首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
梁祝 《贵州环保科技》2004,10(B09):31-35
分析了RMCH型净化槽生物硝化反应中出现NO2-N积累的原因,以及影响亚硝酸积累的不同因素。结果表明,进水高浓度的氨氮是产生不完全硝化和NO2-N积累的重要原因,DO的不足是另一个主要因素;进水的C/N与NO2-N积累以及积累量有直接的负相关关系;好氧槽中水力停留时间的减少和容积负荷的增加也影响了NO2-N积累。文章还分析了在厌氧槽中出现氨氮厌氧氧化的可能性。  相似文献   

2.
厌氧氨氧化所需的电子受体NO2--N可由亚硝化过程获得也可由半反硝化过程获得。对于含有NO3--N的废水,可通过以S2-为电子供体的自养反硝化过程把NO3--N还原为NO2--N。文章从pH值、S/N摩尔比、硫化物浓度、HRT、COD等方面,探讨以S2-为基质的硫自养反硝化中NO2--N与S0的积累条件,为硫化物型自养反硝化-ANAMMOX工艺提供理论依据。  相似文献   

3.
从生物净化器/强化浮床组合工艺处理农村生活污水工程的生物净化器中提取菌种。在以乙酸钠为碳源的专性脱氮培养基上分离筛选出厌氧反硝化菌株A-5,运用生物量和脱氮率的实验测试其最适生长条件为:30℃、pH值为7.7、最适接种量为20%。在最适条件下的降解能力为:培养液初始NO3-N浓度为100mg·L^-1,24h内脱氮率达90.1%。通过形态学和生理特性观察经过菌种鉴定测定A-5为门多萨假单胞菌属(Pseudomonas Medoeina)。该菌株脱氮效果明显,可广泛用于农村生活污水的处理。  相似文献   

4.
采用ASBR反应器,通过改变进水COD/NH_4~+-N值,研究了COD/COD/NH_4~+-N对厌氧氨氧化与反硝化耦合反应的影响.结果表明:在COD为300mg/L,NO2--N为145mg/L时,COD/COD/NH_4~+-N是影响厌氧氨氧化对耦合反应脱氮贡献及COD/NH_4~+-N去除率的主要因素,但不会对NO2--N去除率产生影响.当COD/COD/NH_4~+-N值在1~3.25时,厌氧氨氧化对耦合反应的脱氮贡献率基本稳定在73.03%;当COD/COD/NH_4~+-N值在3.75时,厌氧氨氧化对耦合反应脱氮的贡献率开始由71.76%下降至约55%;当COD/COD/NH_4~+-N值在4.25~5.25时,厌氧氨氧化与反硝化的脱氮贡献率基本相等;当COD/COD/NH_4~+-N值在6.5~12.5时,反硝化的脱氮贡献率随着COD/COD/NH_4~+-N值的增大由51.69%增大到79.62%.耦合反应器中活性污泥的颗粒化程度不断增强,颗粒污泥的粒径主要分布在0.6~1.5mm范围内,污泥沉降性能良好.  相似文献   

5.
氮污染物的含量超标,易造成水体富营养化。氮污染物处理工艺包括物理法、化学法和生物法。主要叙述了处理工艺原理和应用实例,总结了各个处理工艺运行参数对氮污染物脱除的影响,并分析了各个处理工艺的优缺点和存在的问题。认为其中新型脱氮工艺是目前的研究重点,厌氧氨氧化与其他生物脱氮工艺联用可以实现高效、经济和稳定的脱氮。  相似文献   

6.
阐述了微生物硝化和反硝化过程中N2O的产生机理以及影响因素,重点介绍底物浓度、O2量、含水率、pH、温度等因素对N2O产生的影响。根据N2O产生机理及影响因素分析,结合脱氮型生物反应器填埋场运行过程中不同影响因素的变化,对脱氮型生物反应器填埋场N2O的产生进行了分析探讨。认为相比于其他生物反应器填埋场,脱氮型生物反应器填埋场可能会增加N2O的产生量,该问题需要进行深入研究。  相似文献   

7.
通过计算N和DO的质量平衡,研究饮用水生物处理小试工艺中是否存在NH4 -N的非硝化去除途径,并探讨其可能机制.结果表明,当生物流化床和生物滤池进水NH4 -N浓度大于2 mg/L时,前者进水的NH4 -N、NO2--N和NO3--N之和比出水高出0.91 mg/L,后者理论上消耗的DO比实际多约2.90 mg/L,说明这2种工艺中均有氮亏损现象发生,一部分NH4 -N通过与DO无关的非硝化作用被去除.对非硝化去除途径的分析表明,因为反应器对磷元素和有机物的利用不随氮亏损发生变化,可以排除掉同化作用和反硝化作用;因为反应器进水低碳高氮的特性NO2--N的积累与发生氮亏损的废水生物处理系统相似,据此提出在生物膜缺氧内部发生、通过短程硝化和厌氧氨氧化的偶联(或OLAND反应)将NH4 -N和NO2--N同时转变为N2脱除的自养脱氮是饮用水生物处理中氮亏损的可能途径.  相似文献   

8.
氮氧化物气体的产生及其对厌氧氨氧化的影响研究   总被引:1,自引:0,他引:1  
硝化、反硝化生物脱氮反应,因产生N2O温室气体,开始引发一些环保工作者的关注。新开发的厌氧氨氧化工艺在生物脱氮方面具有无可比拟的优越性。在其脱氮的3种反应途径中,也可能产生NO、NO2和N2O微量气体。文章对目前厌氧氨氧化反应中,这3种微量气体的产生情况进行了综述,并总结了这3种气体对厌氧氨氧化反应的影响。提出考察厌氧氨氧化过程中温室气体的排放情况和如何减少或控制温室气体的排放将成为厌氧氨氧化工艺应用中重要的研究方向之一。  相似文献   

9.
为研究厌氧氨氧化工艺对高浓度含氮废水的脱氮性能,在以聚乙烯海绵作为填料的上流式厌氧固定床反应器中利用人工配置高浓度含氮废水进行了实验研究。实验中通过添加充足无机碳源,实现了厌氧氨氧化反应器在总氮浓度900~1210mg/L长期稳定的运行,脱氮效率在80%以上,最高氮负荷为5.9kg/m3.d。结果表明:充足的无机碳源在一定程度上可有效地降低高浓度亚硝氮对厌氧氨氧化菌的抑制作用。通过对污泥性状的研究,明确寻找出污泥上浮的原因所在。通过Stover-Kincannon模型确定系统动力学参数KB和Umax分别为30.2g/L·d和21.2g/L·d,这将有助于对该厌氧氨氧化系统各控制条件的有效调节和准确设定,也为日后应用于实际工程中提供重要的理论依据。  相似文献   

10.
梁祝 《环保科技》2003,9(3):18-21
日本生活污水分散处理装置—— BS2型净化槽的原工艺运行方式中存在不利于除磷的问题 ,为了在低有机物浓度、低碳氮比 ( C/N)的进水水质条件下 ,能改善系统的脱氮除磷性能 ,对原工艺的运行方式进行了改进 ,探讨了该系统的最佳控制方式和生产管理模式  相似文献   

11.
为研究厌氧氨氧化工艺对高浓度含氮废水的脱氮性能,在以聚乙烯海绵作为填料的上流式厌氧固定床反应器中利用人工配置高浓度含氮废水进行了实验研究.实验中通过添加充足无机碳源,实现了厌氧氨氧化反应器在总氮浓度900~1 210 mg/L长期稳定的运行,脱氮效率在80%以上,最高氮负荷为5.9 kg/m3·d.结果表明:充足的无机碳源在一定程度上可有效地降低高浓度亚硝氮对厌氧氨氧化菌的抑制作用.通过对污泥性状的研究,明确寻找出污泥上浮的原因所在.通过Stover-Kincannon模型确定系统动力学参数KB和Umax分别为30.2 g/L·d和2L2g/L·d,这将有助于对该厌氧氨氧化系统各控制条件的有效调节和准确设定,也为日后应用于实际工程中提供重要的理论依据.  相似文献   

12.
净化铁锰氨生物滤池内氨氮转化途径   总被引:3,自引:0,他引:3       下载免费PDF全文
为考察净化铁锰氨生物滤池内NH4+-N的转化途径,利用氮素计量关系和沿程试验研究了净化铁锰氨生物滤池内产生TNloss(氮损失)的原因和NH4+-N转化途径. 结果表明,净化铁锰氨生物滤池内DO消耗异常,TNloss不守恒,当进水ρ(NH4+-N)平均值分别为1.262、2.296、3.111 mg/L时,NLR(氮损失率)分别能达到7.89%、12.91%、17.73%. 利用硝化反应和CANON(全程自养脱氮)方程式计算得出理论TNloss和TDOC(理论耗氧量),与实际TNloss和ADOC(实际耗氧量)的差值分别小于±0.030、±0.10 mg/L,各阶段NH4+-N 通过CANON途径转化的比例分别为48.58%、60.77%、68.10%,硝化反应和CANON途径共同参与了NH4+-N转化. 沿程试验结果表明,整个试验阶段,NO2--N在滤层中均有积累,并在滤层厚度为10~18 cm内出现NO2--N和NH4+-N共存的现象,进一步证明CANON途径是净化铁锰氨生物滤池内产生TNloss的原因.   相似文献   

13.
厌氧氨氧化是污水脱氮工艺中的重要环节,系统中的菌群结构决定了其处理效果.低温厌氧氨氧化技术因节省大量能源更具有良好的发展前景,厌氧氨氧化细菌在其中起着至关重要的作用.为了探讨降温过程中(由30℃降为20℃时)厌氧氨氧化反应器处理城市污水时微生物群落的变化,利用磷脂脂肪酸(PLFA),定量PCR和PCR-DGGE分析方法对城市生活污水厌氧氨氧化系统中的微生物的量、厌氧氨氧化菌的量以及功能微生物菌群的变化进行了研究.磷脂脂肪酸分析结果显示当温度由30℃降为20℃时,微生物的总量首先降低,随着运行时间的延续逐渐升高.定量PCR结果显示厌氧氨氧化菌16S rRNA基因拷贝数由30℃的1.19×108m L-1增至20℃的1.86×108m L-1,系统出水氨氮降低.PCR-DGGE结果显示降温过程中颗粒污泥中厌氧氨氧化菌群由Candidatus Kuenenia sp.为主,转变为Candidatus Brocadia sp.和Candidatus Kuenenia sp.为主的混合菌.  相似文献   

14.
在低总氮(TN)浓度条件下考察了Fe2+促进串联两级ANAMMOX生物膜反应器脱氮性能的可行性.结果表明,ρ(Fe2+)为5、10和15 mg·L-1能够有效促进厌氧氨氧化反应,ρ(Fe2+)为10 mg·L-1对两级ANAMMOX生物膜反应器的促进程度最大,在进水ρ(TN)约为150 mg·L-1,总氮负荷(NLR)为0.62 kg·(m3·d)-1条件下,最高总氮去除率(NRE)可达81.71%.添加Fe2+可促进系统胞外聚合物(EPS)的分泌以及亚铁血红素c的合成.批次试验结果进一步验证了ρ(Fe2+)为5、10和15 mg·L-1时对厌氧氨氧化菌活性的促进作用,其中ρ(Fe2+)为10 mg·L-1时的比厌氧氨氧化活性(SAA)是对照组的3.6倍,而当ρ(Fe2+)为20 mg·L-1时,AnAOB活性受到明显抑制.高通量测序结果显示,投加Fe2+均促进了反应器中Candidatus_Kuenenia丰度的增加,其中ρ(Fe2+)为10 mg·L-1时两个反应器中Candidatus_Kuenenia的相对丰度分别增至16.18%和4.22%.基于Fe2+促进下两级厌氧氨氧化的稳定运行为厌氧氨氧化生物膜工艺处理低总氮浓度废水提供了参考.  相似文献   

15.
针对煤化行业高含氮焦化污水,采用厌氧氨氧化工艺进行脱氮污泥培养、驯化,对可能制约厌氧氨氧化菌生长的因素进行研究分析。结果发现:得出适宜于厌氧氨氧化污泥培养的水力停留时间、温度、p H及为保持污泥活性要求限制反应器进水氨氮和亚硝酸盐氮的最大负荷值。  相似文献   

16.
味精废水厌氧氨氧化生物脱氮的研究   总被引:28,自引:0,他引:28  
采用厌氧氨氧化工艺(ANAMMOX)处理味精废水,结果显示,总氮容积去除负荷可达457 mg·L-1·d-1,高于传统硝化-反硝化工艺,可成为传统硝化-反硝化工艺的替代技术.厌氧氨氧化菌对NO2--N的耐受范围为96.5~129 mg·L-1.受基质NO2--N抑制后,厌氧氨氧化反应器难以自行恢复,将基质浓度稀释到临界浓度以下则可恢复效能.反应器对进水cNO2-N/cNH4 -N比值有一定的适应能力.在所试的进水cNO2--N/cNH4 -N比值(1.0~1.4)范围内,出水基质浓度基本保持不变.  相似文献   

17.
采用固定床流动反应装置,考察Cu2O、CuO、Cr2O3、Fe2O3、MnO2、Ni2O3、V2O5等金属氧化物对NOCOCO2N2体系中NO去除反应的催化作用,同时,分析了NOCOCO2N2体系中金属氧化物对NO去除的作用。研究结果表明,各金属氧化物对NO去除反应均有不同程度的催化活性,其中Fe2O3、Ni2O3、CuO等对NO的去除显示出较强的催化作用。金属氧化物存在条件下NOCOCO2N2体系中,NO去除反应较为复杂,NO/CO气相直接反应、低价氧化物对NO的还原作用、金属氧化物对NO分解反应的催化作用及金属氧化物对NO/CO反应的催化作用等都可能存在。大部分金属氧化物以对NO/CO反应的催化作用为主,而Ni2O3的预还原试样对NO的直接分解反应表现了极强的催化活性。  相似文献   

18.
颗粒污泥厌氧氨氧化动力学特性及微量NO2的影响   总被引:2,自引:0,他引:2  
采用批试验方法,研究了颗粒污泥厌氧氨氧化动力学特性及微量NO2的影响.用Haldane模型描述厌氧氨氧化反应动力学,得到最大氨氮反应速率6.65×10-3tmg·(mg·h)-1、氨氮半饱和常数87.1 nag·L-1和抑制常数1 123 mg·L-1,亚硝态氮半饱和常数15.39 mg·L-1和抑制常数159.5 mg·L-1.微量NO2对厌氧氨氧化具有强化作用,基于Haldane模型建立了厌氧氨氧化的NO2强化函数,估计了强化函数中的最大强化系数48.79、NO2半饱和常数2480 mg·m-3、NO2抑制常数4.22 mg·m-3和基础速率系数0.018 2.试验中大部分的NOx出现损失.  相似文献   

19.
铁离子对厌氧氨氧化反应器性能的影响   总被引:6,自引:1,他引:6  
张蕾  郑平  胡安辉 《环境科学学报》2009,29(8):1629-1634
考察了铁离子对厌氧氨氧化反应器性能的影响.研究发现,经过205d的连续培养,添加铁离子可提高反应器的基质转化能力,铁离子浓度为0.075 mmol·L-1时,反应器对NH4+-N和NO2--N的最大去除速率分别为对照(铁离子浓度0.03 mmol·L-1)的1.8倍和1.6倍;添加铁离子可促进厌氧氨氧化菌生长,以NO3--N产生量和挥发性固体浓度(VS)表征厌氧氨氧化菌生长,铁离子浓度为0.075 mmol·L-1时,细胞生长量为对照(铁离子浓度为0.03 mmol·L-1)的1.36倍;试验反应器的VS是对照的2.15倍.添加铁离子可引起厌氧氨氧化菌细胞结构改变,细胞内产生不明灰色区域.试验还证明,厌氧氨氧化菌对铁离子的需求量相对较大,原有厌氧氨氧化菌培养基的铁含量相对不足.  相似文献   

20.
从亚硝酸还原厌氧氨氧化转变为硫酸盐型厌氧氨氧化   总被引:1,自引:1,他引:1  
刘正川  袁林江  周国标  李晶 《环境科学》2015,36(9):3345-3351
在UASB反应器内,研究了由亚硝酸盐型厌氧氨氧化转变为硫酸盐型厌氧氨氧化的过程及其微生物群落变化.结果表明,历时177 d成功实现了硫酸盐型厌氧氨氧化.进水氨氮和硫酸盐浓度分别为130 mg·L-1和500 mg·L-1下,反应器对氨氮和硫酸盐的去除率分别达到58.9%和15.7%,对氨氮和硫酸盐的去除负荷为74.3 mg·(L·d)-1和77.5 mg·(L·d)-1,氮、硫损失摩尔比约为2,出水p H值低于进水.污泥中细菌从以球菌为主转变成以短杆菌为主,菌群中细菌由Candidatus brocadia为优势种转变为以Bacillus benzoevorans为优势种.说明完成这两种厌氧氨氧化的优势菌不同,两种厌氧氨氧化并非同一种菌参与完成的.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号