首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The contribution presents numerical simulation of gypsum particles, lifting from a gypsum landfill. First, particle characteristics are presented, resulting from different technologies of gypsum depositing. Next, a laboratory experiment parameter validation tests are described, which served as a means of determination of mass flow of particles from the landfill. The background of the numerical simulations, used in the assessment of landfill impact on the environment, is also described. Simulations consist of two parts: simulation of a long term impact of the particles on the surrounding area, performed by implementation of the Gaussian dispersion model based computer code ISC3, and second, a CFD based simulation for assessing the flow and mass concentration fields in the vicinity of the landfill for several pre-selected flow cases. The results of both computational approaches are presented and compared. In the conclusions, a relation of the simulation results with existing environmental pollution levels is made, and recommendations for landfill management are drawn.  相似文献   

2.
The flow and dispersion of stack-gas emitted from different elevated point source around flow obstacles in an urban environment have been investigated, using computational fluid dynamics models (CFD). The results were compared with the experimental results obtained from the diffusion wind tunnel under different conditions of thermal stability (stable, neutral or unstable). The flow and dispersion fields in the boundary layer in an urban environment were examined with different flow obstacles. Gaseous pollutant was discharged in the simulated boundary layer over the flat area. The CFD models used for the simulation were based on the steady-state Reynolds-Average Navier-Stoke equations (RANS) with kappa-epsilon turbulence models; standard kappa-epsilon and RNG kappa-epsilon models. The flow and dispersion data measured in the wind tunnel experiments were compared with the results of the CFD models in order to evaluate the prediction accuracy of the pollutant dispersion. The results of the CFD models showed good agreement with the results of the wind tunnel experiments. The results indicate that the turbulent velocity is reduced by the obstacles models. The maximum dispersion appears around the wake region of the obstacles.  相似文献   

3.
Numerical dispersion models developed and validated in different European countries were applied to data sets from wind tunnel and field measurements. The comparison includes the Danish Operational Street Pollution Model (OSPM) and the microscale flow and dispersion model MISKAM. The latter is recommended for application in built-up areas in the draft of the new German guideline VDI 3782/8. In a first step the models were applied to simplified street configurations. Different parameters as length and height of adjacent buildings and the angle of the incoming flow were varied. The results were compared to recent wind tunnel measurements. In a second step the models were applied to two extensively investigated field data sets from Jagtvej, Copenhagen and G ttinger Straße, Hannover. Intensified and more transparent and accessible validation procedures would be helpful for the thorough user.  相似文献   

4.
In this work, a numerical model is proposed to estimate air concentration of released airborne radioactive contaminants 131I and 137Cs. A Gaussian dispersion model is used to assess the atmospheric dispersion of radioactive contaminants released continuously from a nuclear power plant as a result of an accident. The model uses various input parameters such as source height, release rate, stability class, wind speed, and wind direction. The validation of the model was carried out by comparing its predicted values with published experimental data. The model was extensively tested by simulating several accidental situations. The main conclusion drawn from these tests is that for large downwind distances from the release point, the contaminant concentrations predicted by the model diverge drastically from measured data, while for short distances, the predicted values generally agree quite well with experimental data. The obtained activity concentrations range from 1.57?×?102 to 6.43?×?103 Bq/m3 for 131I and from 3.18?×?10?2 to 9.72?×?102 Bq/m3 for 137Cs. The estimated standard deviation coefficients values range of 7.2 to 6847.7 m, and the maximum absolute error predicted by the model for these parameters was less than 5%.  相似文献   

5.
Dispersion of atmospheric contaminants in the vicinity of an isolated cubical model building was investigated in the field. A dual source/receptor technique was used in the experiments, which was proved to be very useful for the investigation of pollution dispersion. This experimental technique involved the simultaneous release of two different tracer gases from two different point sources, and the deployment of a FID (Flame Ionization Detector) co-located with a UVIC®(Ultra-Violet Ion Collector) detector. Both mean concentrations and concentration fluctuation statistics were examined. In this paper concentration fluctuation statistics are presented. The effect of the upwind source location on intermittency values and on the cumulative density function (cdf) is examined. The exact location of a source placed upwind of an obstacle has a very significant and complex effect on both mean concentrations and concentration fluctuations. As the lateral or vertical displacement between the two sources is increased, cross-correlation values between data taken simultaneously by two co-located detectors decrease rapidly.  相似文献   

6.
OSPM - A Parameterised Street Pollution Model   总被引:3,自引:0,他引:3  
For many practical applications, as e.g. in support of air pollution management, numerical models based on solution of the basic flow and dispersion equations are still too complex. Alternative are models that are basically parameterised semi-empirical models making use of a priori assumptions about the flow and dispersion conditions. However, these models must, be thoroughly tested and their performance and limitations carefully documented. The Danish Operational Street Pollution Model (OSPM) belongs to this category of parameterised models. In the OSPM, concentrations of exhaust gases are calculated using a combination of a plume model for the direct contribution and a box model for the recirculating part of the pollutants in the street. Parameterisation of flow and dispersion conditions in street canyons was deduced from extensive analysis of experimental data and model tests. Results of these tests were used to further improve the model performance, especially with regard to different street configurations and a variety of meteorological conditions.  相似文献   

7.
The vertical dispersion parameter of Pasquill–Gifford needs some modification in the close vicinity of urban roadways by considering the influence of traffic-induced turbulence. Wind tunnel simulation experiments have been carried out with controlled traffic parameters to evaluate traffic-induced effect on vertical dispersion parameter (σz) in the near field of roadways. The aerodynamic similarities in atmospheric flow, vehicles size and speeds have been considered with appropriate similarity criteria. The tracer gas experiments have been performed to evaluate σz in the near field of the roadways for variable traffic volumes and two approaching wind directions (i.e. 90 and 60). The results showed that the value of σz increased monotonically with increase in traffic volumes and becomes nearly constant at a particular downwind distance. It has also been found that the σz was considerably affected by approaching wind directions. Further, the comparison of experimental σz values for both approaching wind directions with those of Chock (1978) and Rao and Keenan (1980), showed an agreement within ±15%.  相似文献   

8.
Dumping of solid waste in a non-engineered landfill site often leads to contamination of ground water due to leachate percolation into ground water. The present paper assesses the pollution potential of leachate generated from three non-engineered landfill sites located in the Tricity region (one each in cities of Chandigarh, Mohali and Panchkula) of Northern India and its possible effects of contamination of groundwater. Analysis of physico-chemical properties of leachate from all the three landfill sites and the surrounding groundwater samples from five different downwind distances from each of the landfill sites were collected and tested to determine the leachate pollution index (LPI) and the water quality index (WQI). The Leachate Pollution Index values of 26.1, 27 and 27.8 respectively for landfill sites of Chandigarh (CHD), Mohali (MOH) and Panchkula (PKL) cities showed that the leachate generated are contaminated. The average pH values of the leachate samples over the sampling period (9.2 for CHD, 8.97 for MOH and 8.9 for PKL) show an alkaline nature indicating that all the three landfill sites could be classified as mature to old stage. The WQI calculated over the different downwind distances from the contamination sites showed that the quality of the groundwater improved with an increase in the downwind distance. Principal component analysis (PCA) carried out established major components mainly from natural and anthropogenic sources with cumulative variance of 88% for Chandigarh, 87.1% for Mohali and 87.8% for Panchkula. Hierarchical cluster analysis (HCA) identifies three distinct cluster types for the groundwater samples. These clusters corresponds to a relatively low pollution, moderate pollution and high pollution regions. It is suggested that all the three non-engineered landfill sites be converted to engineered landfill sites to prevent groundwater contamination and also new sites be considered for construction of these engineered landfill sites as the present dumpsites are nearing the end of their lifespan capacity.  相似文献   

9.
A generalized mathematical model describing the crosswind-integrated concentrations is presented for dispersion of pollutants emitted from a continuous source in the atmospheric boundary layer with deposition to the ground surface. The model is based on a solution of the resulting two-dimensional steady state advection-diffusion equation with deposition to the ground surface. It considers the horizontal wind speed as a generalized function of vertical height above the ground surface and eddy diffusivity as a function of both downwind distance from the source and vertical height. Various special cases of the model are deduced. A sensitivity analysis of the model prediction of the ground-level crosswind-integrated concentrations with deposition velocity is performed. Various issues and limitations associated with this work are discussed. The model is evaluated with the observations of a depositing tracer obtained from Hanford dual diffusion experiment in stable conditions. The statistical measures show that the present model, by considering deposition, is performing well with the observations. The model is giving an over-predicting trend with the observations and predicts 100 % cases within a factor of two. On the other hand, the consideration of a non-depositing condition for a depositing tracer yields the severe over-prediction and thus, it introduces the significant errors in the model prediction. The selection of the lower boundary condition for a depositing tracer at the height of deposition surface gives better prediction than those at a height of surface roughness length.  相似文献   

10.
Abandoned landfills and dumps, where untreated waste materials were deposited in the past, are a main anthropogenic source of relevant gaseous emissions. The determination of stability is a crucial target in the context of landfill risk assessment. FTIR spectroscopy and simultaneous thermal analysis in association with multivariate statistical methods were applied to landfill materials in order to get information on the kind of waste and its reactivity. The spectral and thermal patterns are fingerprints of the material. Industrial waste and the material from a 5-year-old reactor landfill were distinguished from the defined classes of mechanically-biologically treated ("MBT") waste and 30 to 40-year-old stable landfills containing municipal solid waste and construction waste ("LF") by a classification model based on soft independent modeling of class analogy (SIMCA). Degradation experiments were carried out with the fresh material originating from one MBT plant that was subjected to aerobic and anaerobic conditions in lab-scale reactors. These samples were compared to samples of one reactor landfill and to the landfill fraction from the MBT plant to demonstrate the efficiency of the biological pretreatment before final disposal. Prediction models that are based on spectral or thermal characteristics and the corresponding reference analyses were calculated by means of a partial least squares regression (PLS-R). The developed models of the biological oxygen demand (BOD) and the dissolved organic carbon (DOC) were based on spectral data, the models of the total organic carbon (TOC) and total nitrogen (TN) were based on thermal data (heat flow profiles and mass spectra of combustion gases). Preliminary results are discussed. The enthalpy of the materials decreases with progressing mineralization, whereas the enthalpy of the remaining organic matter increases. The ratio of the enthalpies was used as an indicator of stability. Selected samples comprising old landfills, a recent reactor landfill, MBT landfills and MBT materials were classified according to the calculated ratios.  相似文献   

11.
Wind flow and turbulence within the urban canopy layer can influence the heating and ventilation of buildings, affecting the health and comfort of pedestrians, commuters and building occupants. In addition, the predictive capability of pollutant dispersion models is heavily dependent on wind flow models. For that reason, well-validated microscale models are needed for the simulation of wind fields within built-up urban microenvironments. To address this need, an inter-comparison study of several such models was carried out within the European research network ATREUS. This work was conducted as part of an evaluation study for microscale numerical models, so they could be further implemented to provide reliable wind fields for building energy simulation and pollutant dispersion codes. Four computational fluid dynamics (CFD) models (CHENSI, MIMO, VADIS and FLUENT) were applied to reduced-scale single-block buildings, for which quality-assured and fully documented experimental data were obtained. Simulated wind and turbulence fields around two surface-mounted cubes of different dimensions and wall roughness were compared against experimental data produced in the wind tunnels of the Meteorological Institute of Hamburg University under different inflow and boundary conditions. The models reproduced reasonably well the general flow patterns around the single-block buildings, although over-predictions of the turbulent kinetic energy were observed near stagnation points in the upwind impingement region. Certain discrepancies between the CFD models were also identified and interpreted. Finally, some general recommendations for CFD model evaluation and use in environmental applications are presented.  相似文献   

12.
Due to the complex nature of landfill leachates, metal and metalloid analyses prove to be tricky and suffer from a lack of standard protocols. A complete approach has been adopted to investigate the influence of the different steps during the sample processing of French landfill leachates. The validation of the entire protocol has been achieved using a laboratory reference material. This material, which is a real landfill leachate, is representative of real samples. Its evaluation has allowed a quality control for metal and metalloid analyses in landfill leachates. Precautions concerning storage temperature, aeration and filtration are proposed to perform accurate metal analyses in these complex matrices. The sample processing has been applied to the seasonal monitoring of a French landfill. The assessment of major leachate metallic contaminants such as As, Cr, Sb, Sn, has been performed by evaluating the relative enrichment of metals and metalloids in comparison with rain water and groundwater. In addition, hydrological data are useful and complementary information for pointing out the main factors affecting metal concentrations and thus their potential remobilisation pathways.  相似文献   

13.
Mathematical models for the simulation of dense nonaqueous phase liquid tracer tests (DTTs) in laboratory columns and in the field are developed and examined. The DTT technique is a means of estimating the quantity of dense nonaqueous phase liquid (DNAPL) in a domain of interest in an aquifer. The two-dimensional field DTT model uses the Method of Principal Directions and an asymmetrical upwind algorithm for describing advective transport. Both models include diffusion transport of tracer into and from low-permeability porous structures such as clay lenses, as well as the mass transport kinetics of partitioning tracer to and from the DNAPL droplets. The dependence of the effluent tracer concentration curves on the parameters of the models is explored, and conclusions are drawn regarding the applicability of, and several possible problems with, the DTT technique. Model results indicate that the DTT performs well at locating distributed droplets of DNAPL, but is unlikely to be useful in the assessment of pooled DNAPL.  相似文献   

14.
Methods for estimating airborne contaminant concentrations at specific locations within enclosed spaces, such as mathematical models and computational fluid dynamics (CFD), often are validated against directly measured concentrations. However, concentration variation with time introduces uncertainty into the measured concentration. Failure to determine monitoring time requirements can lead to errors in quantifying representative concentrations, which are likely to be attributed to errors in the method being validated. In the current study, to obtain the representative concentrations at multiple locations with a direct reading instrument, we used the standard deviation ratio (SDR) method to determine the required minimum monitoring time within a specified precision limit. To demonstrate the use of the SDR approach in constructing precision confidence intervals, tracer gas concentrations at nine sampling locations in an experimental room were measured to obtain population parameters. Three flow rates of 0.9, 3.3 and 5.5 m(3) min(-1) were employed and contaminant concentrations were measured using a photoionization analyser. Monitoring time requirements varied substantially with location within the room and were strongly dependent upon the flow rate of air through the room. The proposed method would be very useful for industrial hygienists and indoor air researchers who sometimes need to obtain several hundred measured concentrations for validation purposes or to perform tests under repeatable conditions in enclosed spaces. This study also showed that the proposed method can be used to devise efficient indoor monitoring strategies.  相似文献   

15.
The impact of the street configurations on pollutants dispersion from vehicles exhausts within urban canyons was numerically investigated using a computational fluid dynamics (CFD) model. Three-dimensional flow and dispersion of gaseous pollutants were modeled using standard kappa - epsilon turbulence model, which was numerically solved based on Reynolds-averaged Navier-Stokes equations by the commercial CFD code FLUENT. The concentration fields in the urban canyons were examined in three cases of street configurations: (1) a regular-shaped intersection, (2) a T-shaped intersection and (3) a Skew-shaped crossing intersection. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated against wind tunnel results in order to optimize the turbulence model. Numerical predictions agreed reasonably well with wind tunnel results. The results obtained indicate that the mean horizontal velocity was very small in the center near the lower region of street canyon. The lowest turbulent kinetic energy was found at the separation and reattachment points associated with the corner of the down part of the upwind and downwind buildings in the street canyon. The pollutant concentration at the upwind side in the regular-shaped street intersection was higher than that in the T-shaped and Skew-shaped street intersections. Moreover, the results reveal that the street intersections are important factors to predict the flow patterns and pollutant dispersion in street canyon.  相似文献   

16.
Previous studies have shown that there was a relatively large amount of uncertainty along the major wind direction in the results of locating emission sources using the one-dimensional radial plume mapping (RPM(1D)) technique based on optical remote sensing measurements. This paper proposes setting up an additional monitoring line that is perpendicular to the original scanning beam geometry to reduce this uncertainty. We first conducted a computer simulation study using the Gaussian dispersion model to generate the downwind concentrations of plumes from 400 source locations in a 201 m × 201 m spatial domain under various wind directions (n = 181). The optical remote sensing instrument was assumed to be at (0, 0) with two perpendicular monitoring lines, each of which had three beam segments of equal length. Each pair of the reconstructed downwind concentration profiles was then used to trace back to the source locations. The results showed that the accuracy of the method and its uncertainty were improved by using the proposed two-line RPM(1D) approach rather than the original one-line RPM(1D) approach at most simulated source locations. In a follow-up field experiment, a tracer gas was released at the coordinate of (100, 100). The release location was covered within the 0.25- to 0.5-probability area of the estimated results, and the distance between the actual and estimated source locations was 18.4 m (9.2% of the longest beam path).  相似文献   

17.
The paper presents a new method of air pollution modelling on a micro scale. For estimation of concentration of car exhaust pollutants, each car is treated as an instantaneous moving emission source. This approach enables us to model time and spatial changes of emission, especially during cold and cool start of an engine. These stages of engine work are a source of significant pollution concentration in urban areas. In this work, two models are proposed: one for the estimation of emission after cold start of the engine and another for the prediction of pollutant concentration. The first model (defined for individual exhaust gas pollutants) enables us to calculate the emission as a function of time after the cold or cool start, ambient temperature and average speed of motion. This model uses the HBEFA database. The second mathematical model is developed in order to calculate the pollutant dispersion and concentrations. The finite volume method is applied to discretise the set of partial differential equations describing wind flow and pollutant dispersion in the domain considered. Models presented in this paper can be called short-term models on a small spatial scale. The results of numerical simulation of pollutant emission and dispersion are also presented.  相似文献   

18.
This article presents a comparison of two adaptive neuro-fuzzy inference systems (ANFIS)-based neuro-fuzzy models applied for modeling dissolved oxygen (DO) concentration. The two models are developed using experimental data collected from the bottom (USGS station no: 420615121533601) and top (USGS station no: 420615121533600) stations at Klamath River at site KRS12a nr Rock Quarry, Oregon, USA. The input variables used for the ANFIS models are water pH, temperature, specific conductance, and sensor depth. Two ANFIS-based neuro-fuzzy systems are presented. The two neuro-fuzzy systems are: (1) grid partition-based fuzzy inference system, named ANFIS_GRID, and (2) subtractive-clustering-based fuzzy inference system, named ANFIS_SUB. In both models, 60 % of the data set was randomly assigned to the training set, 20 % to the validation set, and 20 % to the test set. The ANFIS results are compared with multiple linear regression models. The system proposed in this paper shows a novelty approach with regard to the usage of ANFIS models for DO concentration modeling.  相似文献   

19.
This study compares oil and gas industry benchmark non-methane volatile organic compounds emission data with predicted and reported emissions from a number of recent case studies. Specifically, we contrast predicted emissions from the Tamar and Leviathan processing platforms in the Eastern Mediterranean with actual emissions where available, and with a compilation of industry benchmarks. This work reveals a series of flaws in the adopted EIA practices in the case studies discussed, starting from the emissions model that grossly underestimates intermittent NMVOC and benzene emissions relative to available data from other sites, and the unrealistic assumption of a constant and uniform emission profile in contrast to real world emission scenarios that are characterized by discrete large emission events. Furthermore, the dispersion model used in the EIAs as part of the request for a business (emissions) permit has a number of significant failings, including the use of an unsuitable model, use of over-simplistic meteorological inputs, and lack of consideration of critical dispersion phenomena. This study highlights the need to rethink the currently used environmental impact assessment and atmospheric permit request methodologies in the oil and gas industry, which rely on unrealistic uniform emission models.  相似文献   

20.
Modelling of Fluid Flow and Pollutant Dispersion in a Street Canyon   总被引:6,自引:0,他引:6  
A two-dimensional steady state numerical simulation has been carried out for a typical street canyon ventilated by a cross-wind. The PHOENICS package from CHAM was used to solve for the air flow above and within the street canyon. The k-epsilon turbulence model was used for turbulence modelling and pollutant sources were added at ground level over the road but not over the pavements. Results for the air flow showed the formation of a longitudinal vortex within the street canyon, as found by other researchers. Pollutant concentrations were predicted with the highest values occurring at the leeward walls of the upwind buildings, and the lowest values on the windward walls of the downwind buildings. The accuracy of these simulations was examined by comparing the predicted results with field observations. Reasonable agreement was obtained, confirming the difference between concentrations on the leeward and windward walls. The results show that the dispersion characteristics can be simulated in terms of structural configurations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号