶胶中所占的比例,随着粒径的减小而增大,冬季的SO42-、NO3-、NH4 在各种粒子中含量高于夏季,沙尘暴期间各种可溶性离子在不同粒径颗粒物中的含量较低;11种常见元素在细粒子中的含量比粗粒子中的含量高,春季各种粒子中的元素含量要高于冬季.  相似文献   

17.
Nowadays, high-time resolved aerosol studies are mandatory to better understand atmospheric processes, such as formation, removal, transport, deposition or chemical reactions. This work focuses on PM10 physical and chemical characterisation with high-time resolution: elements (from Na to Pb), ions and OC/EC fractions concentration were determined during two weeks in summer and two in winter 2006 with 4-hours resolution. Further measurements aimed at hourly elemental characterisation of fine and coarse fractions and at the determination of particles number concentration in the 0.25-32 microm size range in 31 bins. The chemical mass closure was carried out in both seasons, enhancing intra-day differences in PM10 composition. In Milan, the highest contribution came from organic matter (34% and 33% in summer and winter, respectively); other important contributors were secondary inorganic compounds (16% and 24% in summer and winter, respectively) and, in summer, crustal matter (14%). Temporal trends showed strong variations in PM10 composition during contiguous time-slots and diurnal variations in different components contribution were identified. Moreover, peculiar phenomena, which would have hardly been detected with 24-hours samplings, were evidenced. Particles removal due to precipitations, aerosol local production and long range transport were studied in detail.  相似文献   

18.
Airborne particulate matter (APM) is a major air pollutant, and the effect on human health of fine APM (PM2.5) deposited deep inside the lungs has recently become a serious concern. Moreover, soluble constituents may leach from APM, and intensify some health disorders. To identify the soluble chemical constituents of APM, size-classified APM was sampled in central Tokyo, and the elemental compositions of the water-soluble, acid-soluble and insoluble fractions were investigated. The extraction procedure was validated by calculating the mass balance of soluble and insoluble fractions of a standard APM reference material (NIST SRM 1648). Among the major elements, Fe and Ti in APM of all size classes and K in coarse APM were distributed primarily in the insoluble fraction and were inferred to be present as oxides or silicates, whereas Na and Mg in all size classes and K in fine APM were primarily in the water-soluble fraction and were inferred to be have originated mainly from sea salt. Among the trace elements, Zn and Cd in the fine APM (d < 2 microm) had large enrichment factors, indicating an anthropogenic origin, and were distributed primarily in the water-soluble fraction. When fine anthropogenic APM enters into the lungs, leached toxic elements, such as Cd, may adversely affect health. The higher the bonding energy of the monoxide molecule of the element was, the higher its distribution ratio was in the water-soluble fraction. Therefore, many metallic elements in APM were inferred to be present as oxygen-bonded compounds.  相似文献   

19.
A denuder/filter system constructed for solvent-free personal exposure measurements was evaluated for separation of vapour and particulate 4,4'-methylenediphenyl diisocyanate (4,4'-MDI) generated from heated PUR-foam. The two different phases were collected in the denuder and on the filter, respectively, by chemosorption on a polydimethylsiloxane (SE-30)-dibutylamine (DBA) stationary phase. Both repeatability and the total mass concentration of 4,4'-MDI were similar to that obtained from the reference method, in this case an impinger/filter system. The penetration of particles through the denuder at 300 ml min(-1) was nearly 100% in the particle size range 25 to 700 nm, which fits well with the Gormley-Kennedy equation. Denuder/filter sampling of the 4,4'-MDI aerosol at 500 ml min(-1) yielded a phase distribution that was in accordance with the results from the reference method. The method limit of detection was 6 ng m(-3) and 4 ng m(-3) for the denuder and filter, respectively, when using an air sampling flow rate of 300 ml min(-1) and a sampling period of 15 min. This is well below the Swedish occupational exposure limit (OEL) of 50 and 100 microg m(-3) for an 8-hour working day and a 5-min period, respectively.  相似文献   

20.
Atmospheric particulate with an aerodynamic diameter <10 microm (PM10) was sampled continuously during the austral summers of 2000-2001 and 2001-2002 at a coastal site near to the Italian base of Terra Nova, Antarctica. Li, Pb, Cd, U, Ba, Bi, Cs, Rb, Tl, Sr, Al, V, Fe, Cu, Mn, Zn, Co, Ag were determined by inductively coupled sector field mass spectroscopy (ICP-SFMS) after sample digestion by a combination of HF, HNO3, and H2O2 in ultraclean conditions. Quality control of the analytical procedure was carried out by blank control, by evaluating the limits of detection, recoveries and repeatability. Concentrations found are extremely low for most metals, confirming the high purity of Antarctic aerosol. Principal Component Analysis (PCA) highlights high correlations among Pb, Cr, Bi, Cu and Zn concentration values and among Li, U, Ba, Cs, Rb, Al, V, Fe, Mn, Co concentration values permitting the identification of two principal source groups, namely crustal dust and human emission activities. Elements of anthropogenic origins (Pb, Cr, Cu, Zn) were highly enriched with respect to their crustal composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号