首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
目的 研究铝合金大气腐蚀受自然环境因素的影响性,探索环境因素对铝合金腐蚀的影响规律。方法 采用多层感知器神经网络分析环境因素对7种铝合金平均腐蚀速率的影响。结果 确定了影响铝合金腐蚀损伤的重要因素为SO2沉积率、Cl沉积率、NOx沉积率;辅要因素为年降雨量、年雾露时数、相对湿度、年日照时数、温度、铝合金成分;次要因素为年累积降水时数、雨水pH值。结论 基于多层感知器神经网络分析有效展现了环境因素对平均腐蚀速率的影响性。  相似文献   

2.
介绍了海洋腐蚀环境的特点,分析了钢结构焊接接头的腐蚀特性。在此基础上,总结了国内外学者关于焊接接头在海洋环境下的腐蚀机制和影响因素等研究成果,明确了焊接接头以电偶腐蚀、应力腐蚀和腐蚀疲劳为主导的电化学腐蚀行为。针对钢结构焊接接头的海洋腐蚀防护要求,总结了当前主要的腐蚀防护方案,如添加合金元素、焊接工艺优化、热处理、表面强化和防腐涂层等。最后,综合当前钢结构焊接接头海洋腐蚀与防护研究现状,提出了在海洋实际工况验证和防护手段不足等方面的问题。  相似文献   

3.
目的 对某产品服役环境中的主要腐蚀环境因素进行监测,并挖掘环境数据应用模式,为该产品服役环境的腐蚀条件分析提供数据支撑。方法 根据某产品寿命期环境剖面,对库房、舱室及户外环境中温度、相对湿度、盐雾等主要环境因素进行为期3 a的监测,并从多个方面探讨这3种环境因素的应用模式。结果 针对某产品开展了主要环境因素监测,得到了其在关键服役场所的腐蚀环境数据,监测数据成功应用于该型产品服役环境严酷度分析、实验室环境试验条件设计、维修保障措施拟定等方面。结论 开展某产品关键服役环境下的腐蚀环境因素监测,可支撑该型产品的“环境符合性评估”“大气腐蚀性严酷度评估”“环境控制要求制定”以及“环境试验方法研究”。得到的环境监测数据以及应用案例可供其他类似产品服役环境监测及数据应用提供参考。  相似文献   

4.
目的 研究不锈钢在西太平洋海域深海环境中的腐蚀规律。方法 采用深海高效串型试验装置对304不锈钢和316L不锈钢在西太平洋深海环境中进行深海实海腐蚀试验,分析不锈钢的腐蚀形貌、腐蚀速率和点蚀深度规律等,研究2种不锈钢在500、800、1 200、2 000 m海深下的腐蚀规律。结果 304不锈钢与316L不锈钢腐蚀质量损失主要由缝隙腐蚀引起,316L不锈钢的腐蚀程度总体上低于304不锈钢,304不锈钢的腐蚀速率低于0.4 mm/a,316L不锈钢的腐蚀速率低于0.25 μm/a。深海环境中,304不锈钢的腐蚀产物主要是α-Fe2O3、γ-FeOOH、γ-Fe2O3,316L不锈钢的腐蚀产物主要是α-FeOOH、γ-FeOOH、γ-Fe2O3。结论304不锈钢和316L不锈钢在西太深海环境中使用过程中应避免缝隙的形成,降低其发生缝隙腐蚀和点蚀的概率。  相似文献   

5.
目的 研究不同pH值的人工海水环境中电偶腐蚀对金属的影响。方法 利用自行设计的可拆卸电极,采用浸泡法和电化学方法,结合宏观和微观腐蚀形貌,对Q345钢在不同pH人工海水中的电偶腐蚀行为进行分析。结果 在浸泡初期,不同pH值海水环境中电连接电极间的电位差相差较小,不易发生电偶腐蚀;浸泡至14 d,电极间的电位差相差较大,这表明不同电连接电极之间发生明显的电偶腐蚀。与自腐蚀相比,pH为7.50和8.40的电偶腐蚀的腐蚀电位较大,腐蚀电流密度较小,腐蚀产物膜电阻Rp较大,说明在pH值为7.50和8.40时,电连接电极间的腐蚀以自腐蚀为主。在pH值为7.80和8.70时,电连接电极间发生明显的电偶腐蚀。自腐蚀电极表面的腐蚀产物较少,锈层结构疏松。电偶腐蚀中,在pH为7.50和8.40的电极表面的腐蚀产物较少,锈层结构致密;pH为7.80和8.70的电极表面的腐蚀产物较多,锈层结构比较疏松。结论 通过研究2种腐蚀行为的差异,分析pH值的不同对电偶腐蚀的影响,为海洋环境金属材料的腐蚀防护提供数据支持。  相似文献   

6.
目的 研究阳极化处理对SP700钛合金与2A12铝合金电偶对的腐蚀行为和机理的影响。方法 采用电化学极化曲线测试法对阳极氧化处理前后的SP700钛合金的耐蚀性能进行初步研究,并以此作为边界条件,采用有限元数值模拟的方法,对不同状态的SP700钛合金与2A12铝合金组成的偶对电偶腐蚀情况进行模拟计算。同时,开展电偶对的电偶腐蚀试验,对模拟结果进行验证。此外,通过对电偶腐蚀后的试件表面微观形貌进行表征,进一步分析不同电偶对的腐蚀规律差异。结果 SP700钛合金阳极氧化前的自腐蚀电位为‒283 mV,腐蚀电流密度为6.164×10‒9 A/cm2;氧化后的自腐蚀电位为‒270 mV,腐蚀电流密度为8.589×10‒10 A/cm2。SP700钛合金阳极氧化前与2A12铝合金的试验和仿真平均电偶电流密度分别为6.81、6.76 μA/cm2;SP700钛合金阳极氧化后与2A12铝合金的试验和仿真平均电偶电流密度分别为2.58、2.54 μA/cm2。结论 SP700钛合金表面阳极化处理可有效降低与铝合金之间电偶腐蚀的敏感性。  相似文献   

7.
目的 评价新型航空清洗剂对航空铝合金防盐雾性能的影响。方法 对航空铝合金7075在施加清洗剂清洗后开展中性盐雾试验,通过扫描电子显微镜、能谱分析仪、高分辨率拉曼光谱等研究手段,对铝合金的表面形貌、组织成分及关键化学组分的变化情况进行对比分析,综合评价该清洗剂对铝合金的性能影响。结果 经过新型航空清洗剂清洗和6 h中性盐雾试验后,清洗剂仍在铝合金表面残留有保护膜,且清洗后的铝合金表面经盐雾实验后依然光亮,有明显的二次相颗粒,无絮状物和氯化钠结晶体,其表面褐色腐蚀斑点也更小。结论 经清洗后,铝合金的盐雾腐蚀程度明显更轻,说明清洗剂中的缓蚀剂成分起到了保护作用,该清洗剂具有防盐沉降的作用,可提升航空铝合金的防盐雾腐蚀性能。  相似文献   

8.
目的 为满足高强钢装备的阴极保护要求,开展新型干湿交替环境牺牲阳极电化学性能测试,评价材料的阴极保护效果。方法 采用高温熔炼方法,制备Al-Zn-Sn-Ce低电位牺牲阳极试样,进行不同浸水率下(干湿态环境时间比为1:1、3:1和7:1)的干湿交替环境牺牲阳极电化学性能试验、电化学表征测试及腐蚀微观形貌表征,通过对比试验数据和材料形貌表征结果,综合分析铝合金牺牲阳极在干湿交替环境下的电化学性能,探究干湿交替环境因素对阳极溶解行为的影响。结果 Al-Zn-Sn-Ce牺牲阳极在多种试验环境下的工作电位为‒0.70~‒0.81 V(vs. SCE),符合高强钢阴极保护电位需求,阳极表面溶解形貌相对均匀,表面阴阳极电化学微区分布均匀。随着干湿态试验环境时间比的增加,阳极工作电位出现正移,干态环境下表面腐蚀产物的沉积和结壳导致阳极活化溶解能力下降,而干湿态环境时间比最大时,阳极自腐蚀反应得到一定的抑制,阳极电流效率均保持在75%以上。结论 随着干湿态试验环境时间比的增加,牺牲阳极在干湿交替试验环境中的工作电位出现正移。由于干态环境下表面腐蚀产物的沉积和结壳,导致阳极活化溶解能力下降,但自腐蚀反应得到抑制。Al-0.7Zn-0.1Sn-0.1Ce低电位牺牲阳极在复杂干湿交替环境中表现出良好的阴极保护性能。  相似文献   

9.
目的 探究我国典型湿热海洋大气环境特征,以Q235钢为标杆材料,评估并可视化展示海南湿热海洋大气环境严酷度。方法 以海南岛为典型湿热海洋地区,基于分布全岛全域的13个站点开展自然大气环境试验,采集各站点大气环境数据与Q235钢材料性能数据。通过分析表观形貌、腐蚀质量损失等性能,探究Q235钢在海南大气环境的腐蚀行为规律及其在全岛不同区域的腐蚀程度差异。基于大气环境因素与Q235钢腐蚀行为间相关性研究,筛选腐蚀敏感环境因素,构建“腐蚀质量损失-敏感环境因素”映射模型。基于Q235钢海南各地区腐蚀质量损失数据,通过Griddata插值,计算绘制腐蚀质量损失分布地图。结果 掌握了Q235钢在海南各地区腐蚀行为差异,可视化展示了海南大气腐蚀严酷度。结论 影响Q235钢海南地区腐蚀的敏感环境因素为离海距离及湿度大于80%的时间。海南地区沿海岸及东部地区大气环境腐蚀严酷度高,中部及西部地区严酷度低。  相似文献   

10.
从高强钢材料的合金成分、金相组织、加工工艺、残余应力以及海水温度、Cl浓度、pH值等环境条件和腐蚀程度等方面总结了高强钢应力腐蚀的影响因素。结合高强钢的使用环境和力学特点,简述了高强钢的应力腐蚀开裂机理,包括氢致开裂理论、阳极溶解理论、腐蚀产物楔入理论、应力吸附破裂理论等。针对高强钢在海洋环境中的应力腐蚀问题,分别从组织成分优化、表面处理和阴极保护等方面论述了应力腐蚀防护方法。最后,展望了应力腐蚀机理与防护的发展方向。  相似文献   

11.
铝合金大气腐蚀行为及其防腐措施研究进展   总被引:11,自引:6,他引:11  
综述了铝合金的大气腐蚀机理和大气主要环境因素对铝合金的大气腐蚀的影响。重点介绍了近年来所采用的对环境无害的铝合金无铬防腐蚀处理方法(激光熔覆法、溶胶-凝胶法、聚合物防腐蚀膜等)及其发展前景。  相似文献   

12.
铝合金结构腐蚀传感器综述   总被引:2,自引:0,他引:2       下载免费PDF全文
基于铝合金材料发生腐蚀后,其电特性发生了很大的变化,可以通过监测电特性的变化实现铝合金结构腐蚀程度评估的特性,重点描述了电流式、电阻式、阻抗式等腐蚀传感器的主要构造、功能及其工作原理。这些腐蚀传感器的研发和应用为早期发现飞机结构的腐蚀损伤提供了技术储备和有效手段,有利于及时采取修理或预防措施,从而减少或避免飞机结构发生重大腐蚀故障。最后提出了飞机结构腐蚀传感器研发的基本构想和总体思路,明确了其技术发展的重点方向。  相似文献   

13.
用ACM技术评估低合金钢大气腐蚀及环境腐蚀严酷性   总被引:1,自引:1,他引:1  
将低合金钢与铜偶合.制成Cu/Fe电偶腐蚀电池(ACM),通过薄液膜下的ACM技术.研究了4种低合金钢的大气腐蚀行为差异,研究结果与其在典型大气环境下的曝露腐蚀结果一致。通过在江津、宜昌(三峡坝区)、武汉三地的ACM长期监测和环境因素监测获得了3个典型环境下ACM腐蚀电量与环境因素之间的多元线性回归分析方程.并与Q235钢在上述3个地区的大气曝露腐蚀试验所获得的结果进行了比较.探讨了采用ACM技术评估大气腐蚀严酷性的可能性。  相似文献   

14.
目的研究湿热海洋、干热沙漠两种典型大气环境对7A85铝合金腐蚀行为的影响。方法在万宁、敦煌两种典型环境中开展7A85铝合金大气暴露试验,利用金相显微镜分析7A85铝合金在我国两种典型大气环境中的腐蚀特征,定期测试该材料的拉伸强度和腐蚀深度。结果暴露3 a,7A85铝合金湿热海洋、干热沙漠两种典型大气环境中的最大腐蚀深度分别为254、90μm,抗拉强度分别下降了18%和5%,断后伸长率分别下降了72%和22%。结论 7A85铝合金暴露于相对湿度较低的干热沙漠环境,表面形成的腐蚀产物膜会阻止腐蚀的进一步发生;暴露于湿热海洋大气环境,随暴露时间的延长,7A85铝合金腐蚀逐渐加深。  相似文献   

15.
目的针对我国服役飞机的腐蚀问题,实现飞机结构日历寿命的分区预测与精细化管理。方法收集我国大气环境17个典型地区的气象环境数据,编制各地区的气候、化学环境总谱,并根据腐蚀电荷当量原理,使用铝合金、合金钢两种材料的折算系数,将各地区的大气环境向标准潮湿空气作用时间进行折算。基于系统聚类的方法,根据大气腐蚀的差异性,将17个典型地区进行分类,确定各分区的划分标准和我国大气腐蚀分区个数,并综合考虑当前文献中可查的其他地区数据资料与我国气候、降水、大气污染的分布情况,对我国大气环境进行腐蚀分区。结果根据铝合金、合金钢的腐蚀特征量,可将我国大气环境划为5个分区。绘制了我国大气环境腐蚀分区图,给出了各分区的环境特点、地理位置分布和代表城市。结论应用我国大气环境分区结果,可以直观掌握我国飞机不同服役环境的腐蚀严酷程度,为编制加速腐蚀环境谱、评定飞机结构日历寿命、制定针对性的维护计划和飞行计划奠定基础。  相似文献   

16.
目的建立铝合金预腐蚀疲劳裂纹扩展模型。方法采用表征局部环境腐蚀损伤影响程度的参数孔蚀率对腐蚀疲劳裂纹扩展速率进行修正。结果修正后的腐蚀铝合金试件的疲劳裂纹扩展速率与试验结果吻合程度良好。结论修正后的铝合金预腐蚀疲劳裂纹扩展速率模型合理有效,试验数据和预测模型可为海军飞机结构的损伤容限设计提供参考。  相似文献   

17.
通过在我国江津典型工业污染大气环境进行大气暴晒实验,测定了1060纯铝、2A12铝合金和7A04铝合金在该地区的腐蚀速率,利用扫描电子显微镜(SEM)、能量色散X射线谱(EDX)、红外光谱(FT—IR)和X射线衍射仪(XRD)观察分析3种铝合金腐蚀表面形貌、元素分布和腐蚀产物结构。结果表明:随腐蚀时间的延长,铝及其合金腐蚀产物不断增多,失重数值增加,腐蚀失重与时间的关系呈幂函数规律(C—A t^n);腐蚀产物形貌呈块状或粒状,呈现不均匀的凹凸形貌;腐蚀产物主要为Al(OH)3和Al2(SO4)3·14H2O;耐蚀性能由强至弱依次为1060〉2A12〉7A04。  相似文献   

18.
7B04铝合金海洋性大气腐蚀研究   总被引:2,自引:3,他引:2  
通过在青岛和海南开展的7B04铝合金户外大气暴露试验,利用失重分析、形貌观察、断面分析和电化学交流阻抗谱等研究了7B04铝合金在海洋性大气环境中的腐蚀动力学规律和腐蚀特征。结果表明,在青岛和海南等海洋性大气环境中,7B04铝合金腐蚀初期以点蚀形式萌生,随后向均匀腐蚀发展;腐蚀过程均经历了腐蚀速率由高到低的过程,且腐蚀失重与时间的关系均可用幂函数显著回归;电化学阻抗谱分析表明当腐蚀产物足够厚时,7B04铝合金海洋性大气腐蚀的电化学过程由侵蚀性离子的扩散步骤来控制。  相似文献   

19.
目的研究飞机结构件的腐蚀随时间的变化规律,为其寿命预测及可靠性分析提供参考。方法以2A12铝合金试件为对象,利用加速腐蚀试验设备,对其进行7个周期的加速腐蚀,以获得蚀坑深度的原始数据。在此基础上,将灰色GM(1,1)模型与马尔科夫链模型相结合,建立起能够预测蚀坑深度的灰色马尔科夫模型。结果将预测值与试验值进行对比,结果表明,灰色马尔科夫模型预测精度在0~4.5%之间,预测结果比较准确。结论该灰色马尔可夫模型能够较好地反映该型铝合金在腐蚀过程中蚀坑深度的变化趋势,建立起了一种新的腐蚀预测方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号