首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
真菌降解有机磷农药乐果的研究   总被引:26,自引:0,他引:26  
利用选择性培养基从农药厂的废水流经地中分离到一株能高效降解乐果的丝状真菌,它能以乐果为唯一碳源和能源而生长,在pHJ7.0,30℃时液体发酵120h后,离心收集菌体处理乐果,有机磷农药降解转化为无机磷的效率达87%,除金属铜离子对菌株的降解率有促进作用外,金属络合剂和其它金属离子对菌株的降解率有不同程度的抑制作用。  相似文献   

2.
有机磷农药乐果降解的研究现状与进展   总被引:2,自引:0,他引:2  
有机磷农药一方面能有效防治农林病虫害,造福于人类,另一方面也给人类赖于生存的环境带来危害。有机磷农药在环境中的降解性能,是评价有机磷农药对环境危害影响的重要指标,有机磷农药在环境中的残留时间越长,对环境的污染及其对各种环境生物,甚至对人类的危害也越大。有机磷农药在环境中的降解,包括微生物降解、光化学降解、化学氧化降解和超声波降解。不同的降解方式,由于影响因素和相关机理的不同,各种降解特性存在着一定的差异。  相似文献   

3.
曲霉L8对有机磷农药乐果的降解作用   总被引:16,自引:0,他引:16  
从广州农药厂的活性污泥中分离到一株迄今未见报道的以乐果为唯一碳源和能源的霉菌,该菌在乐果无机盐培养基中生长良好,96h降解率达58%。经鉴定,该菌株为曲霉菌,并对其他有机磷农药也有较好的降解作用。  相似文献   

4.
超声波降解苯胺溶液的实验研究   总被引:35,自引:5,他引:35       下载免费PDF全文
以苯胺溶液为研究对象,考察了超声时间、苯胺溶液浓度、pH值、氧化剂H2O2的浓度等因素对其超声降解率的影响。实验结果表明:超声时间越长,苯胺降解率越大;苯胺初始浓度与其降解率基本成线性关系;随着pH值的增大,降解率先增大后减少,在pH=7.3附近降解率最高;对于32.23mg/L的苯胺溶液,H2O2的浓度由0增加到1.6mg/mL,降解率从6.02%增加到93%,再增大H2O2的浓度,对其降解率影响不大。  相似文献   

5.
为了获得有效降解有机磷农药乐果的微生物,采用北京大兴黄村施用过乐果的土壤为菌源,以乐果作为唯一碳源和能源采用一次性大剂量冲击驯化和逐渐加量的驯化方式分离得到7株对乐果有一定降解能力的微生物。微生物降解乐果实验结果显示:不同的驯化方式对微生物的降解能力有明显的影响,大剂量冲击驯化获得的微生物对乐果的降解能力优于逐渐加量驯化获得的微生物。  相似文献   

6.
一株降解乐果的高效菌的分离和鉴定   总被引:4,自引:0,他引:4  
从乐果合成废水生化处理的活性污分离出27株具有不同程度的降解乐果能力的好氧菌株。经降解功能测定试验,获得一株降解能力高的菌株(编号8724),24小时内,对乐果降解率达57%-58%。其主要特征为:细胞杆状,革兰氏阴性,直径0.7-1.2×1.4-4。2μm,具一根极生鞭毛,能运动,胞内有聚-β-羟基丁酸颗粒,葡萄糖的0/F测定产碱,氧化酶,接触酶均为阳性,甜菜碱不利用,明胶不液化,硝酸盐还原阳性  相似文献   

7.
超临界水氧化法降解氧乐果的研究   总被引:36,自引:0,他引:36       下载免费PDF全文
实验研究了有机磷农药氧乐果在超临界水中的氧化降解.结果表明,超临界水氧化技术能有效地降解氧乐果废水.随着反应温度的升高、压力的增大、停留时间的延长,COD去除率也随之提高氧乐果在超临界水中氧化降解的动力学方程为:-d[COD]/dτ=1.60exp(-2.25×104/RT)[COD]0.90[O20-0.38[H2O00.053.  相似文献   

8.
近年来农药厂搬迁后残留厂区土壤及水体中有机磷农药污染已经成为广泛关注的环境问题,有机磷农药在水体中的毒性持久性、中间产物高毒性等对环境生态和人体健康造成危害。该文采用实验室臭氧高级氧化技术降解水中乐果,由于臭氧在水中与部分有机物等形成多种自由基,该方法降解效率高、无二次污染风险,是绿色高效的降解方式。结果表明,臭氧通入纯水中,可以产生各种自由基等活性氧,通气20 min内可以降解水中近89.72%的乐果,但是过长时间的通气,臭氧降解并不能达到更高的降解率。在乐果污染程度越低的水体中,短时间的臭氧处理即可达到较高的降解效率。根据试验结果推测,臭氧产生的活性氧等对水中乐果的降解过程主要分为4种,包括P=S键的断裂、P-S键的断裂、S-C键的断裂和C-N键的断裂,形成相应的中间产物,再进一步氧化成相应的氧化物,C原子彻底氧化成CO2。可以将活性氧用于进一步降解土壤地下水中有机磷农药的降解和污染治理。  相似文献   

9.
环境微生物降解有机磷农药研究进展   总被引:33,自引:0,他引:33  
微生物降解是有机磷农药在环境中去毒降解的主要方式,该文从环境微生物筛选、降解基因的识别、降解酶的种类及其特性、微生物降解底物特异性及微生物降解效果的评价等5个方面,综述了近年来有机磷农药微生物降解方面的研究进展,展望了微生物降解有机磷农药的研究方向。  相似文献   

10.
光催化降解有机磷农药的研究   总被引:37,自引:3,他引:37  
研究以TiO2粉末作为光催化剂,光降解3种不同结构的有机磷农药的可行性。结果表明,有机磷农药结构不同其光降解率不同;浓度1.0×10-4mol/L的4种有机磷农药,375W中压汞灯照射40min有机磷将完全转变为无机磷,并检测出人效磷农药催化降解的部分中间产物。研究光催化剂TiO2的用量、空气流量、外加Fe3+浓度对光催化降解的影响,并初步探讨了机理。  相似文献   

11.
超声技术降解对氯苯酚的研究   总被引:6,自引:0,他引:6  
研究了超声降解对氯苯酚(4-cp)溶液的规律和超声波对其降解效果的影响因素。实验结果说明溶液的初始浓度、辐射时间、作用频率和作用功率、pH值等因素对对氯苯酚降解效果有明显影响。实验的最佳方案是:溶液的初始浓度为50.30mg/L、超声辐射时间为360min、作用频率为59kHz和作用功率为90W。  相似文献   

12.
超声波降解有机污染物的研究与发展   总被引:5,自引:3,他引:5  
超声波降解有机污染物是一种高效、清洁的新型水处理技术。介绍了声解机理、降解效果及影响因素,分析了研究中存在的问题,并探讨了该项技术今后的发展方向。  相似文献   

13.
利用超声波破碎活性污泥中的细胞壁,使细胞的胞液渗出,达到污泥干化的目的。通过研究利用超声波处理剩余活性污泥的原理,不同条件因素对处理效果的影响,以及处理后活性污泥性质的改变情况。将来,随着科学技术的发展和对超声波技术研究的深入,利用超声波处理活性污泥的方法将日趋成熟。超声波作为一种清洁的手段一定会广泛应用于废水的处理工程中,为经济的持续发展和资源环境的保护服务。  相似文献   

14.
氧化剂在超声波法降解有机废水中的应用研究   总被引:1,自引:0,他引:1  
超声波法是近年来逐步发展起来的一项水处理技术,它操作简单方便,无二次污染,但是单纯超声处理废水的降解效率并不十分理想,且能量消耗较大,在超声处理过程中加入适当的氧化剂,则可以大大提高超声降解的效果,并且降低能耗。文章分别研究了双氧水、Fenton试剂等氧化剂在超声波处理中的应用及其作用机理,对其发展进行了展望。  相似文献   

15.
建立了超声波萃取、Florisil柱净化,SPB-5毛细管柱分离,ECD检测器测定土壤和底质中25种有机氯农药的方法.该方法的检出限为0.079 μg/kg ~1.2 μg/kg,加标回收率为73.1% ~ 126.5%,相对标准偏差为3.3% ~9.7%.实验结果证明,该方法灵敏度高、精密度高,操作快速简便,满足土壤和底质中有机氯农药的测定要求.  相似文献   

16.
CeO2掺杂TiO2催化超声降解活性大红的研究   总被引:1,自引:0,他引:1  
选取活性大红染料为降解目标物,研究了用实验室合成的氧化铈掺杂二氧化钛为催化剂存在下的超声反应。研究结果表明,CeO2掺杂TiO2催化超声降解酸性大红的效果优于非掺杂的锐钛矿型TiO2的情况。在溶液pH1.0~3.0、活性大红质量浓度为20 mg/L、溶液用量50 mL、催化剂用量0.5 g/L~1.0 g/L的条件下,用输出功率5.0 W/cm^2和频率25 kHz的超声波照射80 min,活性大红降解率可达98.4%.  相似文献   

17.
苯胺废水的超声波降解试验研究   总被引:12,自引:2,他引:12  
采用多种频率和强度超声波对苯胺废水进行处理的实验表明 :其强度是影响处理效果的重要因素 ,再将超声与紫外、氧气联合进行动态处理 ,结果显示其降解效率大为提高 ,为此类废水实现工业化处理提供了高效、经济、无二次污染的方法  相似文献   

18.
超声波法提取土壤样品中1,2,4—三氯苯和GC测定   总被引:2,自引:0,他引:2  
本方法采用超声波振荡提取,用10%的丙酮正乙烷混合溶液作为提取剂,对易挥发的1,2,4-三氯苯的分析具有简单,快速,灵敏,可靠,节省试剂的特点,也适用于土壤环境样品氯苯类化合物的测定。  相似文献   

19.
超声波辅助萃取是近年来在样品预处理中受到广泛关注的新技术,与其它萃取方法如索氏萃取、微波辅助萃取和超临界流体萃取比较,它在很多方面都显示出极大的优越性,但其应用目前还较少。文章介绍了超声波辅助萃取技术的原理、特点、应用及其进展,并展望了超声波技术在环境保护领域的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号