首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Measurements of groundwater velocity in discrete rock fractures   总被引:1,自引:0,他引:1  
Estimating groundwater velocity in fracture networks using a Darcy or cubic law calculation is complicated by the wide distribution of fracture aperture often found in these systems and by the difficulty in measuring hydraulic head in discrete fracture features. Although difficult to conduct in a fractured rock setting, the point dilution method can be utilized to collect direct measurements of groundwater velocity in individual fractures. To compare measured against calculated velocities, more than 100 point dilution experiments were conducted within a 35 x 35 m area of a single fracture and in discrete fracture features within a fracture network at a larger scale. The dilution experiments were conducted by isolating a fracture feature in a borehole, measuring the hydraulic aperture, and measuring the decay of an injected tracer due to the advective groundwater flux across the fracture. Groundwater velocity was estimated using the hydraulic aperture and the rate of decay of the injected tracer. Estimates of the local hydraulic gradient were calculated via the cubic law using the velocity estimate and the hydraulic aperture. The results of the tests conducted in the single fracture show variable (1 to 33 m/day) but on average higher velocities in comparison to that measured during a natural gradient tracer experiment conducted previously (in which the effects of matrix diffusion were accounted for) and to that which would be calculated using the cubic law. Based on these results, it was determined that the best estimate of the average groundwater velocity, at the scale of the measurement area used for the cubic law calculations, could only be obtained using the largest apertures in the aperture distribution. Variability of the velocity measurements was also observed over time. Increases in velocity were attributed to the effect of rainfall although concurrent increases in hydraulic gradient were not detected (likely within the tolerance of the measuring devices). The groundwater velocities measured in the fracture network varied over a wider range than at the scale of the single fracture (from 2 to 388 m/day). No correlation, however, was observed between the size of the fracture aperture and measured velocity.  相似文献   

2.

Viruses and bacteria which are characterized by finite lives in the subsurface are rapidly transported via fractures and cavities in fractured and karst aquifers. Here, we demonstrate how the coupling of a robust outcrop characterization and hydrogeophysical borehole testing is essential for prediction of contaminant velocities and hence wellhead protection areas. To show this, we use the dolostones of the Permian Magnesian Limestone aquifer in NE England, where we incorporated such information in a groundwater flow and particle tracking model. Within this aquifer, flow in relatively narrow (mechanical aperture of ~?10?1–1 mm) fractures is coupled with that in pipe cavities (~?0.20-m diameter) following normal faults. Karstic cavities and narrow fractures are hydraulically very different. Thus, the solutional features are represented within the model by a pipe network (which accounts for turbulence) embedded within an equivalent porous medium representing Darcian flowing fractures. Incorporation of fault conduits in a groundwater model shows that they strongly influence particle tracking results. Despite this, away from faulted areas, the effective flow porosity of the equivalent porous medium remains a crucial parameter. Here, we recommend as most appropriate a relatively low value of effective porosity (of 2.8?×?10?4) based on borehole hydrogeophysical testing. This contrasts with earlier studies using particle tracking analyses on analogous carbonate aquifers, which used much higher values of effective porosity, typically ~?102 times higher than our value, resulting in highly non-conservative estimates of aquifer vulnerability. Low values of effective flow porosities yield modelled flow velocities ranging from ~?100 up to ~?500 m/day in un-faulted areas. However, the high fracturing density and presence of karstic cavities yield modelled flow velocities up to ~?9000 m/day in fault zones. The combination of such flow velocities along particle traces results in 400-day particle traces up to 8-km length, implying the need for large well protection areas and high aquifer vulnerability to slowly degrading contaminants.

  相似文献   

3.
In situ chemical oxidation (ISCO) employing permanganate is an emerging technology that has been successful at enhancing mass removal from DNAPL source zones in unconsolidated media at the pilot-scale. The focus of this study was to evaluate the applicability of flushing a permanganate solution across two single vertical fractures in a laboratory environment to remove free phase DNAPL. The fracture experiments were designed to represent a portion of a larger fractured aquifer system impacted by a near-surface DNAPL spill over a shallow fractured rock aquifer. Each fracture was characterized by hydraulic and tracer tests, and the aperture field for one of the fractures was mapped using a co-ordinate measurement machine. Following DNAPL emplacement, a series of water and permanganate flushes were performed. To support observations from the fracture experiments, a set of batch experiments was conducted. The data from both fracture experiments showed that the post-oxidation effluent concentration was not impacted by the oxidant flush; however, changes in the aperture distribution, flow field, and flow rate were observed. These changes resulted in a significant decrease to the mass loading from the fractures, and were attributed to the build-up of oxidation by-products (manganese oxides and carbon dioxide) within the fracture which was corroborated by the batch experiment data and visual examination of the walls of one fracture. These results provide insight into the potential impact that a permanganate solution and oxidation by-products can have on the aperture distribution within a fracture and on DNAPL mass transfer rates. A permanganate flush or injection completed within a fractured rock aquifer may lead to the development of an insoluble product adjacent to the DNAPL which results in the reduction or complete elimination of advective regions near the DNAPL and reduces mass transfer rates. This outcome would have significant implications on the plume generating potential of the remaining DNAPL.  相似文献   

4.
Determination of the flow-wetted surface in fractured media   总被引:1,自引:0,他引:1  
Diffusion and sorption in the rock matrix are important retardation mechanisms for radionuclide transport in fractured media. For the conditions existing in a deep repository in crystalline rock, interaction with the rock matrix is controlled by the water flowrate in the fractures and the surface area in contact with the flowing water (the so-called "flow-wetted surface" (FWS)). The flow-wetted surface may be determined from the frequency of open fractures intersecting a borehole. The choice of packer distance used in these hydraulic measurements is crucial, however, since several open fractures may be found in one packer interval. The use of a packer distance that is too large may result in a considerable underestimation of the flow-wetted surface. This is especially important in zones with a high frequency of open fractures (fracture zones) where a small packer distance is a fundamental requirement. A large volume of hydraulic data has been compiled in Sweden from measurements using quite small packer distances. Over the last decade, the most common packer distance used for the hydraulic tests has been 3 m, although some new measurements using a shorter packer distance have also been performed. In several cases, the resolution of these measurements has been less than 0.5 m. All these data have been analysed in detail. From these data, the flow-wetted surface has been calculated and compared with the flow-wetted surface estimated in earlier studies. The results show the importance of using a small packer distance for carrying out borehole transmissivity measurements.  相似文献   

5.
Modelling radionuclide transport for time varying flow in a channel network   总被引:1,自引:0,他引:1  
Water flowrates and flow directions may change over time in the subsurface for a number of reasons. In fractured rocks flow takes place in channels within fractures. Solutes are carried by the advective flow. In addition, solutes may diffuse in and out of stagnant waters in the rock matrix and other stagnant water regions. Sorbing species may sorb on fracture surfaces and on the micropore surfaces in the rock matrix. We present a method by which solute particles can be traced in flowing water undergoing changes in flowrate and direction in a complex channel network where the solutes can also interact with the rock by diffusion in the rock matrix. The novelty of this paper is handling of diffusion in the rock matrix under transient flow conditions. The diffusive processes are stochastic and it is not possible to follow a particle deterministically. The method therefore utilises the properties of a probability distribution function for a tracer moving in a fracture where matrix diffusion is active. The method is incorporated in a three dimensional channel network model. Particle tracking is used to trace out a multitude of flowpaths, each of which consists of a large number of channels within fractures. Along each channel the aperture and velocity as well as the matrix sorption properties can vary. An efficient method is presented whereby a particle can be followed along the variable property flowpath. For stationary flow conditions and a network of channels with advective flow and matrix diffusion, a simple analytical solution for the residence time distribution along each pathway can be used. Only two parameter groups need to be integrated along each path. For transient flow conditions, a time stepping procedure that incorporates a stochastic Monte-Carlo like method to follow the particles along the paths when flow conditions change is used. The method is fast and an example is used for illustrative purposes. It is exemplified by a case where land rises due to glacial rebound. It is shown that the effects of changing flowrates and directions can be considerable and that the diffusive migration in the matrix can have a dominating effect on the results.  相似文献   

6.
The investigation of the migration of a high pH plume in a fractured shear zone is foreseen by a long-term experiment at the Grimsel rock laboratory. In order to characterise the initial conditions for the long-term experiment and to evaluate an optimal hydraulic in situ set-up, several dipole experiments with nonreacting tracers have been performed. The dipole experiments differ in geometry, pumping rates and orientation to the background water flow. Several single and double-porosity models have been applied to fit the results of these dipole tracer tests in order to extract values for some transport parameters and discriminate for certain transport processes. A two-dimensional porous medium approach was successfully used to fit tracer breakthrough curves measured for a dipole experiment. A model based on a one-dimensional dual porous medium approach was also successful, although the applied hydraulic dipole, with similar injection and extraction rates, suggests the existence of an extended two-dimensional flow field. For the two-dimensional porous medium approach, tracer breakthrough could only be fitted with a complex flow field geometry within the heterogeneous fractured shear zone. The heterogeneity was generated by heterogeneous porosity and hydraulic permeability distributions. Predictions for further dipole geometries and a sorbing tracer have been calculated by means of both models using the flow and transport parameters deduced from fits for a single dipole experiment. This allows for comparison with the measured breakthrough of sorbing tracers. The foreseen experiment with sorbing (radionuclide) tracers will help decide on the appropriate approach that should be used to describe such dipole experiments in this shear zone. Additionally, the migration and spreading of a solution with high pH has been calculated taking into account mineral dissolution and precipitation in a two-dimensional porous medium approach in order to estimate the amount and character of the mineral reactions induced by the interaction between the high pH solution and the rock.  相似文献   

7.
Forced-gradient groundwater tracer tests may be conducted using a variety of hydraulic schemes, so it is useful to have simple semi-analytic models available that can examine various injection/withdrawal scenarios. Models for radially convergent tracer tests are formulated here as transfer functions, which allow complex tracer test designs to be simulated by a series of simple mathematical expressions. These mathematical expressions are given in Laplace space, so that transfer functions may be placed in series by simple multiplication. Predicted breakthrough is found by numerically inverting the composite transfer function to the time-domain, using traditional computer programs or commercial mathematical software. Transport is assumed to be dictated by a radially convergent or uniform flow field, and is based upon an exact first-passage-time solution of the backward Fokker–Planck equation. These methods are demonstrated by simulating a weak-dipole tracer test conducted in a fractured granite formation, where mixing in the injection borehole is non-ideal.  相似文献   

8.
A mesoscale (21 m in flow distance) infiltration and seepage test was recently conducted in a deep, unsaturated fractured rock system at the crossover point of two underground tunnels. Water was released from a 3 mx4 m infiltration plot on the floor of an alcove in the upper tunnel, and seepage was collected from the ceiling of a niche in the lower tunnel. Significant temporal and (particularly) spatial variabilities were observed in both measured infiltration and seepage rates. To analyze the test results, a three-dimensional unsaturated flow model was used. A column-based scheme was developed to capture heterogeneous hydraulic properties reflected by these spatial variabilities observed. Fracture permeability and van Genuchten alpha parameter [van Genuchten, M.T., 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci. Soc. Am. J. 44, 892-898] were calibrated for each rock column in the upper and lower hydrogeologic units in the test bed. The calibrated fracture properties for the infiltration and seepage zone enabled a good match between simulated and measured (spatially varying) seepage rates. The numerical model was also able to capture the general trend of the highly transient seepage processes through a discrete fracture network. The calibrated properties and measured infiltration/seepage rates were further compared with mapped discrete fracture patterns at the top and bottom boundaries. The measured infiltration rates and calibrated fracture permeability of the upper unit were found to be partially controlled by the fracture patterns on the infiltration plot (as indicated by their positive correlations with fracture density). However, no correlation could be established between measured seepage rates and density of fractures mapped on the niche ceiling. This lack of correlation indicates the complexity of (preferential) unsaturated flow within the discrete fracture network. This also indicates that continuum-based modeling of unsaturated flow in fractured rock at mesoscale or a larger scale is not necessarily conditional explicitly on discrete fracture patterns.  相似文献   

9.
This paper presents the results of a field investigation in the unsaturated, fractured welded tuff within the Exploratory Studies Facility (ESF) at Yucca Mountain, NV. This investigation included a series of tests during which tracer-laced water was released into a high-permeability zone within a horizontal injection borehole. The tracer concentration was monitored in the seepage collected in an excavated slot about 1.6 m below the borehole. Results showed significant variability in the hydrologic response of fractures and the matrix. Analyses of the breakthrough curves suggest that flow and transport pathways are dynamic, rather than fixed, and related to liquid-release rates. Under high release rates, fractures acted as the predominant flow pathways, with limited fracture-matrix interaction. Under low release rates, fracture flow was comparatively less dominant, with a noticeable contribution from matrix flow. Observations of tracer concentrations rebounding in seepage water, following an interruption of flow, provided evidence of mass exchange between the fast-flowing fractures and slow- or non-flowing regions. The tests also showed the applicability of fluorinated benzoate tracers in situations where multiple tracers of similar physical properties are warranted.  相似文献   

10.
Matrix diffusion is an important process for solute transport in fractured rock, and the matrix diffusion coefficient is a key parameter for describing this process. Previous studies have indicated that the effective matrix diffusion coefficient values, obtained from a large number of field tracer tests, are enhanced in comparison with local values and may increase with test scale. In this study, we have performed numerical experiments to investigate potential mechanisms behind possible scale-dependent behavior. The focus of the experiments is on solute transport in flow paths having geometries consistent with percolation theories and characterized by multiple local flow loops formed mainly by small-scale fractures. The water velocity distribution through a flow path was determined using discrete fracture network flow simulations, and solute transport was calculated using a previously derived impulse-response function and a particle-tracking scheme. Values for effective (or up-scaled) transport parameters were obtained by matching breakthrough curves from numerical experiments with an analytical solution for solute transport along a single fracture. Results indicate that a combination of local flow loops and the associated matrix diffusion process, together with scaling properties in flow path geometry, seems to be an important mechanism causing the observed scale dependence of the effective matrix diffusion coefficient (at a range of scales).  相似文献   

11.
A multi-borehole radial tracer test has been conducted in the confined Chalk aquifer of E. Yorkshire, UK. Three different tracer dyes were injected into three injection boreholes and a central borehole, 25 m from the injection boreholes, was pumped at 330 m(3)/d for 8 days. The breakthrough curves show that initial breakthrough and peak times were fairly similar for all dyes but that recoveries varied markedly from 9 to 57%. The breakthrough curves show a steep rise to a peak and long tail, typical of dual porosity aquifers. The breakthrough curves were simulated using a 1D dual porosity model. Model input parameters were constrained to acceptable ranges determined from estimations of matrix porosity and diffusion coefficient, fracture spacing, initial breakthrough times and bulk transmissivity of the aquifer. The model gave equivalent hydraulic apertures for fractures in the range 363-384 microm, dispersivities of 1 to 5 m and matrix block sizes of 6 to 9 cm. Modelling suggests that matrix block size is the primary controlling parameter for solute transport in the aquifer, particularly for recovery. The observed breakthrough curves suggest results from single injection-borehole tracer tests in the Chalk may give initial breakthrough and peak times reasonably representative of the aquifer but that recovery is highly variable and sensitive to injection and abstraction borehole location. Consideration of aquifer heterogeneity suggests that high recoveries may be indicative of a high flow pathway adjacent, but not necessarily connected, to the injection and abstraction boreholes whereas low recoveries may indicate more distributed flow through many fractures of similar aperture.  相似文献   

12.
Dual-screened groundwater circulation wells (GCWs) can be used to remove contaminant mass and to mix reagents in situ. GCWs are so named because they force water in a circular pattern between injection and extraction screens. The radial extent, flux and direction of the effective flow of this circulation cell are difficult to measure or predict. The objective of this study is to develop a robust protocol for assessing GCW performance. To accomplish this, groundwater flow patterns surrounding a GCW are assessed using a suite of tools and data, including: hydraulic head, in situ flow velocity, measured hydraulic conductivity data from core samples, chemical tracer tests, contaminant distribution data, and numerical flow and transport models. The hydraulic head data show patterns that are consistent with pumping on a dual-screened well, however, many of the observed changes are smaller than expected. In situ thermal perturbation flow sensors successfully measured horizontal flow, but vertical flow could not be determined with sufficient accuracy to be useful in mapping flow patterns. Two types of chemical tracer tests were utilized at the site and showed that much of the flow occurs within a few meters of the GCW. Flow patterns were also assessed based on changes in contaminant (trichloroethylene, TCE) concentrations over time. The TCE data clearly showed treated water moving away from the GCW at shallow and intermediate depths, but the circulation of that water back to the well, except very close to the well, was less clear. Detailed vertical and horizontal hydraulic conductivities were measured on 0.3 m-long sections from a continuous core from the GCW installation borehole. The measured vertical and horizontal hydraulic conductivity data were used to construct numerical flow and transport models, the results of which were compared to the head, velocity and concentration data. Taken together, the field data and modeling present a fairly consistent picture of flow and transport around the GCW. However, the time and expense associated with conducting all of those tests would be prohibitive for most sites. As a consequence, a sequential protocol for GCW characterization is presented here in which the number of tools used can be adjusted to meet the needs of individual sites. While not perfect, we believe that this approach represents the most efficient means for evaluating GCW performance.  相似文献   

13.
Effects of pore volume-transmissivity correlation on transport phenomena   总被引:2,自引:0,他引:2  
The relevant velocity that describes transport phenomena in a porous medium is the pore velocity. For this reason, one needs not only to describe the variability of transmissivity, which fully determines the Darcy velocity field for given source terms and boundary conditions, but also any variability of the pore volume. We demonstrate that hydraulically equivalent media with exactly the same transmissivity field can produce dramatic differences in the displacement of a solute if they have different pore volume distributions. In particular, we demonstrate that correlation between pore volume and transmissivity leads to a much smoother and more homogeneous solute distribution. This was observed in a laboratory experiment performed in artificial fractures made of two plexiglass plates into which a space-dependent aperture distribution was milled. Using visualization by a light transmission technique, we observe that the solute behaviour is much smoother and more regular after the fractures are filled with glass powder, which plays the role of a homogeneous fault gouge material. This is due to a perfect correlation between pore volume and transmissivity that causes pore velocity to be not directly dependent on the transmissivity, but only indirectly through the hydraulic gradient, which is a much smoother function due to the diffusive behaviour of the flow equation acting as a filter. This smoothing property of the pore volume-transmissivity correlation is also supported by numerical simulations of tracer tests in a dipole flow field. Three different conceptual models are used: an empty fracture, a rough-walled fracture filled with a homogeneous material and a parallel-plate fracture with a heterogeneous fault gouge. All three models are hydraulically equivalent, yet they have a different pore volume distribution. Even if piezometric heads and specific flow rates are exactly the same at any point of the domain, the transport process differs dramatically. These differences make it important to discriminate in situ among different conceptual models in order to simulate correctly the transport phenomena. For this reason, we study the solute breakthrough and recovery curves at the extraction wells. Our numerical case studies show that discrimination on the basis of such data might be impossible except under very favourable conditions, i.e. the integral scale of the transmissivity field has to be known and small compared to the dipole size. If the latter conditions are satisfied, discrimination between the rough-walled fracture filled with a homogeneous material and the other two models becomes possible, whereas the parallel-plate fracture with a heterogeneous fault gouge and the empty fracture still show identifiability problems. The latter may be solved by inspection of aperture and pressure testing.  相似文献   

14.
Applied tracer tests provide a means to estimate aquifer parameters in fractured rock. The traditional approach to analysing these tests has been using a single fracture model to find the parameter values that generate the best fit to the measured breakthrough curve. In many cases, the ultimate aim is to predict solute transport under the natural gradient. Usually, no confidence limits are placed on parameter values and the impact of parameter errors on predictions of solute transport is not discussed. The assumption inherent in this approach is that the parameters determined under forced conditions will enable prediction of solute transport under the natural gradient. This paper considers the parameter and prediction uncertainty that might arise from analysis of breakthrough curves obtained from forced gradient applied tracer tests. By adding noise to an exact solution for transport in a single fracture in a porous matrix we create multiple realisations of an initial breakthrough curve. A least squares fitting routine is used to obtain a fit to each realisation, yielding a range of parameter values rather than a single set of absolute values. The suite of parameters is then used to make predictions of solute transport under lower hydraulic gradients and the uncertainty of estimated parameters and subsequent predictions of solute transport is compared. The results of this study show that predictions of breakthrough curve characteristics (first inflection point time, peak arrival time and peak concentration) for groundwater flow speeds with orders of magnitude smaller than that at which a test is conducted can sometimes be determined even more accurately than the fracture and matrix parameters.  相似文献   

15.
A long-term single borehole diffusion experiment using tritiated water as tracer was carried out in Opalinus clay, an argillaceous rock formation that is accessible at the Mont Terri Underground Research Laboratory, situated in the Swiss Jura. The tracer was diluted in reconstituted formation water and introduced into a packed-off section of a borehole located in saturated rock. Pressure in this interval was maintained equal to the pore pressure of the surrounding rock in order to prevent any hydraulic gradient around the borehole and to avoid advective transport processes. The evolution of the tracer concentration in the injection system was monitored over time. After 1 year of diffusion, the claystone surrounding the interval was retrieved by overcoring the whole borehole and packer system, and by an adjacent oblique borehole. Compressed air was used as drilling fluid to reduce rock disturbances. The recovered overcore was sampled along profiles perpendicular to the borehole wall with a view to determining the tracer-concentration profiles in the rock. To avoid further evaporation of tritiated water, subsamples were immediately transferred into polyethylene bottles and disaggregated by adding a known amount of tracer-free water. Fifteen profiles were determined and showed a decreasing tracer concentration with distance into the rock. The pore-water contents were constant along those profiles, confirming that only very little water was lost during overcoring operations. The evolution of tritium-tracer concentration in the injection system over time and in situ profiles were interpreted with a 3-D numerical simulation of the experiment. That allowed for the identification of the transport parameters (orthotropic diffusion tensor and porosity) by minimising the relative quadratic error between the experimental and simulated data. The fitting is good and the results are consistent with data obtained on drill-core samples. The result of tritiated water is discussed regarding (1) the potential effect of mechanical and/or chemical disturbances around the injection borehole and (2) the specific behaviour of tritiated water.  相似文献   

16.
The couplings among chemical reaction rates, advective and diffusive transport in fractured media or soils, and changes in hydraulic properties due to precipitation and dissolution within fractures and in rock matrix are important for both nuclear waste disposal and remediation of contaminated sites. This paper describes the development and application of LEHGC2.0, a mechanistically based numerical model for simulation of coupled fluid flow and reactive chemical transport, including both fast and slow reactions in variably saturated media. Theoretical bases and numerical implementations are summarized, and two example problems are demonstrated. The first example deals with the effect of precipitation/dissolution on fluid flow and matrix diffusion in a two-dimensional fractured media. Because of the precipitation and decreased diffusion of solute from the fracture into the matrix, retardation in the fractured medium is not as large as the case wherein interactions between chemical reactions and transport are not considered. The second example focuses on a complicated but realistic advective-dispersive-reactive transport problem. This example exemplifies the need for innovative numerical algorithms to solve problems involving stiff geochemical reactions.  相似文献   

17.
Tracer tests provide highly valuable information about the transport properties of saturated rocks which is essential to the characterization of a potential radioactive waste repository site. In the frame of El Berrocal project, a set of tracer tests was performed in a complex geometry of inclined boreholes, combined with highly fractured transmissive zones. The aims of the tracer test programme were to gain experience, knowledge and insight into field transport experiments. To achieve this a detailed programme of new instrumentation design, site characterization and laboratory tasks was developed. For field monitoring a new electronic system was developed. The system is able to measure up to 256 parameters per borehole, with surface equipment to control pumping rates and physical and chemical parameters at both injection and extraction boreholes. The experiments progressed from single borehole dilution tests under both natural flow and forced gradient conditions to convergent flow tracer tests. Dilution tests helped to discriminate the most suitable borehole sections at which to inject tracers. The tracers were selected by the results of the laboratory programme. Uranine (fluorescein), DTPA-gadolinium (diethylenetriaminopentacetic acid, gadolinium (III)), and deuterium were injected simultaneously in one borehole section and recovered at another borehole 20 m away, pumping at a flowrate of 0.1 1 min−1. First results showed a thickness porosity of 1.2 × 10−3 m and a longitudinal dispersivity of 17.0 m using uranine data acquired over a period of 4 d, at which point the recovery concentration had reached a maximum. However, gadolinium and deuterium appeared to travel faster, arriving at peak values after only 2 d of injection.  相似文献   

18.
To explore the viability of Steam Enhanced Remediation (SER) in fractured rock a small-scale steam injection and water/vapour extraction pilot study was conducted at the former Loring Air Force Base in northern Maine, USA. A detailed well testing program was undertaken to assist in the design of the injection and extraction well array, and to assess the possibility of off-site heat and contaminant migration. A structurally complex limestone having low matrix porosity and a sparse distribution of fractures underlies the study site. To characterize the groundwater and steam flow pathways, single-well slug tests and more than 100 pulse interference tests were conducted. The results of the well testing indicate that the study site is dominated by steeply dipping bedding plane fractures that are interconnected only between some wells in the injection/extraction array. The SER system was designed to take advantage of interconnected fractures located at depth in the eastern end of the site. An array of 29 wells located in an area of 60 by 40 m was used for steam injection and water/vapour extraction. The migration of heat was monitored in several wells using thermistor arrays having a 1.5 m vertical spacing. Temperature measurements obtained during and after the 3 month steam injection period showed that heat migration generally occurred along those fracture features identified by the pulse interference testing. Based on these results, it is concluded that the pulse interference tests were valuable in assisting with the design of the injection/extraction well geometry and in predicting the migration pathways of the hot water associated with the steam injection. The pulse interference test method should also prove useful in support of any other remedial method dependant on the fracture network for delivery of remedial fluid or extraction of contaminants.  相似文献   

19.
This study develops a modeling approach for simulating and evaluating entrapped light nonaqueous-phase liquid (light NAPL-LNAPL) dissolution and transport of the solute in a fractured permeable aquifer (FPA). The term FPA refers to an aquifer made of porous blocks of high permeability that embed fractures. The fracture network is part of the domain characterized by high permeability and negligible storage. Previous studies show that sandstone aquifers often represent FPAs. The basic model developed in this study is a two-dimensional (2-D) model of permeable blocks that embed oblique equidistant fractures with constant aperture and orientation. According to this model, two major parameters govern NAPL dissolution and transport of the solute. These parameters are: 1) the dimensionless interphase mass transfer coefficient, K(f0), and 2) the mobility number, N(M0). These parameters represent measures of heterogeneity affecting flow, NAPL dissolution, and transport of the solute in the domain. The parameter K(f0) refers to the rate at which organic mass is transferred from the NAPL into the water phase. The parameter N(M0) represents the ratio of flow through the porous blocks to flow through the fracture network in regions free of entrapped NAPL. It also provides a measure of groundwater flow bypassing regions contaminated by entrapped NAPL. In regions contaminated by entrapped NAPL our simulations have often indicated very low permeability of the porous blocks, enabling a significant increase of the fracture flow at the expense of the permeable block flow. Two types of constitutive relationships also affect the rate of FPA cleanup: 1) the relationship between the saturation of the entrapped NAPL and the permeability of the porous blocks, and 2) the relationships representing effects of the entrapped NAPL saturation and the permeable block flow velocity on rates of interphase mass transfer. This study provides basic tools for evaluating the characteristics of pump-and-treat cleanup of FPAs by referring to sets of parameters and constitutive relationships typical of FPAs. The numerical simulations carried out in this study show that at high initial saturation of the entrapped NAPL, during initial stages of the FPA cleanup the contaminant concentration increases, but later it decreases. This phenomenon originates from significant groundwater bypassing the NAPL entrapped in the permeable blocks via the fracture network.  相似文献   

20.
The prognosis for the remediation of contaminated fractured media is much worse than that for more homogeneous units. Fractures act as conduits for the flow of dense non-aqueous phase liquids (DNAPLs), while diffusion is responsible for the storage of dissolved mass in the surrounding matrix. A numerical model incorporating aqueous phase transport in a variable-aperture fracture and its surrounding matrix is developed and coupled with an existing two-phase flow model. The processes of transient two-phase flow, non-equilibrium dissolution, advective–dispersive transport in the fracture, and three-dimensional matrix diffusion are included in the model. Results from various investigations show that the DNAPL distribution is very sensitive to variations in aperture within a single fracture. Diffusion-controlled mass removal from both the matrix and from the hydraulically inaccessible zones within the fracture itself result in extremely large time frames for significant mass removal from these systems. Success in aqueous phase mass removal from the matrix is very sensitive to the effective fracture spacing. The hydraulic gradient in the fracture only affects the amount of water removed from the system, and does not greatly affect the amount of time required to remove the contaminant mass from the matrix. The ability to remove mass is somewhat sensitive to the porosity and effective matrix diffusion coefficient over the range of expected values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号