首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
于2015年6月采集日照市岚山化工园区和临沂市罗庄华宇电解铝厂周围土壤样品,分析了16种多环芳烃(PAHs)的含量和组成,研究了距化工区不同距离的土壤中PAHs含量和组成的变化、来源及健康风险.结果表明,岚山化工园区周围土壤中PAHs总含量(∑_(16)PAHs)(2764.2—3435.9μg·kg~(-1))略高于华宇电解铝厂周边土壤中∑_(16)PAHs(2729.7—3047.5μg·kg~(-1)),均达到重度污染.两化工厂周边土壤中各环数PAHs所占比例大小顺序均为4环5环3环2环和6环,但各PAHs化合物的组成存在差异.距化工区越远,土壤中∑_(16)PAHs含量越低,但各环数PAHs含量变化不一致.同分异构体比值法结果表明,两化工厂PAHs主要来源是燃煤和石油燃烧.正定矩阵因子分解法表明,岚山化工园区周围土壤PAHs的来源中燃煤源占36%,汽油和柴油燃烧源占21.6%,生物质燃烧源占19.1%,石油源和焦炭燃烧混合源占19.3%.华宇电解铝厂周围土壤PAHs的来源中燃煤源占33.5%,汽油燃烧源占24.8%,柴油燃烧源占31.4%,生物质燃烧源占10.3%.岚山化工园区周围土壤PAHs来源中燃煤源所占比例高于华宇电解铝厂,汽油和柴油燃烧源所占比例低于华宇电解铝厂.岚山化工园区和华宇电解铝厂周边土壤中PAHs的总Ba P_(eq)平均值分别为326.7μg·kg~(-1)和441.1μg·kg~(-1),均低于加拿大土壤质量指导值600μg·kg~(-1).健康风险评估表明,华宇电解铝厂总ILCRs值(3.9×10~(-6)—6.0×10~(-6))高于岚山化工园区(2.9×10~(-6)—4.5×10~(-6)).两化工厂周围土壤总ILCRs值大于1×10~(-6),均存在潜在的致癌风险.  相似文献   

2.
山西晋中焦化基地多环芳烃排放对周边大田卷心菜的影响   总被引:1,自引:0,他引:1  
饮食摄入是多环芳烃(PAHs)人体暴露的主要途径之一,探究PAHs污染对农产品安全和人体健康的影响具有重要意义。山西晋中拥有大型焦化企业,也是北方重要的大田蔬菜种植基地,当地PAHs污染的特征和影响具有相当的典型性。研究选取修文工业基地周边的大田蔬菜基地作为研究区域,分别采集大气(含气相和颗粒相)、菜地表土和卷心菜菜心样品,确定各类样品中母体PAHs的浓度水平、组成比例和分布特征。结果表明,蔬菜基地周边大气中母体PAHs的平均浓度为301 ng·m-3。大气母体PAHs主要存在于气相,低环(2~3环)组分占据优势。利用同分异构体特征比值和主成分分析对大气PAHs进行初步源解析,炼焦、燃煤和生物质燃烧、以及交通尾气排放是当地PAHs的主要排放源。菜地表土母体PAHs的中位数浓度为236ng·g-1,范围为130~703 ng·g-1,以中、高环(4~6环)组分为主,菜地表土母体PAHs浓度与土壤总有机碳(TOC)分数呈现显著正相关关系。当地大田种植卷心菜菜心的PAHs中位数浓度为12.9 ng·g-1,范围为0.9~47.6 ng·g-1,低环组分所占比例最大,其组分谱分布与大气相似。偏相关分析显示周边大气PAHs对卷心菜菜心PAHs的传输贡献要大于表土PAHs。  相似文献   

3.
2019年5-6月采集了环渤海20个渔港的沉积物样品,采用高效液相色谱紫外成光检测器串联方法对16种多环芳烃(PAHs)进行检测,分析了其分布和组成特征,采用比值法和正定矩阵因子模型法(PMF)对PAHs进行定量源解析,采用效应区间中低值法和中值商法评估其生态风险.10种PAHs的检出率达到100%,表明PAHs在沉积...  相似文献   

4.
黄海近岸表层沉积物中多环芳烃来源解析   总被引:10,自引:0,他引:10  
采集了黄海近岸(日照岚山海域)12个站位的表层沉积物样品,利用气相色谱-质谱仪(GC-MS)分析了样品中16种多环芳烃(PAHs)的含量,结果显示16种PAHs含量范围在76.384~7512.023 ng·g-1,平均值为2622.576 ng·g-1.低环PAHs组分所占比重较大,中高环PAHs相对较小.利用比值法定性解析PAHs的来源,初步判断PAHs可能来自燃煤、燃油、焦化、柴油泄漏等污染源.进一步引用相关源成分谱,应用化学质量平衡模型(CMB8.2)对PAHs的来源进行定最解析,拟合计算结果表明研究海域表层沉积物中PAHs的主要来源为燃煤源、燃油源(主要为柴油燃烧)和焦炉源,其相对贡献率分别为53.99%、25.57%和13.97%.  相似文献   

5.
本文运用GC-MS测定了墨水河表层沉积物中16种优控多环芳烃(PAHs)浓度,采用多种数据分析技术解析了PAHs的来源.结果表明,苊烯、苊、蒽和苯并(a)蒽在部分样品中未检出,其余12种在所有样品中均有检出,16种PAHs总浓度为196.51—8549.33 ng·g~(-1),平均浓度为3320.03 ng·g~(-1).沉积物中PAHs的环数分布以高环为主,运用轻重比、分子比值和主成分分析-多元线性回归模型(PCA-MLR)等3种方法,共同确定PAHs的主要来源分别为混合源(煤炭、生物质和汽油燃烧源)、柴油燃烧源和石油源,这3种来源对总PAHs的贡献分别为59.8%、26.0%和14.2%.效应区间低/中值法(ERL/ERM)对PAHs生态风险分析表明,芴、菲、苯并(a)蒽、、苯并(b)荧蒽、苯并(k)荧蒽和苯并(a)芘在墨水河中下游偶尔会产生负面生态风险,二苯并(a,h)蒽存在经常产生负面生态效应的可能;平均效应区间中值商法(M-ERM-Q)分析表明,墨水河上游和入海口处PAHs的综合生态风险较低,而中下游站位则具有中低风险.  相似文献   

6.
以我国渤海某石油开采平台为中心,设立了11个调查站位.对平台周边表、底层海水及表层沉积物中可表征污染来源的多环芳烃类化合物的分布特征和来源进行了解析.结果显示,随着与平台距离的增加,平台周边海域PAHs含量呈现先增加后降低的趋势.在表层、底层海水中低分子量的PAHs占绝对优势,表明水体中多环芳烃主要来源于石油输入.沉积物中PAHs分析显示严重的多环芳烃生态风险在平台周边表层沉积物中不存在,但8处采样点的芴(Flu)超过效应区间低值(ERL),对海洋生物具有潜在的不利影响.因此需加强平台开采过程防漏措施,避免对海洋生态造成不可估量的危害.  相似文献   

7.
多环芳烃(polycyclic aromatic hydrocarbons,PAHs)是环境中普遍存在的稠环类化合物,由于其对人体健康和生态环境产生较大危害,美国环保局将16种PAHs列为优先控制的污染物。PAHs也是太湖流域的主要污染物之一。作为华东地区的重要水系和水源地,研究太湖环境质量的变化对改善太湖流域水生生态系统和提高沿岸居民身体健康具有重要意义。论文研究了太湖胥口湾水域表层水和沉积物的PAHs。结果显示,表层水和沉积物的PAHs总浓度分别为7.2~83 ng·L~(-1)和66~620ng·g~(-1)干重;年均值为29 ng·L~(-1)和218 ng·g~(-1)干重;年均毒性当量浓度为2.4 ng·L~(-1)和28 ng·g~(-1)干重。沉积物中的主要污染物为荧蒽、芘和,影响毒性当量浓度的主要是苯并(a)芘和二苯并(a,h)蒽。4环PAHs在沉积物中占主要,其浓度百分比为44%~48%,而5环PAHs则占毒性当量总浓度的90%以上,说明其危害主要来自5环PAHs。PAHs特征化合物比值分析表明,胥口湾沉积物中PAHs主要来源于煤和木材燃烧,表层水大部分为燃烧和石油的混合来源。污染水平的时空变化特点为丰水期(8月)表层水PAHs浓度偏高,沉积物偏低。湖区和湖岸的PAHs浓度只在丰水期有显著差异,表层水PAHs浓度湖区高于湖岸,沉积物相反;其他时期湖区和湖岸PAHs浓度无显著差异。根据加拿大沉积物环境质量标准,胥口湾整体生态风险水平较低。从时空分布特征来看,个别生态风险较高的点主要分布在湖岸,5月平水期可能是沉积物中PAHs生态风险较高的频发期。  相似文献   

8.
中国主要地区表层土壤多环芳烃含量及来源解析   总被引:1,自引:0,他引:1  
以表层土壤多环芳烃(polycyclic aromatic hydrocarbons,PAHs)为研究对象,查阅2000—2016年间发表的101篇中国主要地区表层土壤多环芳烃的文献,系统分析了中国主要地区表层土壤中PAHs的含量、组分、分布特征及主要来源,为中国土壤多环芳烃污染防治提供科学依据。结果表明:中国主要地区表层土壤中16种优控多环芳烃总量(中位值)(∑PAHs)为515.70 ng·g~(-1),和其他国家相比处于中等水平。16种多环芳烃(PAHs)在表层土中以菲(Phe)、荧蒽(Fla)和萘(Nap)的含量(中位值)最高,苊烯(Acy)、苊(Ane)以及茚苯并(1,2,3,-cd)芘(Inp)含量(中位值)最低;∑PAHs含量(中位值)地域分布表现为西北地区华北地区东北地区华东地区华中地区华南地区西南地区。表层土壤PAHs组成以高环(4环及以上)为主,占60.06%,不同地区PAHs的组成不同;通过对16种检出PAHs进行聚类分析,得出中国主要地区PAHs主要有煤炭燃烧源、油类燃料燃烧源、焦油生产源、石油源和生物质燃烧源等5个来源。结合同分异构体比值法和污染物特征指数法,进一步对22个省区表层土壤PAHs进行聚类分析,得出新疆、天津、陕西表层土壤PAHs主要来源于液化石油燃料及原油的污染,燃料成分主要为汽油;福建、吉林、山西、贵州和江西表层土壤中PAHs主要来源于草、木材、煤炭及生物质燃烧;北京、湖北、黑龙江、安徽、西藏、江苏、广东、浙江、湖南、山东、宁夏、重庆及香港等表层土壤PAHs则主要来源于液体化石燃料、生物质及煤炭的燃烧,燃料成分为煤炭和汽油。  相似文献   

9.
吉林省典型城市大气中PAHs来源解析   总被引:1,自引:0,他引:1  
通过对吉林省4个典型城市,即吉林、白城、四平和通化市大气颗粒物中多环芳烃(PAHs)的采样和分析,得到16种PAHs的成分谱,应用主因子分析和特征比值法对其进行定性研究,得到吉林省大气中PAHs的2种主要来源--车辆尾气和燃煤。并应用绝对主因子分析法进一步定量计算这2种源对PAHs的浓度贡献值及贡献率,结果表明:吉林省典型城市PAHs解析值为772.39μg·g-1,绝大多数解析值与监测值之间的比值接近于1,车辆尾气对各PAH的贡献率为2.6%~67.6%,燃煤源的贡献率为24.1%~121.2%。另外,该研究还计算了已识别的2种源对于不同环数的PAHs的贡献,2~3环的PAHs大部分来自于燃煤,约占总体的89%,车辆尾气仅占11%;4环的PAHs约58%来源于燃煤,42%来源于车辆尾气;5环的PAHs约45%来源于燃煤,55%来源于车辆尾气;6环PAHs来源于燃煤的占61%,来源于车辆尾气的占39%。  相似文献   

10.
为探究室内地面灰尘中15种多环芳烃(PAHs)污染的时间变化规律,于2012年3—7月对北京市一座办公楼内的某办公室进行了每周一次的连续高密度灰尘样品采集。利用高效液相色谱-荧光检测器检测15种PAHs含量。结果表明,该办公室内灰尘样品中∑PAHs浓度范围为1 180~24 300 ng·g~(-1),平均浓度为8 960 ng·g~(-1)。总体上,检出的PAHs以3环PAHs为主,其中菲占PAHs总量的59%以上,其次是4环和5环PAHs,4环PAHs中占的比重最高,约占4环PAHs总量的34%。该办公室内灰尘中∑PAHs的浓度存在显著的时间变化差异,总体表现为∑PAHs浓度随气温升高而降低的趋势。源解析结果显示,机动车排放源、石油源、木材与煤燃烧是北京市室内灰尘中PAHs的主要来源。健康风险评估结果显示,ILCR皮肤接触ILCR手口摄入,且CR均值大于10-6,说明该采样点的PAHs污染存在"潜在致癌风险"。  相似文献   

11.
对杭埠-丰乐河12个采样点的表层沉积物中16种优控多环芳烃(PAHs)的含量进行了测定.结果表明:16种PAHs均被普遍检出,总含量(∑PAHs)范围为71.3±15—3372±402 ng·g~(-1)干重(dw),平均值为938 ng·g~(-1)(dw),与国内主要河流相比其浓度处于中等水平.底泥中多环芳烃组成以4环和5环为主,共占∑PAHs的81%,其中,二苯并[a.h]蒽(DBA)浓度最高,平均浓度为254 ng·g~(-1).底泥总有机碳(TOC)与∑PAHs之间有良好线性关系.利用特征比值法和主成分分析探讨了PAHs的可能来源,结果显示,杭埠-丰乐河底泥中PAHs主要来自于流域周边居民生物质、煤燃烧及汽车燃油污染.利用沉积物质量基准法和苯并[a]芘毒性当量(TEQBa P)法分别评价了杭埠-丰乐河沉积物PAHs的生态风险和致癌风险,发现部分采样点某些多环芳烃含量超过了效应区间低值(ERL),具有潜在的生态风险;沉积物中TEQBa P均值高达343 ng·g~(-1),具有相当高的致癌风险.  相似文献   

12.
2014年7月,采集长江嘉陵江重庆段9个断面的地表水和沉积物样品,检测15种多环芳烃(PAHs)含量.结果表明,地表水的∑PAHs浓度范围为65.6—1249 ng·L~(-1),沉积物中∑PAHs浓度范围为68.6—4226 ng·g~(-1),与其历史浓度水平相当;聚类分析表明,化工园区对其下游PAHs分布有一定影响,园区下游地表水和沉积物∑PAHs浓度最高.两江汇流前,地表水4环PAHs占总量的43.63%—61.68%;两江汇流后,2环比例增加,占总量的29.01%—68.72%;沉积物4环PAHs占总量的26.62%—48.74%.在顺流方向,地表水中河左∑PAHs浓度高于河中和河右,沉积物中∑PAHs浓度横向无明显差别,其中化工园区下游可能是受左岸工业影响,地表水中河左∑PAHs浓度是河中、河右的12倍和7倍,沉积物中河左∑PAHs浓度是河右的7倍.环数组成、分子比值和主成分分析表明研究区域地表水PAHs来源主要为木材、煤燃烧源,同时还包括石油燃烧和石油泄漏,沉积物则主要为木材、煤高温燃烧源.  相似文献   

13.
《环境化学》2018,(春节)
为研究2017年春节期间北京市城区和郊区大气PM_(2.5)及负载多环芳烃(PAHs)的污染水平和污染特征,分别在北京城区和郊区各选一个监测点,采集大气中的PM_(2.5),采用重量法和超声提取-GC/MS对滤膜上的PM_(2.5)及多环芳烃的浓度进行测定.结果表明,春节期间城郊两地的大气PM_(2.5)和PAHs均呈多峰分布,PM_(2.5)均值分别为104.5μg·m~(-3)和104.6μg·m~(-3),无显著性差异;两地PAHs均值差异具有统计学意义(P=0.001).除夕日(CSFE)烟花集中燃放时段PM_(2.5)在城郊两地的日均浓度较前一日非集中燃放日均有明显升高.春节期间PAHs组成以4环和5环为主,二者之和占PAHs总量的80%以上,特征比值法显示城区污染主要来自燃煤和交通尾气的混合源,郊区燃煤占主导.  相似文献   

14.
张啸  崔阳  张桂香  何秋生  王新明 《环境化学》2014,(12):2144-2151
对太原市2012年3—10月雨水中16种溶解态多环芳烃(PAHs)的分布特征、沉降通量和来源进行了分析.结果表明,16种PAHs总的(∑16-PAHs)平均浓度为1081.2 ng·L-1(范围为316.8—6272.3 ng·L-1),以2—3环PAHs为主,占75.4%,4环和5—6环PAHs分别占18.2%和6.4%.∑16-PAHs浓度与温度(P<0.05)和电导率(P<0.01)呈显著正相关.同一场降雨不同阶段的∑16-PAHs浓度及其组成与降雨量有关.∑16-PAHs的全年平均沉降通量为481.5 ng·m-2·d-1,9月的沉降通量最高(2342.8 ng·m-2·d-1),其次是7月(1604.4 ng·m-2·d-1),10月的最低(83.3 ng·m-2·d-1),其中2—3环PAHs的沉降通量明显高于4环和5—6环PAHs,∑16-PAHs的月沉降通量与月平均降雨量(P<0.01)和降雨频次(P<0.05)呈显著正相关.利用特征比值法判断PAHs的主要来源是煤燃烧,同时也存在一定的石油燃烧源和少部分的石油源.  相似文献   

15.
太湖部分沉积物中多环芳烃生态风险评估   总被引:5,自引:0,他引:5  
李玉斌  刘征涛  冯流  周俊丽 《环境化学》2011,30(10):1769-1774
对2009年12月采集的部分太湖表层沉积物中多环芳烃类化合物(PAHs)的现状进行调查和研究,结果表明,太湖流域表层沉积物中共检出属于美国优先控制16种PAHs中的9种,各采样点位PAHs浓度范围在264.9—1703.2 ng·g-1之间.分析显示,表层沉积物中以4环及4环以上PAHs为主,两者之和约占PAHs总量的...  相似文献   

16.
采用气相色谱-质谱联机方法(GC-MS)分析了东北某钢铁厂及周边居住区、风景区共11个采样点表层土壤样品16种多环芳烃(PAHs),结果表明,钢铁工业区16种PAHs(∑PAHs)浓度范围为3.39×103—1.54×105ng·g-1,平均浓度3.21×104ng·g-1;居住区∑PAHs浓度范围为587—6.70×103ng·g-1,平均浓度3.82×103ng·g-1;风景区千山∑PAHs浓度385 ng·g-1.∑PAHs和Bap浓度均呈工业区>居住区>风景区趋势.与国内外其他研究结果相比,该钢铁工业区及其周边居住区土壤PAHs污染相对较为严重,11个采样点中有9个采样点土壤∑PAHs为严重污染,4个采样点苯并(a)芘(Bap)浓度超过加拿大土壤质量基准.利用特征比值法(Diagnostic Rate)和主成分分析法(Principal component analysis,PCA)对钢铁工业区及其周边地区土壤进行了源解析,结果表明,钢铁工业区土壤中PAHs主要来源于焦炉、燃煤、柴油燃烧等污染源,周边地区土壤除受工业污染源排放影响外,机动车汽油、柴油污染排放也有重要影响.  相似文献   

17.
本研究在汾河流域上、中、下游及其部分支流布设29个采样点,对其水体和表层沉积物多环芳烃(PAHs)的空间分布规律及生态风险进行了分析和讨论。结果表明,汾河流域水相中丰水期PAHs总量浓度范围是0.530~16.002μg·L~(-1),平均浓度为(2.738±3.078)μg·L~(-1),枯水期PAHs总量浓度范围是0.588~12.916μg·L~(-1),均值为(2.762±3.132)μg·L~(-1)。就空间分布而言,汾河流域整体呈现上游污染较轻,中下游污染严重的特点。PAHs的组成规律显示,丰水期和枯水期PAHs含量均以低环(2~3环)为主,不同采样期低环PAHs所占比例分别为96.5%和90.4%。与其他15个研究地区水体PAHs含量比较,汾河流域水体中PAHs污染程度的国内外对比处于中等到较高程度的污染。丰水期和枯水期水体中PAHs来源于石油源和植物、木材、煤的燃烧,主要受到流域煤化工、燃煤电厂排放污染物的影响。地表水健康风险评价结果显示,汾河流域丰水期和枯水期分别有13.8%和20.7%的点位存在一定的健康风险。汾河流域沉积相中16种PAHs平均浓度为(3.774±1.987)μg·g-1,其污染主要集中在流域中下游地区。PAHs的组成规律显示,PAHs含量集中在低环(2~3环),约占总量的75%左右。与本研究提到的河流、湖泊及港口沉积物中PAHs含量比较,汾河流域沉积物中PAHs污染程度仍处于中等偏高的污染水平。丰水期沉积相中PAHs以燃烧源和石油源为主,部分来自典型石油类产品的输入。表层沉积物生态风险评价结果显示,对于提出的12种PAHs的生态风险的效应区间低值(ERL值)或效应区间中值(ERM值)以及苯并(b)荧蒽(Bb F)和苯并(k)荧蒽(Bk F)这2类没有最低安全值的PAHs化合物来说,汾河上、中、下游流域均有采样点的PAHs可能存在着对生物的潜在生态风险。通过本研究可全面地了解该流域多环芳烃的空间分布规律及其可能的来源,并且为汾河流域多环芳烃污染的控制和生态风险评价提供科学依据。  相似文献   

18.
雾霾对我国尤其是华北平原地区造成了极大的困扰,其发生常以颗粒物浓度急剧增长为特征,给人群健康带来了极大的风险。为进一步阐释雾霾的形成过程及其健康效应,在冬季雾霾期对北京城区大气颗粒态及气态中18种多环芳烃(PAHs)进行了连续测定,同步监测颗粒物、痕量气体污染物以及气象参数的变化,并对PAHs的浓度、组成、气粒分配等大气行为以及其与气象因素的作用机制进行了探讨。北京城区大气气相和颗粒物相中ΣPAHs浓度分别为585 ng·m~(-3)和705 ng·m~(-3)。雾霾发生时,PM_(2.5)浓度升高了3.6倍,PAHs浓度升高了2.6倍,18种PAHs同系物的浓度均随PM_(2.5)的浓度线性增加,其线性相关性受PAHs来源以及氧化活性的影响;夜间较重质量数的PAHs相对比例增加,主要受日间交通源以及夜间燃烧源贡献强度影响。受颗粒物组成以及湿度的影响,雾霾天气下PAHs颗粒相分配率降低。进一步评估了北京城区人群的PAHs吸入健康效应,冬季雾霾频繁发生下其对人群癌症风险为6.2×10~(-5)。  相似文献   

19.
2012年8月于云南省采集了16个树皮样品,分析了其中多环芳烃和有机氯农药(包括六六六和滴滴涕)的浓度水平和分布特征.树皮中∑_(16)PAH的浓度范围为317—1194 ng·g~(-1),平均值为639 ng·g~~(-1);研究区域树皮中∑_4HCH和∑_6DDT的浓度分别为为0.10—3.86 ng·g~(-1)干重(平均值为1.10 ng·g~(-1)干重)和0.78—7.29 ng·g~(-1)干重(平均值为3.32 ng·g~(-1)干重),PAHs浓度是藏东南林芝地区的2—3倍,而有机氯农药的浓度低于藏东南林芝地区.树皮中脂肪可影响研究区域持久性有机污染物(Persistent organic pollutants,POPs)的分布,但影响不显著.同时HCHs、DDTs和2环及3环PAHs的浓度随海拔的升高而增加,呈典型的高山冷捕获效应;4环、5环和6环PAHs的浓度随着海拔的升高而降低,这可能是云南本地污染源影响所致.较低质量的PAHs(2—3环)是研究区域PAHs的重要组成部分,平均占总浓度的77%以上,说明研究区域受到污染物大气远距离传输的重要影响.PAHs特征单体比值表明,草、木材等生物质和煤炭燃料等的低温燃烧是研究区域PAHs的主要来源,同时较低的α/γ-HCH和较高的o,p'-DDT/p,p'-DDT比率表明,林丹和三氯杀螨醇的使用对研究区域树皮中有机氯农药的污染有一定的贡献.根据反向气团轨迹模型及PAHs和OCPs的浓度分布,推断研究区域的OCPs主要受印度季风和西风环流的影响,而PAHs是大气远距离传输源和云南本地污染源共同作用的结果.  相似文献   

20.
利用气相色谱-质谱联用仪(GC-MS)对广西清水泉地下河水16种多环芳烃(PAHs)的含量进行了测定,研究地下河水中PAHs的组成、分布规律及主要来源,为城市近郊型地下河系统持久性污染物防治提供科学依据.结果表明,地下河水中∑PAHs浓度范围为162.13—224.99 ng·L-1,平均值为191.71 ng·L-1,PAHs以4环为主,占47.14%;地下河水中PAHs的含量自上游至下游逐渐增大,2—3环PAHs的百分比先升高后降低;PAHs来源解析表明,上游地区PAHs来源以草、木、煤燃烧源为主,中下游地区敢怀村附近PAHs来源为石油源,地下河出口处PAHs来源以石油源和燃烧源的混合源为主.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号