首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Identifying source-sink dynamics is of fundamental importance for conservation but is often limited by an inability to determine how immigration and emigration influence population processes. We demonstrate two ways to assess the role of immigration on population processes without directly observing individuals dispersing from one population to another and apply these methods to a population of Marbled Murrelets (Brachyramphus marmoratus) in California (USA). In the first method, the rate of immigration (i) is estimated by subtracting local recruitment (recruitment from within the population due to reproduction) estimated with demographic data from total recruitment (f; recruitment from within the population plus recruitment from other populations) estimated using temporal symmetry mark-recapture models developed by R. Pradel. The second method compares population growth rates estimated with temporal symmetry models (lambdaTS) and/or population growth rates estimated from counts of individuals over multiple sampling periods (lambdaC) with growth estimates from a stage-structured projection matrix model (lambdaM). Both lambdaTS and lambdaC incorporate all demographic processes affecting population change (birth, death, immigration, and emigration), whereas matrix models are usually constructed without incorporating immigration. Thus, if lambdaTS and lambdaC are > or = 1 and lambdaM < 1, the population is sustained by immigration and is considered to be a sink. Using the first method, recruitment estimated with temporal symmetry models was high (f= 0.182, SE = 0.058), the mean adult birth rate, as estimated using the ratio of juveniles to > or = 1 year old individuals (observed during ship-based surveys) was low (bA = 0.039, SE = 0.014), and immigration was 0.160 (SE = 0.057). Using the second method, murrelet numbers in central California were stable (lambdaC = 1.058, SE = 0.047; lambdaTS = 1.064, SE = 0.033), but were projected to decline 9.5% annually in the absence of immigration (lambdaM = 0.905, SE = 0.053). Our results suggest that Marbled Murrelets in central California represent a sink population that is stable but would decline in the absence of immigration from larger populations to the north. However, the extent to which modeled immigration is due to permanent recruitment or temporarily dispersing individuals that simply mask population declines is uncertain.  相似文献   

2.
Loss of genetic variability in isolated populations is an important issue for conservation biology. Most studies involve only a single population of a given species and a single method of estimating rate of loss. Here we present analyses for three different Red-cockaded Woodpecker ( Picoides borealis ) populations from different geographic regions. We compare two different models for estimating the expected rate of loss of genetic variability, and test their sensitivity to model parameters. We found that the simpler model (Reed et al. 1988) consistently estimated a greater rate of loss of genetic variability from a population than did the Emigh and Pollak (1979) model. The ratio of effective population size (which describes the expected rate of loss of genetic variability) to breeder population size varied widely among Red-cockaded Woodpecker populations due to geographic variation in demography. For this species, estimates of effective size were extremely sensitive to survival parameters, but not to the probability of breeding or reproductive success. Sensitivity was sufficient that error in estimating survival rates in the field could easily mask true population differences in effective size. Our results indicate that accurate and precise demographic data are prerequisites to determining effective population size for this species using genetic models, and that a single estimate of rate of loss of genetic variability is not valid across populations.  相似文献   

3.
Kendall BE  Fox GA  Fujiwara M  Nogeire TM 《Ecology》2011,92(10):1985-1993
Demographic heterogeneity--variation among individuals in survival and reproduction--is ubiquitous in natural populations. Structured population models address heterogeneity due to age, size, or major developmental stages. However, other important sources of demographic heterogeneity, such as genetic variation, spatial heterogeneity in the environment, maternal effects, and differential exposure to stressors, are often not easily measured and hence are modeled as stochasticity. Recent research has elucidated the role of demographic heterogeneity in changing the magnitude of demographic stochasticity in small populations. Here we demonstrate a previously unrecognized effect: heterogeneous survival in long-lived species can increase the long-term growth rate in populations of any size. We illustrate this result using simple models in which each individual's annual survival rate is independent of age but survival may differ among individuals within a cohort. Similar models, but with nonoverlapping generations, have been extensively studied by demographers, who showed that, because the more "frail" individuals are more likely to die at a young age, the average survival rate of the cohort increases with age. Within ecology and evolution, this phenomenon of "cohort selection" is increasingly appreciated as a confounding factor in studies of senescence. We show that, when placed in a population model with overlapping generations, this heterogeneity also causes the asymptotic population growth rate lambda to increase, relative to a homogeneous population with the same mean survival rate at birth. The increase occurs because, even integrating over all the cohorts in the population, the population becomes increasingly dominated by the more robust individuals. The growth rate increases monotonically with the variance in survival rates, and the effect can be substantial, easily doubling the growth rate of slow-growing populations. Correlations between parent and offspring phenotype change the magnitude of the increase in lambda, but the increase occurs even for negative parent-offspring correlations. The effect of heterogeneity in reproductive rate on lambda is quite different: growth rate increases with reproductive heterogeneity for positive parent-offspring correlation but decreases for negative parent-offspring correlation. These effects of demographic heterogeneity on lambda have important implications for population dynamics, population viability analysis, and evolution.  相似文献   

4.
Abstract:  Human-induced habitat fragmentation constitutes a major threat to biodiversity. Both genetic and demographic factors combine to drive small and isolated populations into extinction vortices. Nevertheless, the deleterious effects of inbreeding and drift load may depend on population structure, migration patterns, and mating systems and are difficult to predict in the absence of crossing experiments. We performed stochastic individual-based simulations aimed at predicting the effects of deleterious mutations on population fitness (offspring viability and median time to extinction) under a variety of settings (landscape configurations, migration models, and mating systems) on the basis of easy-to-collect demographic and genetic information. Pooling all simulations, a large part (70%) of variance in offspring viability was explained by a combination of genetic structure ( FST ) and within-deme heterozygosity ( HS ). A similar part of variance in median time to extinction was explained by a combination of local population size ( N ) and heterozygosity ( HS ). In both cases the predictive power increased above 80% when information on mating systems was available. These results provide robust predictive models to evaluate the viability prospects of fragmented populations.  相似文献   

5.
Restoring connectivity between fragmented populations is an important tool for alleviating genetic threats to endangered species. Yet recovery plans typically lack quantitative criteria for ensuring such population connectivity. We demonstrate how models that integrate habitat, genetic, and demographic data can be used to develop connectivity criteria for the endangered Mexican wolf (Canis lupus baileyi), which is currently being restored to the wild from a captive population descended from 7 founders. We used population viability analysis that incorporated pedigree data to evaluate the relation between connectivity and persistence for a restored Mexican wolf metapopulation of 3 populations of equal size. Decreasing dispersal rates greatly increased extinction risk for small populations (<150–200), especially as dispersal rates dropped below 0.5 genetically effective migrants per generation. We compared observed migration rates in the Northern Rocky Mountains (NRM) wolf metapopulation to 2 habitat‐based effective distance metrics, least‐cost and resistance distance. We then used effective distance between potential primary core populations in a restored Mexican wolf metapopulation to evaluate potential dispersal rates. Although potential connectivity was lower in the Mexican wolf versus the NRM wolf metapopulation, a connectivity rate of >0.5 genetically effective migrants per generation may be achievable via natural dispersal under current landscape conditions. When sufficient data are available, these methods allow planners to move beyond general aspirational connectivity goals or rules of thumb to develop objective and measurable connectivity criteria that more effectively support species recovery. The shift from simple connectivity rules of thumb to species‐specific analyses parallels the previous shift from general minimum‐viable‐population thresholds to detailed viability modeling in endangered species recovery planning. Desarrollo de Criterios de Conectividad Metapoblacional a Partir de Datos Genéticos y de Hábitat para Recuperar al Lobo Mexicano en Peligro de Extinción  相似文献   

6.
Preserving allelic diversity is important because it provides the capacity for adaptation and thus enables long‐term population viability. Allele retention is difficult to predict in animals with overlapping generations, so we used a new computer model to simulate retention of rare alleles in small populations of 3 species with contrasting life‐history traits: North Island Brown Kiwi (Apteryx mantelli; monogamous, long‐lived), North Island Robins (Petroica longipes; monogamous, short‐lived), and red deer (Cervus elaphus; polygynous, moderate lifespan). We simulated closed populations under various demographic scenarios and assessed the amounts of artificial immigration needed to achieve a goal of retaining 90% of selectively neutral rare alleles (frequency in the source population = 0.05) after 10 generations. The number of immigrants per generation required to meet the genetic goal ranged from 11 to 30, and there were key similarities and differences among species. None of the species met the genetic goal without immigration, and red deer lost the most allelic diversity due to reproductive skew among polygynous males. However, red deer required only a moderate rate of immigration relative to the other species to meet the genetic goal because nonterritorial breeders had a high turnover. Conversely, North Island Brown Kiwi needed the most immigration because the long lifespan of locally produced territorial breeders prevented a large proportion of immigrants from recruiting. In all species, the amount of immigration needed generally decreased with an increase in carrying capacity, survival, or reproductive output and increased as individual variation in reproductive success increased, indicating the importance of accurately quantifying these parameters to predict the effects of management. Overall, retaining rare alleles in a small, isolated population requires substantial investment of management effort. Use of simulations to explore strategies optimized for the populations in question will help maximize the value of this effort. Simulación de la Retención de Alelos Raros en Poblaciones Pequeñas para Evaluar Opciones de Manejo para Especies con Historias de Vida Diferentes  相似文献   

7.
Simonis JL 《Ecology》2012,93(7):1517-1524
Dispersal may affect predator-prey metapopulations by rescuing local sink populations from extinction or by synchronizing population dynamics across the metapopulation, increasing the risk of regional extinction. Dispersal is likely influenced by demographic stochasticity, however, particularly because dispersal rates are often very low in metapopulations. Yet the effects of demographic stochasticity on predator-prey metapopulations are not well known. To that end, I constructed three models of a two-patch predator-prey system. The models constitute a hierarchy of complexity, allowing direct comparisons. Two models included demographic stochasticity (pure jump process [PJP] and stochastic differential equations [SDE]), and the third was deterministic (ordinary differential equations [ODE]). One stochastic model (PJP) treated population sizes as discrete, while the other (SDE) allowed population sizes to change continuously. Both stochastic models only produced synchronized predator-prey dynamics when dispersal was high for both trophic levels. Frequent dispersal by only predators or prey in the PJP and SDE spatially decoupled the trophic interaction, reducing synchrony of the non-dispersive species. Conversely, the ODE generated synchronized predator-prey dynamics across all dispersal rates, except when initial conditions produced anti-phase transients. These results indicate that demographic stochasticity strongly reduces the synchronizing effect of dispersal, which is ironic because demographic stochasticity is often invoked post hoc as a driver of extinctions in synchronized metapopulations.  相似文献   

8.
We devised a novel approach to model reintroduced populations whereby demographic data collected from multiple sites are integrated into a Bayesian hierarchical model. Integrating data from multiple reintroductions allows more precise population-growth projections to be made, especially for populations for which data are sparse, and allows projections that account for random site-to-site variation to be made before new reintroductions are attempted. We used data from reintroductions of the North Island Robin (Petroica longipes), an endemic New Zealand passerine, to 10 sites where non-native mammalian predators are controlled. A comparison of candidate models that we based on deviance information criterion showed that rat-tracking rate (an index of rat density) was a useful predictor of robin fecundity and adult female survival, that landscape connectivity and a binary measure of whether sites were on a peninsula were useful predictors of apparent juvenile survival (probably due to differential dispersal away from reintroduction sites), and that there was unexplained random variation among sites in all demographic rates. We used the two best supported models to estimate the finite rate of increase (λ) for populations at each of the 10 sites, and for a proposed reintroduction site, under different levels of rat control. Only three of the reintroduction sites had λ distributions completely >1 for either model. At two sites, λ was expected to be >1 if rat-tracking rates were <5%. At the other five reintroduction sites, λ was predicted to be close to 1, and it was unclear whether growth was expected. Predictions of λ for the proposed reintroduction site were less precise than for other sites because distributions incorporated the full range of site-to-site random variation in vital rates. Our methods can be applied to any species for which postrelease data on demographic rates are available and potentially can be extended to model multiple species simultaneously.  相似文献   

9.
For species at risk of decline or extinction in source–sink systems, sources are an obvious target for habitat protection actions. However, the way in which source habitats are identified and prioritized can reduce the effectiveness of conservation actions. Although sources and sinks are conceptually defined using both demographic and movement criteria, simplifications are often required in systems with limited data. To assess the conservation outcomes of alternative source metrics and resulting prioritizations, we simulated population dynamics and extinction risk for 3 endangered species. Using empirically based habitat population models, we linked habitat maps with measured site‐ or habitat‐specific demographic conditions, movement abilities, and behaviors. We calculated source–sink metrics over a range of periods of data collection and prioritized consistently high‐output sources for conservation. We then tested whether prioritized patches identified the habitats that most affected persistence by removing them and measuring the population response. Conservation decisions based on different source–sink metrics and durations of data collection affected species persistence. Shorter time series obscured the ability of metrics to identify influential habitats, particularly in temporally variable and slowly declining populations. Data‐rich source–sink metrics that included both demography and movement information did not always identify the habitats with the greatest influence on extinction risk. In some declining populations, patch abundance better predicted influential habitats for short‐term regional persistence. Because source–sink metrics (i.e., births minus deaths; births and immigrations minus deaths and emigration) describe net population conditions and cancel out gross population counts, they may not adequately identify influential habitats in declining populations. For many nonequilibrium populations, new metrics that maintain the counts of individual births, deaths, and movement may provide additional insight into habitats that most influence persistence.  相似文献   

10.
Effective population size (N(e)) determines the strength of genetic drift and can influence the level of genetic diversity a population can maintain. Assessing how changes in demographic rates associated with environmental variables and management actions affect N(e) thus can be crucial to the conservation of endangered species. Calculation of N(e) through demographic models makes it possible to use elasticity analyses to study this issue. The elasticity of N(e) to a given vital rate is the proportional change in N(e) associated with a proportional increase in that vital rate. In addition, demographic models can be used to study N(e) and population growth rate (λ) simultaneously. Simultaneous examination is important because some vital rates differ diametrically in their associations with λ and N(e). For example, in some cases increasing these vital rates increases λ and decreases N(e). We used elasticity analysis to study the effect of stage-specific survival and flowering rates on N(e), annual effective population size (N(a)), and λ in seven populations of the endangered plant Austrian dragonhead (Dracocephalum austriacum). In populations with λ ≥ 1, the elasticities of N(e) and N(a) were similar to those of λ. Survival rates of adults were associated with greater elasticities than survival rates of juveniles, flowering rates, or fecundity. In populations with λ < 1, N(e) and N(a) exhibited greater elasticities to juvenile than to adult vital rates. These patterns are similar to those observed in other species with similar life histories. We did not observe contrasting effects of any vital rate on λ and N(e); thus, management actions that increase the λ of populations of Austrian dragonhead will not increase genetic drift. Our results show that elasticity analyses of N(e) and N(a) can complement elasticity analysis of λ. Moreover, such analyses do not require more data than standard matrix models of population dynamics.  相似文献   

11.
Because of continued habitat destruction and species extirpations, the need to use captive breeding for conservation purposes has been increasing steadily. However, the long-term demographic and genetic effects associated with releasing captive-born individuals with varied life histories into the wild remain largely unknown. To address this question, we developed forward-time, agent-based models for 4 species with long-running captive-breeding and release programs: coho salmon (Oncorhynchus kisutch), golden lion tamarin (Leontopithecus rosalia), western toad (Anaxyrus boreas), and Whooping Crane (Grus americana). We measured the effects of supplementation by comparing population size and neutral genetic diversity in supplemented populations to the same characteristics in unaltered populations 100 years after supplementation ended. Releasing even slightly less fit captive-born individuals to supplement wild populations typically resulted in reductions in population sizes and genetic diversity over the long term when the fitness reductions were heritable (i.e., due to genetic adaptation to captivity) and populations continued to be regulated by density-dependent mechanisms over time. Negative effects for species with longer life spans and lower rates of population replacement were smaller than for species with shorter life spans and higher rates of population replacement. Programs that released captive-born individuals over fewer years or that avoided breeding individuals with captive ancestry had smaller reductions in population size and genetic diversity over the long term. Relying on selection in the wild to remove individuals with reduced fitness mitigated some negative demographic effects, but at a substantial cost to neutral genetic diversity. Our results suggest that conservation-focused captive-breeding programs should take measures to prevent even small amounts of genetic adaptation to captivity, quantitatively determine the minimum number of captive-born individuals to release each year, and fully account for the interactions among genetic adaptation to captivity, population regulation, and life-history variation.  相似文献   

12.
Udevitz MS  Gogan PJ 《Ecology》2012,93(4):726-732
It has long been recognized that age-structure data contain useful information for assessing the status and dynamics of wildlife populations. For example, age-specific survival rates can be estimated with just a single sample from the age distribution of a stable, stationary population. For a population that is not stable, age-specific survival rates can be estimated using techniques such as inverse methods that combine time series of age-structure data with other demographic data. However, estimation of survival rates using these methods typically requires numerical optimization, a relatively long time series of data, and smoothing or other constraints to provide useful estimates. We developed general models for possibly unstable populations that combine time series of age-structure data with other demographic data to provide explicit maximum likelihood estimators of age-specific survival rates with as few as two years of data. As an example, we applied these methods to estimate survival rates for female bison (Bison bison) in Yellowstone National Park, USA. This approach provides a simple tool for monitoring survival rates based on age-structure data.  相似文献   

13.
Monitoring temporal changes in genetic variation has been suggested as a means of determining if a population has experienced a demographic bottleneck. Simulations have shown that the variance in allele frequencies over time ( F ) can provide reasonable estimates of effective population size ( Ne ). This relationship between F and Ne suggests that changes in allele frequencies may provide a way to determine the severity of recent demographic bottlenecks experienced by a population. We examined allozyme variation in experimental populations of the eastern mosquitofish ( Gambusia holbrooki ) to evaluate the relationship between the severity of demographic bottlenecks and temporal variation in allele frequencies. Estimates of F from both the fish populations and computer simulations were compared to expected rates of drift. We found that different methods for estimating F had little effect on the analysis. The variance in estimates of F was large among both experimental and simulated populations experiencing similar demographic bottlenecks. Temporal changes in allele frequencies suggested that the experimental populations had experienced bottlenecks, but there was no relationship between observed and expected values of F . Furthermore, genetic drift was likely to be underestimated in populations experiencing the most severe bottlenecks. The weak relationship between F and bottleneck severity is probably due to both sampling error associated with the number of polymorphic loci examined and the loss of alleles during the bottlenecks. For populations that may have experienced severe bottlenecks, caution should be used in making evolutionary interpretations or management recommendations based on temporal changes in allele frequencies.  相似文献   

14.
Linares C  Doak DF  Coma R  Díaz D  Zabala M 《Ecology》2007,88(4):918-928
The red gorgonian Paramuricea clavata is a long-lived, slow-growing sessile invertebrate of ecological and conservation importance in the northwestern Mediterranean Sea. We develop a series of size-based matrix models for two Paramuricea clavata populations. These models were used to estimate basic life history traits for this species and to evaluate the viability of the red gorgonian populations we studied. As for many other slow-growing species, sensitivity and elasticity analysis demonstrate that gorgonian population growth is far more sensitive to changes in survival rates than to growth, shrinkage, or reproductive rates. The slow growth and low mortality of red gorgonians results in low damping ratios, indicating slow convergence to stable size structures (at least 50 years). The stable distributions predicted by the model did not differ from the observed ones. However, our simulations point out the fragility of this species, showing both populations in decline and high risk of extinction over moderate time horizons. These declines appear to be related to a recent increase in anthropogenic disturbances. Relative to their life span, the values of recruitment elasticity for Paramuricea clavata are lower than those reported for other marine organisms but are similar to those reported for some long-lived plants. These values and the delayed age of sexual maturity, in combination with the longevity of the species, show a clear fecundity/mortality trade-off. Full demographic studies of sessile marine species are quite scarce but can provide insight into population dynamics and life history patterns for these difficult and under-studied species. While our work shows clear results for the red gorgonian, the variability in some of our estimates suggest that future work should include data collection over longer temporal and spatial scales to better understand the long-term effects of natural and anthropogenic disturbances on red gorgonian populations.  相似文献   

15.
Angert AL 《Ecology》2006,87(8):2014-2025
Every species occupies a limited geographic area, but how spatiotemporal environmental variation affects individual and population fitness to create range limits is not well understood. Because range boundaries arise where, on average, populations are more likely to go extinct than to persist, range limits are an inherently population-level problem for which a demographic framework is useful. In this study, I compare demographic parameters and population dynamics between central and marginal populations of monkeyflowers, Mimulus cardinalis and M. lewisii, along an elevation gradient spanning both species' ranges. Central and marginal populations of both species differed in survival and fecundity. For M. lewisii, these components of fitness were higher in central than in marginal populations, but for M. cardinalis the converse was true. To assess spatiotemporal variation in population dynamics, I used transition matrix models to estimate asymptotic population growth rates (lambda) and found that population growth rates of M. lewisii were highest at the range center and reduced at the range margin. Population growth rates of M. cardinalis were highest at the range margin and greatly reduced at the range center. Life table response analysis decomposed spatiotemporal variation in lambda into contributions from each transition between life stages, finding that transitions from large nonreproductive and reproductive plants to the seed class and stasis in the reproductive class made the largest contributions to spatial differences in lambda. These transitions had only low to moderate sensitivities, indicating that differences in projected population growth rates resulted mainly from observed differences in transition matrix parameters and their underlying vital rates.  相似文献   

16.
Carnivores are widely hunted for both sport and population control, especially where they conflict with human interests. It is widely believed that sport hunting is effective in reducing carnivore populations and related human-carnivore conflicts, while maintaining viable populations. However, the way in which carnivore populations respond to harvest can vary greatly depending on their social structure, reproductive strategies, and dispersal patterns. For example, hunted cougar (Puma concolor) populations have shown a great degree of resiliency. Although hunting cougars on a broad geographic scale (> 2000 km2) has reduced densities, hunting of smaller areas (i.e., game management units, < 1000 km2), could conceivably fail because of increased immigration from adjacent source areas. We monitored a heavily hunted population from 2001 to 2006 to test for the effects of hunting at a small scale (< 1000 km2) and to gauge whether population control was achieved (lambda < or = 1.0) or if hunting losses were negated by increased immigration allowing the population to remain stable or increase (lambda > or = 1.0). The observed growth rate of 1.00 was significantly higher than our predicted survival/fecundity growth rates (using a Leslie matrix) of 0.89 (deterministic) and 0.84 (stochastic), with the difference representing an 11-16% annual immigration rate. We observed no decline in density of the total population or the adult population, but a significant decrease in the average age of independent males. We found that the male component of the population was increasing (observed male population growth rate, lambda(OM) = 1.09), masking a decrease in the female component (lambda(OF) = 0.91). Our data support the compensatory immigration sink hypothesis; cougar removal in small game management areas (< 1000 km2) increased immigration and recruitment of younger animals from adjacent areas, resulting in little or no reduction in local cougar densities and a shift in population structure toward younger animals. Hunting in high-quality habitats may create an attractive sink, leading to misinterpretation of population trends and masking population declines in the sink and surrounding source areas.  相似文献   

17.
Cronin JT 《Ecology》2007,88(12):2966-2976
Field experiments that examine the impact of immigration, emigration, or landscape structure (e.g., the composition of the matrix) on the source sink dynamics of fragmented populations are scarce. Here, planthoppers (Prokelisia crocea) and egg parasitoids (Anagrus columbi) were released among host-plant patches that varied in structural (caged, isolated, or in a network of other patches) and functional (mudflat matrix that impedes dispersal vs. brome-grass matrix that facilitates dispersal) connectivity. Planthoppers and parasitoids on caged patches exhibited density-dependent growth rates, achieved high equilibrium densities, and rarely went extinct. Therefore, experimental cordgrass patches were classified as population sources. Because access to immigrants did not result in elevated population densities, source populations were not also pseudosinks, i.e., patches whose densities occur above carrying capacity due to high immigration. Planthoppers and parasitoids in open patches in mudflat had dynamics similar to those in caged patches, but went extinct in 4-5 generations in open patches in brome. Brome-embedded patches leaked emigrants at a rate that exceeded the gains from reproduction and immigration; populations of this sort are known as population sieves. For species whose suitable patches are becoming smaller and more isolated as a result of increased habitat fragmentation, emigration losses are likely to become paramount, a condition favoring the formation of population sieves. An increase in the proportion of patches that are sieves is predicted to destabilize regional population dynamics.  相似文献   

18.
Phylogenetically informed imputation methods have rarely been applied to estimate missing values in demographic data but may be a powerful tool for reconstructing vital rates of survival, maturation, and fecundity for species of conservation concern. Imputed vital rates could be used to parameterize demographic models to explore how populations respond when vital rates are perturbed. We used standardized vital rate estimates for 50 bird species to assess the use of phylogenetic imputation to fill gaps in demographic data. We calculated imputation accuracy for vital rates of focal species excluded from the data set either singly or in combination and with and without phylogeny, body mass, and life-history trait data. We used imputed vital rates to calculate demographic metrics, including generation time, to validate the use of imputation in demographic analyses. Covariance among vital rates and other trait data provided a strong basis to guide imputation of missing vital rates in birds, even in the absence of phylogenetic information. Mean NRMSE for null and phylogenetic models differed by <0.01 except when no vital rates were available or for vital rates with high phylogenetic signal (Pagel's λ > 0.8). In these cases, including body mass and life-history trait data compensated for lack of phylogenetic information: mean normalized root mean square error (NRMSE) for null and phylogenetic models differed by <0.01 for adult survival and <0.04 for maturation rate. Estimates of demographic metrics were sensitive to the accuracy of imputed vital rates. For example, mean error in generation time doubled in response to inaccurate estimates of maturation time. Accurate demographic data and metrics, such as generation time, are needed to inform conservation planning processes, for example through International Union for Conservation of Nature Red List assessments and population viability analysis. Imputed vital rates could be useful in this context but, as for any estimated model parameters, awareness of the sensitivities of demographic model outputs to the imputed vital rates is essential.  相似文献   

19.
Erosion of Heterozygosity in Fluctuating Populations   总被引:1,自引:0,他引:1  
Abstract: Demographic, environmental, and genetic stochasticity threaten the persistence of isolated populations. The relative importance of these intertwining factors remains unresolved, but a common view is that random demographic and environmental events will usually drive small populations to the brink of extinction before genetic deterioration poses a serious threat. To evaluate the potential importance of genetic factors, we analyzed a model linking demographic and environmental conditions to the loss of genetic diversity in isolated populations undergoing natural levels of fluctuation. Nongenetic processes—environmental stochasticity and population demography—were modeled according to a bounded diffusion process. Genetic processes were modeled by quantifying the rate of drift according to the effective population size, which was predicted from the same parameters used to describe the nongenetic processes. We combined these models to predict the heterozygosity remaining at the time of extinction, as predicted by the nongenetic portion of the model. Our model predicts that many populations will lose most or all of their neutral genetic diversity before nongenetic random events lead to extinction. Given the abundant evidence for inbreeding depression and recent evidence for elevated extinction rates of inbred populations, our findings suggest that inbreeding may be a greater general threat to population persistence than is generally recognized. Therefore, conservation biologists should not ignore the genetic component of extinction risk when assessing species endangerment and developing recovery plans.  相似文献   

20.
Estimates of Lethal Equivalents and the Cost of Inbreeding in Mammals   总被引:16,自引:1,他引:16  
Abstract: The costs of inbreeding in natural populations of mammals are unknown despite their theoretical importance in genetic and sociobiological models and practical applications in conservation biology. A major cost of inbreeding is the reduced survival of inbred young. We estimate this cost from the regression of juvenile survival on the inbreeding coefficient using pedigrees of 40 captive mammalian populations belonging to 38 species.
The number of lethal equivalents ranged from –1.4 to 30.3, with a mean of 4.6 and a median of 3.1. There was no significant difference between populations founded with wild-caught individuals, a mixture of wild-caught and captive-born individuals, and individuals of unknown origin. The average cost of a parent-offspring or full sibling mating was 0.33, that is, mortality was 33% higher in offspring of such matings than in offspring of unrelated parents. This is likely to be an underestimate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号