首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Long-term biodegradation of MSW in an aerobic landfill bioreactor was monitored as a function of time during 510 days of operation. Operational characteristics such as air importation, temperature and leachate recirculation were monitored. The oxygen utilization rates and biodegradation of organic matter rates showed that aerobic biodegradation was feasible and appropriate to proceed in aerobic landfill bioreactor. Leachate analyses showed that the aerobic bioreactor could remove above 90% of chemical oxygen demand (COD) and close to 100% of biochemical oxygen demand (BOD5) from leachate. Ammonium (NH4+), nitrate (NO3-) and sulphate (SO4(2-)) concentrations of leachate samples were regularly measured. Results suggest that nitrification and denitrification occurred simultaneously, and the increase in nitrate did not reach the levels predicted stoichiometrically, suggesting that other processes were occurring. Leachate recirculation reduced the concentrations of heavy metals because of the effect of the high pH of the leachate, causing heavy metals to be retained by processes such as sorption on MSW, carbonate precipitation, and hydroxide precipitation. Furthermore, the compost derived from the aerobic biodegradation of the organic matter of MSW may be considered as soil improvement in the agricultural plant production. Bio-essays indicated that the ecotoxicity of leachate from the aerobic bioreactor was not toxic at the end of the experiment. Finally, after 510 days of degradation, waste settlement reached 26% mainly due to the compost of the organic matter.  相似文献   

2.
The purpose of this study is to determine the impact of leachate recirculation on the degradation of municipal solid wastes (bioreactor concept). The study was carried out using columns containing approximately 50 kg of waste, in order to follow waste degradation over a limited time. Three types of waste were studied: fresh waste of standard composition, fresh waste of fermentable composition and some 8-yr-old waste extracted from a site in France. Measurement of the global parameters, such as chemical oxygen demand (COD), volatile acidity, alkalinity, leachate conductivity, methane potential of the wastes and biogas production monitoring (volume of CO2 and CH4 produced), were carried out. The quantity of oxydizable matter and biogas production was increased by the leachate recirculation, and the duration of the first degradation phases was reduced in all cases. Chloride, ammonium and organic pollution accumulation was observed according to the duration of recirculation. After 400 days of degradation, waste stabilization seemed to be reached for all of the recirculated columns (COD<300 mg/L O2, and methane potential reached).  相似文献   

3.
Bioreactor landfills: experimental and field results   总被引:28,自引:0,他引:28  
Bioreactor landfills allow a more active landfill management that recognizes the biological, chemical and physical processes involved in a landfill environment. This paper presents the results of an experimental study carried out to determine the effect of solid waste size, leachate recirculation and nutrient balance on the rate of municipal solid waste (MSW) biodegradation. Higher rates of MSW biodegradation eventually cause a reduction of the contaminant life span of the landfill and decrease in the cost of long term monitoring. The study indicated that the smaller the size of the MSW the faster the biodegradation rate of the waste. In addition, the paper presents the results of leachate recirculation on solid waste biodegradation in a full-scale landfill site, which is located in Nepean, Ontario, Canada. The leachate was recirculated into the landfilled solid waste for 8 years through infiltration lagoons. Similar results to those obtained in the laboratory scale experiments were noted. The average pH of the leachate in the early stages of recirculation was on the acidic range of the pH scale, however, the pH value was in the range of 7-8 after 2 years of leachate recirculation. The concentration of chloride remained fairly constant at about 1000 mg/l during the leachate recirculation period. A decreasing trend of the organic load, measured as biological oxygen demand and chemical oxygen demand, was observed. Recovery of landfill air space was also noted because of the enhanced subsidence and decomposition of the solid waste.  相似文献   

4.
Two fresh refuse bioreactors (F1 and F2) were operated under semi-aerobic and anaerobic conditions, respectively. The leachate from the bioreactors F1 and F2 was introduced into the aged refuse bioreactors (A1 and A2), and the effluent from A1 and A2 was subsequently recirculated into F1 and F2, respectively. The effect of the semi-aerobic recirculation process on refuse degradation was investigated, comparing it with that of the anaerobic recirculation process. Results indicate that the semi-aerobic recirculation process can increase the accumulated net production of leachate and promote evaporation. The accumulated net production of refuse in F1 is 320 mL/kg and that of F2 is 248 mL/kg, with leachate reduction amounting to 315 and 244 mL/kg refuse, respectively. The leachate quantity reduction of semi-aerobic and anaerobic leachate recirculation process accounted for 98.4% and 98.3% of the accumulated net production of leachate, respectively. The semi-aerobic leachate recirculation process can improve the biodegradation of organic matter from fresh refuse and the reduction rate of the pollutant concentration in leachate. This should shorten considerably the time required to meet the discharge standard and the time of stabilization of the refuse as observed in the anaerobic recirculation process. It was predicted that the COD concentration of leachate from the anaerobic recirculation process would reach 1000 mg/L in the anaerobic recirculation process after 2.2 years, as for semi-aerobic leachate recirculation process it is about 100 days. Compared with anaerobic recirculation process, the semi-aerobic recirculation process is more effective on NH3-N transformation and TN removal. The NH3-N and TN concentration of F1 is far below those of F2 at the end of our experiment. Refuse settlement in the semi-aerobic recirculation process was faster than that in the anaerobic recirculation process. At the end of the experiment, refuse settlement ratios in the semi-aerobic and anaerobic bioreactors were 33.5% and 18%, respectively.  相似文献   

5.
A combined process comprised of ex-situ nitrification in an aged refuse bioreactor (designated as A bioreactor) and in-situ denitrification in a fresh refuse bioreactor (designated as F bioreactor) was constructed for investigating N2O emission during the stabilization of municipal solid waste (MSW). The results showed that N2O concentration in the F bioreactor varied from undetectable to about 130 ppm, while it was much higher in the A bioreactor with the concentration varying from undetectable to about 900 ppm. The greatly differences of continuous monitoring of N2O emission after leachate cross recirculation in each period were primarily attributed to the stabilization degree of MSW. Moreover, the variation of N2O concentration was closely related to the leachate quality in both bioreactors and it was mainly affected by the COD and COD/TN ratio of leachate from the F bioreactor, as well as the DO, ORP, and NO3?-N of leachate from the A bioreactor.  相似文献   

6.
Municipal solid waste incinerator (MSWI) bottom ash was allowed to be disposed of with municipal solid waste (MSW) in landfill sites in the recently enacted standard of China. In this study, three sets of simulated landfill reactors, namely, conventional MSW landfill (CL), conventional MSWI bottom ash and MSW co-disposed landfill (CCL), and leachate recirculated MSWI bottom ash and MSW co-disposed landfill (RCL), were operated to investigate the environmental impact of the co-disposal. The effect of leachate recirculation on the migration of Cu and Zn in the co-disposed landfill was also presented. The results showed that the co-disposal of MSWI bottom ash with MSW would not enhance the leaching of Cu and Zn from landfill. However, the co-disposal increased the Cu and Zn contents of the refuse in the bottom layer of the landfill from 56.7 to 65.3 mg/kg and from 210 to 236 mg/kg, respectively. The recirculation of the leachate could further increase the Cu and Zn contents of the refuse in the bottom layer of the landfill to 72.9 and 441 mg/kg, respectively. Besides these observations, the results also showed that the co-disposed landfill with leachate recirculation could facilitate the stabilization of the landfill.  相似文献   

7.
In this study, an anaerobic sequencing batch reactor (ASBR) was operated with leachate from Brady Road Municipal Landfill in Winnipeg, Manitoba, Canada. Leachate was collected twice from the same cell at the landfill, during the first and 70th day of the study, and then fed into the ASBR. The ASBR was seeded at the start-up with biosolids from the anaerobic digester from Winnipeg’s North End Water Pollution Control Center (NEWPCC). Due to the higher COD and VFA removal rates measured with the second batch of leachate, an increase of approximately 0.3 pH units was observed during each cycle (from pH 7.2 to 7.5). In addition, CO2 was produced between cycles at constant temperature where a fraction of the CO2 became dissolved, shifting the CO2/bicarbonate/carbonate equilibrium. Concurrent with the increase in pH and carbonate, an accumulation of fixed suspend solids (FSS) was observed within the ASBR, indicating a buildup of inorganic material over time. From it, Ca2+ and Mg2+ were measured within the reactor on day 140, indicating that most of the dissolved Ca2+ was removed within cycles. There is precedence from past researches of clogging in leachate-collection systems (Rowe et al., 2004) that changes in pH and carbonate content combined with high concentrations of metals such as Ca2+ and Mg2+ result in carbonate mineral precipitants. A parallel study investigated this observation, indicating that leachate with high concentration of Ca2+ under CO2 saturation conditions can precipitate out CaCO3 at the pH values obtained between digestion cycles. These studies presented show that methanogenesis of leachate impacts the removal of organic (COD, VFA) as well as inorganic (FSS, Ca2+) clog constituents from the leachate, that otherwise will accumulate inside of the recirculation pipe in bioreactor landfills. In addition, a robust methanogenesis of leachate was achieved, averaging rates of 0.35 L CH4 produced/g COD removed which is similar to the theoretical removal of 0.4 L CH4/g COD. Therefore, using methanogenesis of leachate prior to recirculation in bioreactor landfills will help to (1) control clog formation within leachate pipes and (2) produce an important additional source of energy on-site.  相似文献   

8.
To simulate a submerged combustion evaporation (SCE) process under laboratory conditions, this study conducted three kinds of indirect-heating evaporation experiments, including normal evaporation, vacuum evaporation, and gas-carrying evaporation experiments on mature municipal solid waste (MSW) landfill leachate. The results showed that the organic concentrations in terms of COD in condensates were always very high at the beginning, then decreased rapidly, and stabilized at a low level, which suggests that only the forepart of vapors need to be safely treated to control the discharge of organic pollutants. This study applied the process in developing a two-stage SCE system, which has been implemented for the treatment of biologically pretreated and concentrated leachate from Membrane Bioreactor (MBR) and Reverse Osmosis (RO) combined process in the Beishenshu MSW Landfill, Beijing, China. The result shows that the two-stage SCE system can successfully further concentrate refractory organic matter in concentrated leachate and remove volatile organics from the vapor.  相似文献   

9.
In some arid regions where landfill produces minimal amount of leachate, leachate recirculation is suggested as a cost-effective option. However, its long-term impacts to environment remain disputed. For the purpose of revealing the environmental impacts of leachate recirculation in landfill, four scenarios were modeled using EASEWASTE, comparing the strategies of leachate recirculation (with or without gas management), evaporation and discharge. In the current situation (Scenario A), a total of 280 t of waste was generated and then transported to a conventional landfill for disposal. A number of contaminants derived from waste can be stored in the landfill for long periods, with 11.69 person equivalent (PE) for stored ecotoxicity in water and 29.62 PE for stored ecotoxicity in soil, considered as potential risks of releasing to the environment someday. Meanwhile, impacts to ecotoxicity and human toxicity in surface water, and those to groundwater, present relatively low levels. In Scenario B, leachate evaporation in a collecting pool has minimal impacts on surface water. However, this strategy significantly impacts groundwater (1055.16 PE) because of the potential infiltration of leachate, with major contaminants of As, ammonia, and Cd. A number of ions, such as Cl?, Mg2+, and Ca2+, may also contaminate groundwater. In Scenario C, the direct discharge of leachate to surface water may result in acidification (2.71 PE) and nutrient enrichment (2.88 PE), primarily attributed to soluble ammonia in leachate and the depositional ammonia from biogas. Moreover, the direct discharge of leachate may also result in ecotoxicity and human toxicity via water contaminated by heavy metals in leachate, with 3.96 PE and 11.64 PE respectively. The results also show that landfill gas is the main contributor to global warming and photochemical ozone formation due to methane emission. In Scenario D, landfill gas flaring was thus be modeled and proven to be efficient for reducing impacts by approximately 90% in most categories, like global warming, photochemical ozone formation, acidification, nutrient enrichment, ecotoxicity, and human toxicity. Therefore, leachate recirculation is considered a cost-effective and environmentally viable solution for the current situation, and landfill gas treatment is urgently required. These results can provide important evidence for leachate and gas management of landfill in arid regions.  相似文献   

10.
Landfill functional stability provides a target that supports no environmental threat at the relevant point of exposure in the absence of active control systems. With respect to leachate management, this study investigates “gateway” indicators for functional stability in terms of the predictability of leachate characteristics, and thus potential threat to water quality posed by leachate emissions. Historical studies conducted on changes in municipal solid waste (MSW) leachate concentrations over time (longitudinal analysis) have concentrated on indicator compounds, primarily chemical oxygen demand (COD) and biochemical oxygen demand (BOD). However, validation of these studies using an expanded database and larger constituent sets has not been performed. This study evaluated leachate data using a mixed-effects regression model to determine the extent to which leachate constituent degradation can be predicted based on waste age or operational practices. The final dataset analyzed consisted of a total of 1402 samples from 101 MSW landfills. Results from the study indicated that all leachate constituents exhibit a decreasing trend with time in the post-closure period, with 16 of the 25 target analytes and aggregate classes exhibiting a statistically significant trend consistent with well-studied indicators such as BOD. Decreasing trends in BOD concentration after landfill closure can thus be considered representative of trends for many leachate constituents of concern.  相似文献   

11.
Pilot-scale experiment on anaerobic bioreactor landfills in China   总被引:1,自引:0,他引:1  
Developing countries have begun to investigate bioreactor landfills for municipal solid waste management. This paper describes the impacts of leachate recirculation and recirculation loadings on waste stabilization, landfill gas (LFG) generation and leachate characteristics. Four simulated anaerobic columns, R1-R4, were each filled with about 30 tons of waste and recirculated weekly with 1.6, 0.8 and 0.2m(3) leachate and 0.1m(3) tap water. The results indicated that the chemical oxygen demand (COD) half-time of leachate from R1 was about 180 days, which was 8-14 weeks shorter than that of R2-R4. A large amount of LFG was first produced in R1, and its generation rate was positively correlated to the COD or volatile fatty acid concentrations of influent leachates after the 30th week. By the 50th week of recirculation, the waste in R1 was more stabilized, with 931.2 kg COD or 175.6 kg total organic carbon released and with the highest landfill gas production. However, this contributed mainly to washout by leachate, which also resulted in the reduction of LFG generation potential and accumulation of ammonia and/or phosphorus in the early stage. Therefore, the regimes of leachate recirculation should be adjusted to the phases of waste stabilization to enhance efficiency of energy recovery. Integrated with the strategy of in situ leachate management, extra pre-treatment or post-treatment methods to remove the nutrients are recommended.  相似文献   

12.
The patterns of settlement of fresh as well as partially stabilised municipal solid waste (MSW), undergoing degradation in five different landfill lysimeters, were studied elaborately. The first two lysimeters, R1 and R2, contained fresh MSW while the other three lysimeters, R3, R4 and R5, contained partially stabilised MSW. R1 and R3 simulated conventional controlled dumps with fortnightly disposal of drained leachate. R2 and R4 simulated bioreactor landfills with leachate recirculation. Fortnightly water flushing was done in R5. Settlement of MSW, monitored over a period of 58 weeks, was correlated with the organic carbon content of leachate and residual volatile matter in the MSW to establish the relationship between settlement and organic destruction. Compressibility parameters such as modulus of elasticity and compression indices were determined and empirical equations were applied for the settlement data. Overall settlements up to 49% were observed in the case of landfill lysimeters, filled with fresh MSW. Landfill lysimeters with liquid addition, in the form of leachate or water, experienced lower primary settlements and higher secondary settlements than conventional fills, where no liquid addition was practised. Modified secondary compression indices for MSW in lysimeters with leachate recirculation and flushing were 30%-44% higher than that for lysimeters where no liquid addition was done. Secondary settlements in bioreactor landfills were found to vary exponentially with time.  相似文献   

13.
A series of batch, slurry anaerobic digestion experiments were performed where the soluble and insoluble fractions, and unwashed MSW were separately digested in a 200l stirred stainless steel vessel at a pH of 7.2 and a temperature of 38 degrees C. It was found that 7% of the total MSW COD was readily soluble, of which 80% was converted to biogas; 50% of the insoluble fraction was solubilised, of this only 80% was converted to biogas. The rate of digesting the insoluble fraction was about four times slower than the rate of digesting the soluble fraction; 48% of the total COD was converted to biogas and 40% of the total nitrogen was converted to ammonia. Soluble and insoluble fractions were broken down simultaneously. The minimum time to convert 95% of the degradable fraction to biogas was 20 days. The lag phase for the degradation of insoluble fraction of MSW can be overcome by acclimatising the culture with the soluble fraction. The rate of digestion and the methane yield was not affected by particle size (within the range of 2-50mm). A dynamic model was developed to describe batch digestion of MSW. The parameters of the model were estimated using data from the separate digestion of soluble and insoluble fractions and validated against data from the digestion of unwashed MSW. Trends in the specific aceticlastic and formate-utilising methanogenic activity were used to estimate initial methanogenic biomass concentration and bacterial death rate coefficient. The kinetics of hydrolysis of insoluble fraction could be adequately described by a Contois equation and the kinetics of acidogenesis, and aceticlastic and hydrogen utilising methanogenesis by Monod equations.  相似文献   

14.
This paper presents the results of laboratory investigation conducted to determine the variation of geotechnical properties of synthetic municipal solid waste (MSW) at different phases of degradation. Synthetic MSW samples were prepared based on the composition of MSW generated in the United States and were degraded in bioreactors with leachate recirculation. Degradation of the synthetic MSW was quantified based on the gas composition and organic content, and the samples exhumed from the bioreactor cells at different phases of degradation were tested for the geotechnical properties. Hydraulic conductivity, compressibility and shear strength of initial and degraded synthetic MSW were all determined at constant initial moisture content of 50% on wet weight basis. Hydraulic conductivity of synthetic MSW was reduced by two orders of magnitude due to degradation. Compression ratio was reduced from 0.34 for initial fresh waste to 0.15 for the mostly degraded waste. Direct shear tests showed that the fresh and degraded synthetic MSW exhibited continuous strength gain with increase in horizontal deformation, with the cohesion increased from 1 kPa for fresh MSW to 16–40 kPa for degraded MSW and the friction angle decreased from 35° for fresh MSW to 28° for degraded MSW. During the triaxial tests under CU condition, the total strength parameters, cohesion and friction angle, were found to vary from 21 to 57 kPa and 1° to 9°, respectively, while the effective strength parameters, cohesion and friction angle varied from 18 to 56 kPa and from 1° to 11°, respectively. Similar to direct shear test results, as the waste degrades an increase in cohesion and slight decrease in friction angle was observed. Decreased friction angle and increased cohesion with increased degradation is believed to be due to the highly cohesive nature of the synthetic MSW. Variation of synthetic MSW properties from this study also suggests that significant changes in geotechnical properties of MSW can occur due to enhanced degradation induced by leachate recirculation.  相似文献   

15.
In order to investigate the effect of raw leachate on anaerobic digestion of food waste, co-digestions of food waste with raw leachate were carried out. A series of single-phase batch mesophilic (35 ± 1 °C) anaerobic digestions were performed at a food waste concentration of 41.8 g VS/L. The results showed that inhibition of biogas production by volatile fatty acids (VFA) occurred without raw leachate addition. A certain amount of raw leachate in the reactors effectively relieved acidic inhibition caused by VFA accumulation, and the system maintained stable with methane yield of 369–466 mL/g VS. Total ammonia nitrogen introduced into the digestion systems with initial 2000–3000 mgNH4–N/L not only replenished nitrogen for bacterial growth, but also formed a buffer system with VFA to maintain a delicate biochemical balance between the acidogenic and methanogenic microorganisms. UV spectroscopy and fluorescence excitation–emission matrix spectroscopy data showed that food waste was completely degraded.We concluded that using raw leachate for supplement water addition and pH modifier on anaerobic digestion of food waste was effective. An appropriate fraction of leachate could stimulate methanogenic activity and enhance biogas production.  相似文献   

16.
Research on leachate recirculation from different types of landfills   总被引:5,自引:0,他引:5  
Landfills can produce a great amount of leachate containing highly concentrated organic matter. This is especially true for the initial leachate from landfilled municipal solid wastes (MSW) that generally has concentrations of COD(Cr) and BOD(5) up to 80,000 and 50,000mg/L, respectively. The leachate could be disposed by means of recirculating technique, which decomposes the organics through the action of proliferating microorganisms and thereby purifies the leachate, and simultaneously accelerates organic decomposition through water saturation control. Data from experimental results indicated that leachate recirculating could reduce the organic concentration considerably, with a maximum reduction rate of COD(Cr) over 95%; and, using a semi-aerobic process, NH(3)-N concentration of treated leachate could be under 10mg/L. In addition, the organic concentration in MSW decreased greatly.  相似文献   

17.
Bioreactor landfills are operated to enhance refuse decomposition, gas production, and waste stabilization. The major aspect of bioreactor landfill operation is the recirculation of collected leachate back through the refuse mass. Due to the accelerated decomposition and settlement of solid waste, bioreactor landfills are gaining popularity as an alternative to the conventional landfill. The addition or recirculation of leachate to accelerate the waste decomposition changes the geotechnical characteristics of waste mass. The daily cover soils, usually up to 20–30% of total MSW volumes in the landfill, may also influence the decomposition and shear strength behavior of MSW. The objective of this paper is to study the effects of daily covers soils on the shear strength properties of municipal solid waste (MSW) in bioreactor landfills with time and decomposition. Two sets of laboratory-scale bioreactor landfills were simulated in a laboratory, and samples were prepared to represent different phases of decomposition. The state of decomposition was quantified by methane yield, pH, and volatile organic content (VOC). Due to decomposition, the matrix structure of the degradable solid waste component was broken down and contributed to a significant decrease in the reinforcing effect of MSW. However, the daily cover soil, a non-degradable constituent of MSW, remains constant. Therefore, the interaction between daily cover soil particles and MSW particles will affect shear strength behavior. A number of triaxial tests were performed to evaluate the shear strength of MSW. The test results indicated that the shear strength of MSW was affected by the presence of cover soils. The friction angle of MSW with the presence of cover soil is higher than the friction angle of MSW without any cover soils. The friction angle of MSW increased from 27° to 30° due to the presence of cover soils for Phase 1 samples. The increased strength was attributed to the friction nature of sandy soil that was used as daily covers soils. Therefore, the effects of cover soils on the shear strength properties of MSW should be evaluated and taken into consideration during stability analyses and design.  相似文献   

18.
The paper presents the results of a laboratory experiment on Municipal Solid Waste (MSW) subjected to one-dimensional compression in a 1 m3 instrumented cell. The focus was on the hydro-mechanical behavior of the material under conditions of confinement and leachate percolation that replicate those found in real-scale landfills. The operation of the apparatus is detailed together with the testing methodology and the monitoring program. Two samples of waste were tested: the first extended over a period of 10 months ('Control Test') and the second for 22 months ('Enhanced Test' with leachate recirculation). Consolidation data is reported with regard to both short-term (stress-dependent) and long-term (time-dependent) settlements. A discussion follows based on the derived values of primary and secondary compression ratios. Correlations between compression parameters and the biodegradation process are presented. In particular, results clearly highlight the effect of leachate recirculation on waste settlement: 24% secondary deformation reached after slightly less than 2 years (equivalent to a 5-fold increase in compressibility) and 17.9% loss of dry matter. Comparisons are proposed considering the results derived from the few monitoring programs conducted on experimental bioreactors worldwide. Finally, the hydraulic characterization of waste is discussed with regard to the evaluation of effective porosity and permeability.  相似文献   

19.
A two-phase, wet anaerobic digestion process was tested at laboratory scale using mechanically pre-treated municipal solid waste (MSW) as the substrate. The proposed process scheme differs from others due to the integration of the MSW and wastewater treatment cycles, which makes it possible to avoid the recirculation of process effluent. The results obtained show that the supplying of facultative biomass, drawn from the wastewater aeration tank, to the solid waste acidogenic reactor allows an improvement of the performance of the first phase of the process which is positively reflected on the second one. The proposed process performed successfully, adopting mesophilic conditions and a relatively short hydraulic retention time in the methanogenic reactor, as well as high values of organic loading rate. Significant VS removal efficiency and biogas production were achieved. Moreover, the methanogenic reactor quickly reached optimal conditions for a stable methanogenic phase. Studies conducted elsewhere also confirm the feasibility of integrating the treatment of the organic fraction of MSW with that of wastewater.  相似文献   

20.
A survey was conducted between 2006 and 2008 in order to identify municipal solid waste (MSW) composition and its influence on leachate generation and to assess the amount of biogas yield from the Jebel Chakir landfill in Tunis City. The organic fraction was the predominant compound in the MSW, followed by paper, fine, plastic, leather, rubber, metal, textile, glass and ceramic. The average MSW moisture content varies from 60 % in the wet season to 80 % in the dry one. The recognised MSW composition is well representative if compared to that of cities in developing countries. A large leachate quantity is produced in the landfill of Jebel Chakir, despite the negative water balance of the site. Based on the annual MSW landfilled quantities and using the LandGEM model, the expected peak landfill gas (LFG) production is estimated to occur 1 year after the landfill closure with a rate of 3.53 × 107 m3/year. The analysis of the potential conversion of LFG to electric energy shows it at a total LFG-to-electricity energy of around 257 GWh with a heating value of 4,475 kcal/m3 based on an LFG collection efficiency of 33 % and energy efficiency of 33 % giving an economic feasibility for a 10 MW power plant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号