首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ultrafine particles (UFP, diameter < 100 nm), as reported in recent findings of toxicological and epidemiological studies, could represent health and environmental risks. Motor vehicle emissions usually constitute the most significant source of UFP in an urban environment. Number, surface and mass concentration of particles were determined at increasing distances from the most important Italian road: the “Autostrada del Sole” A1 highway. Particles in the size range from 0.0059 to 20 μm were measured with a Scanning Mobility Particle Sizer (SMPS) and an Aerodynamic Particle Sizer (APS) spectrometers.The A1 highway was selected because it is characterized by two different traffic conditions: a daily and a weekly traffic. During the weekdays the average traffic flow was about 50 vehicles min?1 with more than 30% of vehicles being heavy-duty (HD) diesel trucks. The weekly traffic component is characterized by an increased traffic up to approximately 100 vehicles min?1 during Monday mornings and Friday afternoons because of light-duty vehicles, with substantial reduction of the percentage of HD diesel trucks (typically only 10%).The purpose of this study is the characterization of the A1 highway in terms of evolution of particle size distribution (PSD) and total number concentration at different distances from the highway. This analysis is interesting because Italian traffic presents a higher i) percentage of diesel light-duty vehicles and ii) mean traffic speed in respect to US and Australian traffics. Particle number, surface and mass, exponentially decreases as one moves away from the freeway, whereas UFP number concentration measured at 400 m downwind from the freeway is indistinguishable from upwind background concentration.  相似文献   

2.
Particle measurements were conducted at a road site 15 km north of the city of Gothenburg for 3 weeks in June 2000. The size distribution between 10 and 368 nm was measured continuously by using a differential mobility particle sizer (DMPS) system. PM2.5 was sampled on a daily basis with subsequent elemental analysis using EDXRF-spectroscopy. The road is a straight four-lane road with a speed limit of 90 kph. The road passing the site is flat with no elevations where the vehicles run on a steady workload and with constant speed. The traffic intensity is about 20,000 cars per workday and 13,000 vehicles per day during weekends. The diesel fuel used in Sweden is low in sulphur content (<10 ppm) and therefore the diesel vehicles passing the site contribute less to particle emissions in comparison with other studies. A correlation between PM2.5 and accumulation mode particles (100–368 nm) was observed. However, no significant correlation was found between number concentrations of ultrafine particles (10–100 nm) and PM2.5 or the accumulation mode number concentration. The particle distribution between 10 and 368 nm showed great dependency on wind speed and wind direction, where the wind speed was the dominant factor for ultrafine (10–100 nm) particle concentrations. The difference in traffic intensity between workday and weekend together with wind data made it possible to single out the traffic contribution to particle emissions and measure the size distribution. The results presented in combination with previous studies show that both PM2.5 and the mass of accumulation mode particles are bad estimates for ultrafine particles.  相似文献   

3.
The influence of traffic on urban air quality is highest at low wind speeds and the presence of a temperature inversion. By relying on detailed aerosol measurements conducted simultaneously at two distances close to a major road, we studied one such episode encountered in Helsinki, Finland, during the wintertime. The observed episode was characterized by exceptionally weak dilution of traffic emissions, with particle number concentration decreasing by no more than 10–30% between 9 and 65 m distances from the road. During the nighttime with relatively minor traffic flow, dilution and particle growth by vapor condensation were found to be the dominant processes in this road-to-ambient evolution stage. The latter process shifted a significant fraction of nucleation mode particles to sizes >30 nm diameter, modifying thereby the shape of the particle number size distribution. During the rush hours in the morning, particle number concentrations were elevated by approximately an order of magnitude compared with nighttime, such that also the self-coagulation of nucleation mode particles became important. Our study demonstrates that under suitable meteorological conditions (low wind speeds coupled with temperature inversions), traffic emissions are able to affect submicron particle number concentrations over large areas around major roads and may be a dominant source of ultrafine particles in the urban atmosphere. Under conditions characterized by exceptionally slow mixing, simultaneous processing of ultrafine (nucleation and Aitken mode) particles by dilution, self- and inter-modal coagulation, as well as by condensation and evaporation seriously questions the applicability of particle number emission factors, derived from the measurements at few tens of meters from the roadside.  相似文献   

4.
Trace elements and metals in the ultrafine (<0.18 μm) and accumulation (0.18–2.5 μm) particulate matter (PM) modes were measured during the winter season, next to a busy Southern California freeway with significant (∼20%) diesel traffic. Both ambient and concentrated size-segregated impactor samples were taken in order to collect enough mass for chemical analysis. Data at this location were compared to a site located 1 mile downwind of the freeway, which was reflective of urban background. The most abundant trace elements in the accumulation mode detected by inductively coupled plasma mass spectroscopy (ICPMS) were S (138 ng m−3), Na (129 ng m−3), and Fe (89 ng m−3) while S (35 ng m−3) and Fe (35 ng m−3) were the most abundant in the ultrafine mode. The concentrations of several trace elements, including Mg, Al, and Zn, and in particular Ca, Cu, and Pb, did not uniformly increase with size within fine PM, an indication that various roadway sources exist for these elements. Calculation of crustal enrichment factors for the two sites indicates that the freeway traffic contributed to enriched levels of ultrafine Cu, Ba, P and Fe and possibly Ca. The results of this study show that trace elements constitute a small fraction of PM mass in the nanoparticle size range, but these can and should be characterized due to their likely importance to human health.  相似文献   

5.
This paper presents results from a study conducted in southwest Detroit from July 20 to July 30, 2002, to characterize ambient ultrafine particles (dP < 0.1 microm), and to examine the effect of local sources and meteorological parameters on the ultrafine number concentration and size distribution. The number concentrations of ambient particles in the size range of 0.01-0.43 microm were obtained from a scanning mobility particle sizer (SMPS). Meteorological parameters including ambient temperature, relative humidity, wind speed, wind direction, rainfall, and solar radiation flux were also monitored concurrently atop a 10-m tower. On average, ultrafine particles ranged from 1.4 x 10(4) to 2.5 x 10(4) cm(-3), with significant diurnal and daily variations, and accounted for approximately 89% of the total number concentration (0.01 < dP < 0.43 microm). Time-series plots of the 5-min number concentrations revealed that peak concentrations often occurred during morning rush hour and/or around solar noon when photochemical activity was at a maximum. The morning traffic-related peak coincided with the NOx peak, whereas the photochemical-related peak correlated with solar radiation flux. On some days, the noon peak concentration was many times higher than the morning peak concentration. Although the number size distribution varied considerably over the course of the study, it typically exhibited one to three modes, with diameters around 0.01, 0.05, and 0.09 microm. Analysis of the influence of wind direction indicated that stationary sources could be one of the contributors to elevated ultrafine particle concentration. Overall, the data indicated that fossil fuel combustion and atmospheric gas-to-particle conversion of precursor gases are the major sources of ultrafine particles in the southwest Detroit area during the summer.  相似文献   

6.
This study investigated water-soluble ions in the sized particles (particularly nano (PM(0.01-0.056))/ultrafine (PM(0.01-0.1))) collected using MOUDI and Nano-MOUDI samplers near a busy road site and at a rural site. The analytical results demonstrate that nano and coarse particles exhibited the highest (16.3%) and lowest (8.37%) nitrate mass ratios, respectively. The mass ratio of NO(3)(-) was higher than that of SO(4)(2-) in all the sized particles at the traffic site. The secondary aerosols all displayed trimodal distributions. The aerosols in ultrafine particles collected at the roadside site exhibited Aitken mode distributions indicating they were of local origin. This finding was not observed for those ultrafine particles collected at the rural site. The mass median diameters (MMDs) of the nano, ultrafine, and fine particles were smaller at the traffic site than at the rural site, possibly related to the contribution of mobile engine emissions.  相似文献   

7.
A factor analytic model has been applied to resolve and apportion particles based on submicron particle size distributions downwind of a United States-Canada bridge in Buffalo, NY. The sites chosen for this study were located at gradually increasing distances downwind of the bridge complex. Seven independent factors were resolved, including four factors that were common to all of the five sites considered. The common factors were generally characterized by the existence of two or more number and surface area modes. The seven factors resolved were identified as follows: fresh tail-pipe diesel exhaust, local/street diesel traffic, aged/evolved diesel particles, spark-ignition gasoline emissions, background urban emissions, heavy-duty diesel agglomerates, and secondary/transported material. Submicron (<0.5 microm) and ultrafine (<0.1 microm) particle emissions downwind of the bridge were dominated by commercial diesel truck emissions. Thus, this study obtained size distinction between fresh versus aged vehicle exhaust and spark-ignition versus diesel emissions based on the measured high time-resolution particle number concentrations. Because this study mainly used particles <300 nm in diameter, some sources that would usually exhibit number modes >100 nm were not resolved. Also, the resolved profiles suggested that the major number mode for fresh tailpipe diesel exhaust might exist below the detection limit of the spectrometer used. The average particle number contributions from the resolved factors were highest closest to the bridge.  相似文献   

8.
9.
This study measured ultrafine particle (UFP) levels and their size distributions in the Hsuehshan tunnel from August 12 to 19, 2009, using a Fast Mobility Particle Sizer. Measurement results demonstrate that traffic volume, the slope of the tunnel (downhill or uphill) and the ventilation system affected UFP levels inside the tunnel. Average UFP levels were about 1.0 × 105–3.0 × 105 particles cm?3 at normal traffic volume. A traffic jam in the tunnel could raise UFP levels to over 1.0 × 106 particles cm?3. UFP levels at the uphill bore were significantly higher than those at the downhill bore due to high UFP levels exhausted from vehicles going uphill at high engine load conditions. UFP levels eventually diluted 10–50% with fresh air from tunnel air shafts. Gas-to-particle condensation conversion markedly produced nucleation mode particles at the tunnel entrance section. Observations also showed Aitken mode particles markedly formed by coagulation growth of nucleation mode particles in the tunnel middle section and exit section. That is, the particle size distributions changed significantly inside the tunnel. Measurement results suggest that particles in the Aitken mode in the long tunnel governed UFP levels.  相似文献   

10.
Current atmospheric observations tend to support the view that continental tropospheric aerosols (particularly urban aerosols) show multimodal mass distributions in the size range of 0.01–100 μm. The origin of these aerosols is both natural and anthropogenic. Recently, trimodal sub-μm size distributions from combustion measurements at 0.008, 0.035 and 0.15 μm were also observed. Our interest in the present study is the secondary process of growth of sub-μm size aerosols by the coagulation process alone. Using the ‘J-space’ (integer-space) distribution method of Salk (Suck) and Brock (1979, J. Aerosol Sci.10, 58–590), we report an accurate numerical simulation study of the evolution of ultrafine to fine particle size distributions. Comparision with the analytic solution of Scott (1968, J. atmos. Sci.25, 54–64) was made to test the accuracy of our J-space or integer-space distribution method. Our multimodal sub-μ particle size distribution study encompassed the particle size range of 0.001–0.20 μm. Details of particle growth in each mode and interaction between different modes in the multimodal distribution were qualitatively analyzed.  相似文献   

11.
Aerosols were sampled to study the size distribution of particles of different composition. The membrane filter samples were evaluated by electron and optical microscopy in the size range 0.02 ≤ r ≤ 100 μm. It was found that both surface and volume distributions of all particles have a maximum at 0.2 μm radius. In the surface distribution there is a secondary maximum around 3.0 μm, while the principal maximum in volume distribution is in the vicinity of 20 μm.The size spectra of water-soluble and insoluble particles in winter are similar, while in summer they are very different from each other. In summer, the number of soluble particles in the range of r < 0.5 μm is predominant, the majority of which is composed of ammonium sulfate. In this season, the concentration and size distribution of sulfate particles depends on the intensity of solar radiation, the temperature and wind speed.  相似文献   

12.
总结了近年来不同地区对不同环境下大气超细颗粒物的观测和扩散模拟研究进展。大量的观测研究结果表明,大气超细颗粒物的时空分布、组成特征、形成和成长的特性因观测地区的不同而存在很大差异,受气象因素和局部污染源的影响很大;其来源主要包括固定、移动燃烧源的直接排放和大气中颗粒成核现象,前一种来源一般是局部的,而后一种来源则是区域性的。目前,大多数关于大气超细颗粒物扩散的模拟研究都是针对其质量浓度的,对其数浓度扩散的模拟研究主要集中在小范围(机动车排放烟云的研究方面),在城市区域范围上的研究和应用还很少。最后,探讨和展望了大气超细颗粒物今后的主要研究方向和研究中面临的挑战。  相似文献   

13.
ABSTRACT

Particulate matter (PM) from poultry production facilities may strongly affect the health of animals and workers in the houses, and PM emitted to the ambient air is an important pollution source to the surrounding areas. Aviary system is considered as a welfare friendly production system for laying hens. However, its air quality is typically worse as compared with conventional cage systems, because of the higher PM concentration of indoor air and other airborne contaminants. Furthermore, PM’s physical property, which has a direct impact on the penetration depth into the lungs of the birds and humans, is largely unknown for the aviary system. Therefore, a systematic method was utilized to investigate the characteristics of particles in the aviary house with large cage aviary unit system (LCAU) in Beijing, China. For the field measurements, three measuring locations were selected with two inside and one outside the house with LCAU to continuously monitor PM concentrations and collect the samples for particle size distribution (PSD) analysis. Results showed that PM2.5, PM10, and total suspended particulate (TSP) concentrations averaged at 0.037 ± 0.025 mg/m3, 0.42 ± 0.10 mg/m3, and 1.92 ± 1.91 mg/m3, respectively. Particle concentrations increased from October to December due to less ventilation as the weather got colder, and were generally affected by stocking density, ventilation rate, birds’ activities, and housing system. Meanwhile, indoor PM2.5 concentration was easily impacted by the ambient air quality. Mass median diameter (MMD) and mass geometric standard deviation (MGSD) of the TSP during the measurement were 18.92 ± 7.08 μm and 3.11 ± 0.31, respectively. Count median diameter (CMD) and count geometric standard deviation (CGSD) were 1.94 ± 0.14 μm and 1.48 ± 0.08, respectively. Results indicated that the aviary system can attain a good indoor condition by suitable system design and environment control strategy.

Implications: Indoor PM2.5 concentration of the layer house can be significantly affected by ambient air quality when the air quality index (AQI) was larger than 100. PM2.5 and PM10 concentrations of the layer house with a LCAU system were comparable to the cage system. TSP concentration was higher, and PM size was larger than most of the cage system. System design, larger space volume, and higher ventilation rate were the main influence factors. Good indoor environment of the aviary system can be achieved through the reasonable design of the production system and appropriate environment control strategy.  相似文献   

14.
15.
Ultrafine particles (UFPs, diameter < 100 nm) and co-emitted pollutants from traffic are a potential health threat to nearby populations. During summertime in Raleigh, North Carolina, UFPs were simultaneously measured upwind and downwind of a major roadway using a spatial matrix of five portable industrial hygiene samplers (measuring total counts of 20–1000 nm particles). While the upper sampling range of the portable samplers extends past the defined “ultrafine” upper limit (100 nm), the 20–1000 nm number counts had high correlation (Pearson R = 0.7–0.9) with UFPs (10–70 nm) measured by a co-located research-grade analyzer and thus appear to be driven by the ultrafine range. Highest UFP concentrations were observed during weekday morning work commutes, with levels at 20 m downwind from the road nearly fivefold higher than at an upwind station. A strong downwind spatial gradient was observed, linearly approximated over the first 100 m as an 8% drop in UFP counts per 10 m distance. This result agreed well with UFP spatial gradients estimated from past studies (ranging 5–12% drop per 10 m). Linear regression of other vehicle-related air pollutants measured in near real-time (10-min averages) against UFPs yielded moderate to high correlation with benzene (R2 = 0.76), toluene (R2 = 0.49), carbon monoxide (R2 = 0.74), nitric oxide (R2 = 0.80), and black carbon (R2 = 0.65). Overall, these results support the notion that near-road levels of UFPs are heavily influenced by traffic emissions and correlate with other vehicle-produced pollutants, including certain air toxics.  相似文献   

16.
The concentration and size distribution of ammonium sulfate particles were studied at a rural sampling site by using morphological identification. The size distribution of pure and mixed ammonium sulfate particles as well as the sulfate fraction of total aerosol and its size dependence were determined in the 0.02–0.3 μm radius range. The averaged results are presented for the summer and winter months.  相似文献   

17.
This paper presents results from a study conducted in two urban areas of southern California, Downey and Riverside, to examine the effect of different sources and formation mechanisms on the size distribution and temporal trends of ultrafine particles. Near-continuous data were collected for 5 months at each location. Our data clearly identified Downey as a source site, primarily affected by vehicular emissions from nearby freeways, and Riverside as a receptor site, where photochemical secondary reactions form a substantial fraction of particles, along with local vehicular emissions. In Downey, the diurnal trends of total particle number concentration and elemental carbon (EC) appear to be almost identical throughout the day and irrespective of season, thereby corroborating the role of primary emissions in the formation of these particles. This agreement between EC and particle number was not observed in Riverside during the warmer months of the year, while very similar trends to Downey were observed during the winter months in that area. Similarly, the size distribution of ultrafine particles in Downey was generally unimodal with a mode diameter of 30-40 nm and without significant monthly variations. The number-based particle size distributions obtained in Riverside were bimodal, with a significant increase in accumulation mode as the season progressed from winter to summer. During the warmer months, there was also an increase in sub-100-nm particles in the afternoon hours, between 2:00 p.m. and 4:00 p.m., that also increased with the temperature. The differences observed in the ultrafine particle distribution and temporal trends clearly demonstrated that mechanisms other than direct emissions play an important role in the formation of ultrafine particles in receptor sites of the Los Angeles Basin.  相似文献   

18.
Laser printers are one of the common indoor equipment in schools, offices, and various other places. Laser printers have recently been identified as a potential source of indoor air pollution. This study examines the characteristics of ultrafine particles (UFPs, diameter <100 nm) and volatile organic compounds (VOCs) emitted from laser printers housed in a commercial printing center. The results indicated that apart from the printer type, the age of printers, and the number of pages printed, the characteristics of UFPs emitted from printers also depend on indoor ventilation conditions. It was found that at reduced ventilation rates of indoor air, there was a rise in the number concentration of UFPs in the printing center. Interestingly, the contribution of UFPs to the total number of submicrometer-sized particles was observed to be higher at a sampling point far away from the printer than the one in the immediate vicinity of the printer. Black carbon (BC) measurements showed a good correlation (rs = 0.82) with particles in the size range of 100-560 nm than those with diameters less than 100 nm (rs = 0.33 for 50-100 nm, and rs = -0.19 for 5.6-50 nm particles). Measurements of VOCs in the printing center showed high levels of m-, o-, and p-xylene, styrene, and ethylbenzenes during peak hours of printing. Although toluene was found in higher levels, its concentration decreased during peak hours compared to those during nonoperating hours of the printing center.  相似文献   

19.
针对大气环境污染控制中超细颗粒难以捕集的问题,提出了一种高效、经济的新方法.其核心思想是将经电声换能超声波雾化得到的相对湿度过饱和雾气喷入含尘气体中,在“云”物理学、碰撞团聚等原理共同作用下,饱和水蒸汽在颗粒表面凝结,使超细颗粒的粒径增大,增加其捕集效率.为了证明这种方法的有效性,建立了小型电声换能超声波雾化捕尘实验台并在旋风除尘器中进行实验研究.实验结果表明,随着雾气浓度的增加,总除尘效率与超细颗粒的分级效率均有明显提高,并且旋风除尘器的压降(能耗)明显降低.  相似文献   

20.
TSI Inc. (Shoreview, MN) has introduced three new water-based condensation particle counters (WCPCS) that were designed to detect airborne particles larger than 2.5 nm (model 3786), 5 nm (model 3785), and either 10 or 20 nm (model 3782). These WCPCs are well suited for real-time, environmental monitoring of number concentration of airborne ultrafine particles. Their unique design incorporates the use of water as the working fluid instead of alcohol. Water is odor free, readily available, and eliminates the problem of water condensation and absorption into alcohol working fluids during operation in humid environments. In this study, the performance of three TSI WCPCs was characterized for several aerosol compositions, including sucrose, salt (NaCl), dioctyl sebacate (DOS), dioctyl phthalate (DOP), emery oil (poly-alpha-olefin), silver, impurity residue particles, and ambient aerosol particles. All particles were size selected using a nano differential mobility analyzer (nano-DMA; model 3085, TSI Inc.) to create monodisperse challenge aerosols. The challenge aerosol was mixed uniformly with clean makeup flow and split into a WCPC and a reference instrument to determine the counting efficiency of the WCPC. For the model 3785 WCPC, the D50 (i.e., the particle diameter with 50% counting efficiency) was determined to be 3.1 nm for salt particles, 4.7 nm for sucrose and ambient particles, 5.6 nm for silver particles, and >50 nm for ultrapure oil particles. The sensitivity to oil droplets increased dramatically (D50 < 10 nm) when the oil was slightly contaminated. The D50 of model 3786 ultrafine water-based CPC (UWCPC) was 2.4 nm for impurity residue particles. The D50 of the model 3782 WCPC was 10.8 (with a nominal setting of 10 nm) or 19.8 nm (with a nominal setting of 20 nm) for sucrose particles. All three WCPCs have response times of less than 2 or 3 sec and are therefore able to detect fast-changing events.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号