首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
使用磷酸盐溶液和方解石之间的反应得到方解石去除水中磷酸盐后的产物,即磷酸盐改性方解石,通过实验对比分析了方解石和磷酸盐改性方解石对水中磷酸盐的去除动力学,并考察了磷酸盐改性方解石去除水中磷酸盐的各种影响因素。磷酸盐改性方解石对水中磷酸盐的去除能力明显优于方解石。当反应时间为2h时,实验条件下磷酸盐改性方解石对水中磷的去除率达到72%,而方解石对磷的去除率仅为35%。当pH为5~7时,磷酸盐改性方解石对水中磷酸盐的去除能力较高;当pH由7增加到10 h,对磷酸盐的去除能力略微下降;当pH由10增加到12 h,对磷酸盐的去除能力急剧下降。磷酸盐改性方解石对水中磷酸盐的单位去除量随初始磷质量浓度的增加而增加。过高的初始磷质量浓度会导致磷酸盐改性方解石对水中磷酸盐的去除率过低。磷酸盐改性方解石对水中磷酸盐的去除能力随反应温度的升高而增加。磷酸盐改性方解石对水中磷酸盐的去除动力学可以较好地采用准二级动力学模型加以描述。水中共存的钙离子有利于磷酸盐改性方解石对磷酸盐的去除,而水中共存的碳酸氢根离子抑制了磷酸盐改性方解石对磷酸盐的去除。磷酸盐改性方解石去除水中磷酸盐的主要机制是磷酸钙沉淀作用。磷酸盐改性方解石不仅会为磷酸钙沉淀反应的异质成核提供核心,促进磷酸钙沉淀的形成,而且当水处于对方解石不饱和状态时会溶解释放出可溶性钙,为磷酸钙沉淀的形成提供钙源。上述结果表明,方解石去除水中磷酸盐后的产物可以被再次用于水中磷酸盐的去除,并且对磷酸盐的去除效果优于原始的方解石。  相似文献   

2.
针对油田采出水中含有多环芳烃种类多且较难去除的特点,选取了菲和芴两种代表性多环芳烃作为研究对象,采用UV/H2O2/TiO2技术对油田采出水中多环芳烃的处理效果进行了研究;考察了在254nm波长紫外光照射下,TiO2投加量、H2O2投加量、pH值和光照时间对水样中的菲和芴处理效果的影响.实验结果显示,处理初始浓度为1000μg·L-1的菲、芴时,TiO2用量为2.2g·L-1、H2O2用量为0.12mmol·L-1、pH值为7、光照时间1.5h时,去除效果较好.  相似文献   

3.
人居生活废弃物生物黑炭对水溶液中Cd2+的吸附研究   总被引:2,自引:0,他引:2  
以人居生活废弃物生物黑炭为材料,探讨生物黑炭对Cd2+的吸附动力学及热力学特性,通过平衡吸附法研究吸附时间、Cd2+初始质量浓度、吸附剂投加量、溶液pH值以及黑炭粒径对Cd2+吸附率的影响.结果表明,吸附时间为2h时基本达到吸附平衡,准二级动力学方程能很好地描述生物黑炭对Cd2+的吸附过程.Langmuir模型能较好地描述生物黑炭对Cd2+的等温吸附过程,根据该模型模拟得到25℃条件下Cd2+最大吸附量为6.22mg·g-1.Cd2+去除率随生物黑炭投加量的增加而增大;生物黑炭对Cd2+吸附量随其粒径减小而增大;溶液初始pH值为4.0~7.5时,pH值变化对Cd2+吸附量的影响不显著.采用人居生活废弃物生物黑炭去除水溶液中Cd2+时,控制溶液Cd2+初始质量浓度30mg·L-1,粒径小于0.25 mm,投加水平8g·L-1,反应温度25℃,反应时间1~2h,Cd2+去除率可达80%.人居生活废弃物生物黑炭可以作为去除污染水体中Cd2+的吸附剂.  相似文献   

4.
纳米铁用于饮用水中As(Ⅲ)去除效果   总被引:6,自引:0,他引:6  
主要考察实验室合成制得的纳米铁对毒性高,迁移能力强,在厌氧地下水中作为砷的主要存在形式的As(Ⅲ)去除效果.通过批实验探讨吸附动力学,以及pH和纳米铁投加量对As(Ⅲ)的去除影响.反应1 h时,0.25 g纳米铁对起始质量浓度为910μg·L-1 As(Ⅲ)的去除率高达99%以上;反应遵循准一级反应动力学方程,标准化后的速率常数ksA为1.64mL·m-2·min-1.研究结果表明,具有高反应活性的纳米铁将成为饮用水中砷去除非常有效的吸附材料.  相似文献   

5.
为提高生物炭对水中Cd2+的吸附去除性能,以BC1和BC22种稻壳生物炭为基础材料,分别采用NaOH和FeCl3溶液制备得到NBC1和NBC2以及FBC1和FBC2改性稻壳生物炭,并通过吸附动力学和等温吸附实验研究6种生物炭对水中Cd2+的吸附性能.结果表明,对于50 mg·L-1 Cd2+溶液,当生物炭投加量为1 g...  相似文献   

6.
不同因素对多硫化钙处理地下水中Cr(Ⅵ)效果影响   总被引:1,自引:0,他引:1  
选用多硫化钙为还原剂,进行地下水中Cr(Ⅵ)去除效果的研究。主要考察了多硫化钙投加量、溶液p H、温度、Mn(II)、Fe(III)、腐殖酸(HA)存在条件下,对多硫化钙处理Cr(Ⅵ)效果的影响。结果表明:当多硫化钙与Cr(Ⅵ)的摩尔比由1∶1变到5∶1时,去除率从41.03%增加到100.00%;溶液p H值从6.0增上升到9.0时,去除率下降27.16%;水环境温度由(7±1)℃增加到(27±1)℃时,去除率达到100.00%所需反应时间,缩短了4~6倍;当地下水中含有Mn(II),随着Mn(II)质量浓度升高(0.00~10.00 mg·L-1),Cr(Ⅵ)浓度低于检测线所需要的时间缩短3倍;当地下水中含有Fe(III),Fe(III)质量浓度从0.00 mg·L-1增加到10.00 mg·L-1,去除率增加9.05%;当地下水中含有HA(0.00~15.00 mg·L-1),去除率由99.31%降低至90.28%。(7)多硫化钙与六价铬的反应产物的X射线衍射光谱图像中2θ值为18.2°、19.36°、26.67°与Cr(OH)3,2θ值为23.02°与单质S的标准卡片匹配度较高。另外,对含有11.36 mg·L-1 Cr(Ⅵ)实际污染地下水的处理效果表明,Cr(Ⅵ)的去除率达到99.78%,残留浓度达到GB/T 1448—1993地下水质量标准III类标准,说明多硫化钙修复实际铬污染地下水具有良好的应用前景。  相似文献   

7.
马虹  李婷  陈冰  张小飞 《环境化学》2012,(12):1874-1877
针对油田采出水中含有多环芳烃种类多且较难去除的特点,选取了菲和芴两种代表性多环芳烃作为研究对象,采用UV/H2O2/TiO2技术对油田采出水中多环芳烃的处理效果进行了研究;考察了在254 nm波长紫外光照射下,TiO2投加量、H2O2投加量、pH值和光照时间对水样中的菲和芴处理效果的影响.实验结果显示,处理初始浓度为1000μg.L-1的菲、芴时,TiO2用量为2.2 g.L-1、H2O2用量为0.12 mmol.L-1、pH值为7、光照时间1.5 h时,去除效果较好.  相似文献   

8.
采用UV+TiO2光催化氧化法处理印染废水生化出水,考察了反应时间、TiO2投加量以及初始pH对反应的影响,结果表明,TiO2投加量800 mg·L-1,反应时间8 h,反应pH为原水pH(6.5~8.0),在此操作条件下,ADMI7.6、DOC和COD的去除率分别为86%、20%及46%;选取两组反应条件,对其进出水采用XAD-8/XAD-4树脂联用技术,分析疏水酸、非酸疏水物质、弱疏水物质及亲水物质4类有机物的去除情况,结果表明,UV+TiO2光催化氧化处理工艺都能够长期有效去除印染废水生化出水中的弱疏水物质、疏水物质和非酸疏水物质引起的色度.  相似文献   

9.
雪硅钙石对生活污水中磷的去除实验   总被引:2,自引:0,他引:2  
以含低浓度磷(10-15mg·l-1)的生活污水为研究对象,通过引入晶种雪硅钙石,使水体中的磷以不溶磷酸盐的形式结晶到晶种上而去除,在静态条件下合适的投加量为雪硅钙石6g·l-1,氟化钙3.5g·l-1-4.2g·l-1,反应4h,可使人工快渗出水的总磷浓度小于0.5mg·l-1,去除率达到96.6%以上,出水的pH值保持在8-8.6之间.  相似文献   

10.
针对不同质量浓度重金属对污泥活性的影响问题,采用模拟SBR反应器研究了不同质量浓度的Zn2+对活性污泥污水处理系统的影响.结果表明,Zn2+对SBR污水处理系统处理效果的抑制作用随着质量浓度的增加而增强.Zn2+投加的质量浓度为20 mg·L-1时,Zn2+对有机物和氨氮的去除没有明显的影响;当Zn2+质量浓度为40 mg·L-1时,Zn2+对活性污泥的抑制作用在实验前期表现明显,后期不显著;当Zn2+质量浓度为80 mg·L-1时,对系统中污泥的活性抑制明显,对CODCr和NH4+-N去除率的抑制率分别达到27.8%和49.4%.此外,研究结果也表明,活性污泥对Zn2+冲击作用具有一定的自适应能力,且在低于40 mg·L-1时硝化菌的适应调整能力较降解COD好氧菌群强.  相似文献   

11.
城市水环境生物修复试验研究   总被引:1,自引:0,他引:1  
为了摸索城市水环境污染的治理方法,对因用于城市防洪排涝而遭受严重污染的广州市玉翠湖进行了生物修复研究.研究中,采用Probac生物促生营养剂对湖泊进行了为期40 d的围栏投药试验,结果表明,投加5~10 mg·L-1的Probac制剂,经过10~15 d的肩动周期后,水体污染物得到有效去除,在治理后期持续维持0.5~2.5 mg·L-1的投加量投加时,可以起到抗排涝污染和迅速恢复水体水质的效果.治理后的玉翠湖水体COD由不加处理条件下的50.0~6.0 mg·L-1降至12.9~30.5mg·L-1,在无防洪排污人湖时,水体COD维持稳定,最大去除率达到71.9%,在防洪排污人湖时会引起水质的波动,COD平均去除率为34.0%;BOD由20.0~24.0 mg·L-1降至6.7~10.4 mg·L-1,无防洪排污时最大去除率为69.8%.防洪排污时平均去除率为55.3%;氨氮由0.9~1.1 mg·L-1降至0.6~0.7 mg·L-1,最大去除率36.5%;总磷由0.23~0.45 mg·L-1降至0.14~0.17 mg·L-1,最大去除率40%.研究表明:对于已彻底截污的城市景观湖.Probac制剂具有较好的水质净化效果.  相似文献   

12.
本实验选用安徽某生物质发电厂燃烧炉底渣,通过研究吸附等温线、吸附时间以及电厂灰投加量和溶液初始p H对生物质灰吸附Cu2+的影响,以确定其对水溶液中Cu2+的吸附特性.结果表明,Cu2+初始浓度在50—100 mg·L~(-1)范围内,Langmuir模型能很好地描述生物质电厂底渣对Cu2+的等温吸附规律,其理论饱和吸附量为20 mg·g~(-1),非常接近实际饱和吸附量19.45 mg·g~(-1).溶液初始p H值在2—6范围时,Cu2+的去除率随p H值的升高而增加,当p H在6附近时去除率最佳,接近100%.溶液Cu2+初始浓度为100 mg·L~(-1),体积为50 m L时,随生物质电厂底渣投加量增加,其对Cu2+的去除率上升,但去除效率下降,0.2 g左右可能是达到最佳去除效率和去除率的用量.溶液中Cu2+的去除率随吸附时间的增加而升高,用量越大达到吸附平衡的时间越短,但90 min左右时各个用量的去除率均趋于稳定.  相似文献   

13.
采用La3+、Fe~(2+)、Fe3+和粉末状天然沸石制备了一种镧-Fe_3O_4-沸石复合材料,通过批量吸附实验考察了该复合材料对水中磷酸盐和铵的吸附作用.结果表明,镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的单位吸附量随吸附剂投加量的增加而降低,对磷酸盐和铵的去除率随吸附剂投加量的增加而增加.当溶液pH值由6逐渐增加到11时,镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的吸附能力逐渐下降.镧-Fe_3O_4-沸石复合材料对水中磷酸盐的吸附平衡数据可以采用Langmuir、Freundlich和Dubinin-Redushkevich(D-R)等温吸附模型加以拟合,对铵的吸附平衡数据可以采用Langmuir和D-R等温吸附模型加以拟合.根据Langmuir模型计算得到的镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的最大单位吸附量分别为12.9 mg·g~(-1)(以磷计)和6.99 mg·g~(-1)(以铵计).镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的吸附动力学过程可以采用准二级动力学方程加以描述.升高反应温度增强了镧-Fe_3O_4-沸石复合材料对水中磷酸盐和铵的吸附.溶液存在的氯离子、硫酸根离子和碳酸氢根离子对镧-Fe_3O_4-沸石复合材料吸附磷无负面影响.溶液存在的钾离子对镧-Fe_3O_4-沸石复合材料吸附铵的负面影响最大,其次为钠离子,钙离子的负面影响最小.1 mol·L~(-1)NaOH溶液可以使50%左右吸附到吸附剂上的磷酸盐解吸下来.1 mol·L~(-1)NaCl溶液可以使98%左右吸附到吸附剂上的铵解吸下来.当溶液pH值为7时,镧-Fe_3O_4-沸石复合材料对磷酸盐的吸附机制主要是配位体交换作用.镧-Fe_3O_4-沸石复合材料对铵的吸附机制主要是阳离子交换作用.  相似文献   

14.
季桂娟  赵勇胜 《生态环境》2006,15(3):499-502
通过静态实验和动态实验研究了铁粉、煤灰及其混合物对地下水中六价铬离子Cr(Ⅵ)的去除效果。在静态实验中,探讨了铁粉用量,煤灰用量,煤灰粒度,放置时间对地下水中Cr(Ⅵ)去除率的影响及两者混合后对地下水中Cr(Ⅵ)去除效果。实验结果表明,两者混合后,对水中Cr(Ⅵ)的去除效果较好,并可节省铁粉的用量,即0.5g铁粉和10.0g煤灰混合,处理50mLCr(Ⅵ)质量浓度为10mg·L-1的水样,与单独用0.7g铁粉处理的效果相同,水中Cr(Ⅵ)的去除率接近100%。在动态实验中,用与静态实验等量的铁粉和煤灰,可处理150MlCr(Ⅵ)质量浓度为10mg·L-1的水样,处理后水中的Cr(Ⅵ)可达到饮用水的水质标准。结果表明,铁粉和煤灰可作为原位处理地下水中Cr(Ⅵ)的反应材料,为地下水的原位处理技术奠定了实验基础。  相似文献   

15.
活性炭吸附对生化出水中不同种类有机物的去除效果   总被引:4,自引:1,他引:3  
研究活性炭吸附对城市污水生化出水中疏水酸、非酸疏水物质、弱疏水物质及亲水物质的去除效果,在静态吸附实验中,当活性炭投加量为0.3g·l-1时,达到吸附平衡后,对DOC和UV254的去除率可分别达到54%和76%,同时能够完全消除生化出水的生物毒性,活性炭吸附对疏水酸和亲水物质均有良好的去除效果,其DOC去除率分别达到50%和80%,对非酸疏水物质和弱疏水物质去除率相对稍低,DOC去除率分别为29%和28%,活性炭吸附对有机物的亲疏水性没有明显偏好.  相似文献   

16.
比较了4种固定化球形红假单胞菌(Rhodopseudomonas sphaeroides)处理含Cd、Cr重金属废水的效果,对固定化菌吸附Cd和Cr的工艺条件进行了优化,并通过生物反应器连续处理实际电镀废水,分析了处理后的效果。通过比较,确定了20g.kg-1沸石和20g.L-1海藻酸钠组合作为共固定材料,固定化菌对Cd和Cr的去除效果明显优于游离菌。采用正交试验优化废水处理工艺条件,结果表明,废水pH值、菌体投加量对固定化菌体的处理效果影响较大,当处理废水的pH值为6.0、菌体投加量为10.00g.L-1时,对40.00mg.L-1含Cd废水的去除率可达96.68%。4轮吸附-解吸循环试验结果显示,固定化菌体可重复利用3次,固定化菌体在使用第3次时,Cd去除率仍可达51.20%。在生物反应器中,用固定化菌体处理质量浓度为92.61mg.L-1的含Cd电镀废水,3h时对Cd的去除率达到98.80%,对含Cu、Au、Ni废水中重金属的去除率也高于90.00%。  相似文献   

17.
一株耐酸耐铜细菌的选育及其吸附铜离子的特性   总被引:1,自引:0,他引:1  
从某铜矿选矿废水中筛选分离出一株在强酸性条件下对铜去除能力较高的菌株Z-1,经鉴定为克雷伯氏杆菌.考察了碳源、氮源、pH、温度、吸附时间、投菌量等因素对菌株Z-1生长量及吸附Cu2+的影响.结果表明,菌株Z-1的最佳碳源为乙酸钠,其最佳用量为3 g.L-1;最佳氮源为硫酸铵,最佳用量为1.2 g.L-1.在投菌量为4 g.L-1、温度为30℃、吸附时间为4 h的条件下,菌株Z-1对pH=3、Cu2+100 mg.L-1的废水吸附效果最优,Cu2+去除率达到59.7%.菌株Z-1对Cu2+的吸附过程能很好地用吸附模型Langmuir方程描述,菌株Z-1去除的铜离子,有92.3%分布在细胞壁上,其余7.7%分布在细胞质内,说明菌株Z-1对铜离子的去除主要为表面吸附.  相似文献   

18.
以Cu2Se为原料,用溶胶-凝胶法(Sol-Gel)合成了TiO2/CuO/Cu2O(SeO3)光催化剂,用XRD、FTIR和EDAX等方法进行了表征.探讨了催化剂制备过程中焙烧温度对催化剂组成、晶型结构和光催化去除水中腐殖酸性能的影响.当Cu2Se/TiO2焙烧温度为450℃,焙烧2h时,Cu2Se转化为CuO和Cu2O(SeO3).室温下当TiO2/CuO/Cu2O(SeO3)催化剂投加量为1.5g·l-1,溶液pH7.0时,水中腐殖酸的去除率可达到63.6%。  相似文献   

19.
刘立华  曹菁  吴俊  周智华  令玉林  唐安平 《环境化学》2012,31(10):1590-1596
以羟基亚乙基二膦酸(HEDP)预镀铜废水为处理对象,考察两性高分子螯合絮凝剂(ACPF)和CaCl2对其处理效果.结果表明,单独使用ACPF或CaCl2,用量大,残余Cu2+和COD浓度均不能达到电镀污染物排放标准(GB21900—2008);将ACPF和CaCl2配合使用,Ca2+可与HEDP螯合生成HEDP—Ca沉淀,促进ACPF与Cu2+螯合;且Ca2+还可与废水中的酒石酸根离子形成溶解度很小的结晶,促进絮体的形成和沉降.因此,处理药剂的用量明显降低,Cu2+和COD残余浓度均能达标.适宜的处理条件为:弱碱或碱性条件下,ACPF投加量为3.0 g.L-1,CaCl2投加量为2.0 g.L-1,Cu2+和COD的去除率分别达99.74%和97.5%,残余浓度分别为0.335和25.27 mg.L-1.  相似文献   

20.
采用还原铁粉处理印染废水生化出水,以ADMI7.6作为主要测试指标,考察铁粉投加量、反应时间以及进水pH对出水水质的影响,并研究在此过程中铁粉还原作用和混凝絮凝作用对整体效果的贡献比.结果表明,条件1:铁粉投加量=1.0 g.L-1,反应时间150 min,进水pH 2;条件2:铁粉投加量1.0 g.L-1,反应时间150 min,进水pH 3.条件1时,ADMI7.6去除率达到80%,但铁泥量大,酸碱消耗大,在此反应条件下,铁粉还原去除40%,混凝絮凝去除60%;条件2时,ADMI7.6去除率达到50%左右,产铁泥量小,经济合理;在此反应条件下,铁粉还原去除55%—63%左右,混凝絮凝去除37%—45%左右.经XAD8/XAD4树脂联用,分析疏水酸、非酸疏水物质、弱疏水物质及亲水物质4类有机物的去除情况表明,条件1时,能够高效去除非酸疏水物质,去除率为95%,对于疏水酸以及弱疏水物质也有一定的去除效果;条件2时,对4类有机物去除均有一定作用,但对于非酸疏水物质以及疏水酸的去除效果要略差于条件1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号