首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
史建君  陈晖 《环境科学》2002,23(3):97-101
采用模拟污染物的同位素示踪技术进行了95zr在2种作物-土壤体系中的消长动态研究,并应用库室模型和非线性回归方法确定了各体系的拟合方程.结果显示:①玉米和大豆从土壤中吸收的95Zr主要集中在根部,且根部中的95Zr比活度随时间呈缓慢增加,并在经历一段时间后逐渐趋于动态平衡;其余各部位的比活度较低,较大部分接近于本底水平,表明95Zr被玉米和大豆根系吸收后不易在其体内迁移、输运;②喷施进入土壤中的95Zr主要滞留在表层(0~8cm)土壤中,其量占总量的97.5%以上,表明95Zr被表层土壤吸附,不易随水流向下迁移;③对实验数据进行回归分析,得玉米和大豆植株中95Zr比活度的消长动态拟合方程为Cm(t)=3.2067(1-e01582t)和Cb(t)=3.0925(1-e-0.1363t),经方差分析,表明回归方程较好地反应了95Zr在玉米-土壤和大豆-土壤体系中的消K动态.  相似文献   

2.
X5912(X)3倪117小麦一土壤系统中仍Zr的消长动态/赵希岳…(浙江大学原子核农业科学研究所,农业部核农学重点开放实验室)//农业环境保护/中国农业生态环保协会一2(X)2,21(6)一斗93一495,498 环图X一巧 采用模拟污染物的同位素示踪技术研究了昏在小麦一土壤系统中的迁移、消长和分配动态,并建立了其行为规律的数学模型。结果表明:(1)95Zr由表土进人系统后即在系统中发生迁移,小麦主要经根吸收劳Zr,然后向其它各部位转移和分配。小麦植株中另Zr比活度起初随时间迅速增高,在达到某一最大值后开始下降。根中95Zr比活度显著高于植株其它部位,…  相似文献   

3.
采用模拟污染物的同位素示踪技术研究了氚水在玉米、大豆和水稻中结合态氚形成的动态过程,并探讨了结合态氚形成的机理.结果表明,土壤(或水)中的氚水通过作物根系吸收进入作物体内,并在作物各部位形成结合态氚;作物体中结合态氚的比活度随时间呈增加趋势;作物籽粒中的结合态氚的比活度约为2~3Bq/g,玉米籽和稻谷中结合态氚的比活度高于其余部位,而大豆籽则与其他部位相当.对3种作物中结合态氚比活度的变化动态进行指数回归分析得:玉米、大豆和水稻中的比活度分别为Cm(t)=1.14(1-e-0.0509t)、Cs(t)=1.65(1-e-0.0595t)和Cr>(t)=1.29(1-e-0.1027t),经方差分析表明,各拟合方程较好地反映了氚水在玉米、大豆和水稻中结合态氚形成的动态.  相似文献   

4.
95Zr在土壤中的淋溶与垂直迁移   总被引:1,自引:0,他引:1  
采用土柱法研究了95Zr在浙江省有代表性的3种土壤(小粉土、红黄壤和海泥)中的淋溶和垂直迁移及盐度对其行为的影响.结果显示:①淋溶后收集到的全部淋溶水中95Zr的含量较少,250ml、500ml和750ml 3种不同淋溶水量下,小粉土约占原始引入量的5.33%~7.68%,海泥为0.77%~1.32%,红黄壤几乎为0;且随着总的淋溶水量的增加,被淋溶下的95Zr的总量变化不明显,表明95Zr一旦被土壤吸附,则不易被解吸;②滞留于土壤中的95Zr绝大部分分布在土壤表层,小粉土约有45.99%~50.02%的95Zr滞留于0~0.4cm土层范围内,红黄壤和海泥则分别为96.02%~97.16%和95.94%~98.01%;③随淋溶水盐度的增加,表层土(0~0.2cm)中95Zr的量明显提高,表明水体盐度增加有助于提高土壤对95Zr的吸附率  相似文献   

5.
溶解氧对其光解无影响;丙酮可以加速其光解;H202可诱发化学氧化和水解,同时加速光解反应。主要光解产物被分离、鉴定。丁草胺在水中不易挥发,能够被土壤吸附。在田间丁草胺在水中消解较快,半衰期<1d,8’~16d检不出;在土壤中,半衰期为3.3d,3od后检不出。图7表1参10X592 9702298林丹在玉米、大豆及土壤中的残留量及其消解动态研究/江孝绰(中国环科院)..·//环境科学研究/中国环科院一1996,9(6)一15~20 环信X一6 田间试验表明,在河南地区施用农药林丹的残留量,玉米为1~1.7拌g/kg,平均1.4拜g/kg;大豆为3.3~5.7拌g/kg,平均4.8拜g/kg。直接喷于…  相似文献   

6.
放射性核素60Co在蚕豆-土壤系统中的迁移动力学   总被引:2,自引:0,他引:2       下载免费PDF全文
采用模拟污染物的同位素示踪技术研究了60Co在蚕豆-土壤系统中的迁移和分配动态.结果表明,60Co由表层土壤进入系统后即在系统中发生迁移,经根吸收的60Co能够向其他各部位迁移.蚕豆植株中60Co比活度起初随时间迅速增高,当达到某一最大值后开始下降.根中60Co比活度显著高于植株的其他部位,蚕豆各部位中60Co比活度的大小顺序为根>豆秸>豆壳>豆粒;土壤中60Co主要滞留于表层6cm内,其比活度与距土壤表层深度呈单项指数负相关;60Co在蚕豆-土壤系统中比活度的动态变化规律由多项指数描述;蚕豆对土壤中的60Co具有一定的富集能力.  相似文献   

7.
基于BaPS系统的旱地土壤呼吸作用及其分量确定探讨   总被引:10,自引:1,他引:10  
应用气压过程分离(BaPS)方法研究了大豆和玉米种植下土壤呼吸速率及其分量的动态变化,并同时用气相色谱仪分析了实验期间BaPS系统内的CO2气体浓度,对2种方法测定的土壤呼吸速率进行了比较.结果表明:(1)BaPS方法与气相色谱测得的土壤呼吸速率具有一致性和可比性;(2)大豆田根区土壤呼吸速率随根系生长有明显的季节变化,速率为(29.8±6.4)mg·kg-1·d-1(以C计),非根区土壤呼吸速率在整个生长季数值较低并且季节变化不明显,为(14.4±5.1)mg·kg-1·d-1(以C计);玉米种植下土壤呼吸有类似的规律,差别在于玉米根系生物量比大豆大,呼吸速率也高,根区呼吸速率为(70.8±38.6)mg·kg-1·d-1(以C计),非根区为(18.1±8.7)mg·kg-1·d-1(以C计);(3)根起源呼吸是土壤呼吸的重要组成部分,根区与非根区土壤呼吸速率的差值可以认为来自于根系活动,研究发现大豆田根起源呼吸占土壤呼吸的50%,玉米田根起源呼吸占到69%;(4)利用根起源呼吸与根系生物量的相关关系,得到大豆根起源呼吸系数为0.048mg·mg-1·d-1,玉米的根起源呼吸系数较小为0.042mg·mg-1·d-1.  相似文献   

8.
氚水在大豆土壤系统中的迁移与分布   总被引:8,自引:2,他引:6  
采用模拟污染物的同位素示踪技术研究氚水在大豆-土壤模拟生态系统中的迁移、分布规律.通过为期50d的模拟试验,测定了植物和土壤样品中2种形态氚(自由水氚和结合态氚)的比活度.结果表明:引入土壤中的氚水,不仅在系统各分室间转移和分配,而且迅速向系统外散逸;氚水中的氚以自由水氚和结合态氚形态存在于大豆植株和土壤中;大豆植株中的自由水氚比活度于6h时即达最大值(根19.4Bq·g-1;茎叶12.3Bq·g-1),随后便逐渐下降,而结合态氚呈缓慢增加;大豆根中的总氚比活度开始时高于茎叶中的比活度,而后趋于平衡,表层土中2种形态氚基本呈逐渐下降.运用示踪动力学分室模型原理对实验数据拟合得:土壤中的比活度Cs=88.37e-11.847t+7.38e-0030t;大豆植株中的比活度Cb=10.30(e-0.030t-e-11.847t).  相似文献   

9.
沉万912(X犯01日】)结合态氛在作物生态系统中的形成动态/史建君…(浙江大学原子核农业科学研究所,农业部核农学重点开放实验室)//中国环境科学/中国环境科学学会一2(X)1,21(5)一粼抖一叨7环图x一58 采用模拟污染物的同位素示踪技术研究了氛水在玉米、大豆和水稻中结合态抓形成的动态过程,并探讨了结合态氖形成的机理。结果表明,土壤(或水)中的佩水通过作物根系吸收进人作物体内,并在作物各部位形成结合态氟;作物体中结合态氟的比活度随时间呈增加趋势;作物籽粒中的结合态氖的比活度约为2一3Bq/g,玉米籽和稻谷中的结合态氖的比活度高于其…  相似文献   

10.
溴虫腈在甘蓝及土壤中的残留检测及降解动态   总被引:12,自引:0,他引:12  
建立了用高效液相色谱法检测甘蓝和土壤中溴虫腈残留的分析方法.土壤和甘蓝样品经丙酮/水混合液(体积比为8∶2)提取,用装有无水硫酸钠和中性氧化铝的层析柱净化,用C18柱作为分析柱,甲醇与水混合液(体积比为80∶20)作为流动相,在260nm的检测波长下,用高效液相色谱法定量测定甘蓝和土壤中残留的溴虫腈.在溴虫腈添加质量比为0·1~1·0mg·kg-1范围内,甘蓝和土壤样品的平均回收率为90·6%~93·3%,变异系数为1·9%~11·6%,在上述条件下,甘蓝和土壤中的最低检出限为0·0162mg·kg-1.应用上述方法,测定了10%溴虫腈纳米功能化制剂和10%溴虫腈悬浮剂在甘蓝和土壤中的降解动态.结果表明,10%溴虫腈纳米功能化制剂和10%悬浮剂在甘蓝中的降解动态方程分别为C=4·0431e-0·3103t(R2=0·9528)和C=6·9611e-0·2686t(R2=0·9272),半衰期分别为t0·5=2·2d和2·6d;在土壤中的降解动态方程分别为C=0·2538e-0·1612t(R2=0·9281)和C=0·537e-0·1754t(R2=0·9845),半衰期分别为t0·5=4·3d和3·9d.按推荐剂量的加倍量施药,在甘蓝中的最终残留低于美国国家环保署规定之蔬菜最大允许残留量(1mg·kg-1).10%溴虫腈纳米功能化制剂在甘蓝和土壤中的降解都比10%溴虫腈悬浮剂快,且作物的最终残留量也比较少,所以,溴虫腈纳米功能化制剂能较好地减少其在作物和土壤中的残留.  相似文献   

11.
137Cs示踪技术在滦河源区栗钙土风蚀速率估算中的应用   总被引:6,自引:0,他引:6  
对采集于滦河源区3个栗钙土剖面中的27个土层样品的pH、有机碳含量、碳酸钙含量、密度及质地进行了化验分析,运用ADCOM100超低本底γ谱仪测定了土壤样品1377Cs的比活度.结果表明,自然栗钙土以及被风蚀土壤剖面中137Cs比活度随深度呈指数递减式分布,其最大渗透深度可达约30cm;利用137Cs示踪技术估算的研究区土壤风蚀速率在0.1842cm·a-1和0.2897cm·a-1之间;栗钙土不同粒径土壤颗粒中137Cs的比活度差异显著,即细粒(粒径≤0.10mm的极细砂、粉粒和黏粒)中137Cs比活度大于细砂(0.10~0.25mm)中137Cs比活度大于粗粒(0.25~2.00mm的中砂、粗砂和极粗砂)中137Cs比活度.可见,运用137Cs示踪法可以定量估算区域土壤风蚀速率,但需综合考虑137s在土壤中的分布、土壤有机质含量和质地等因素,以使其结果将更为准确.  相似文献   

12.
为了解中国表层土壤中239+240Pu比活度和240Pu/239Pu的范围、空间分布以及变异性,利用统计分析和数学模型的方法,定量分析了1991~2019年中国表层土壤239+240Pu比活度和240Pu/239Pu的范围,空间分布以及产生空间变异性的原因.结果表明:中国表层土壤中240Pu/239Pu比值集中在0.18的概率为99%,全球大气核试验沉降是中国表层土壤中239+240Pu的主要来源;表层土壤中239+240Pu比活度处于低放射水平(£1Bq/kg的概率为94%),西北和东北地区的表层土壤中239+240Pu比活度有较高的空间变异性.239+240Pu分布的空间变异性受到大气混合、冠层效应、土壤粒度、有机质和迁移(横向迁移和纵向迁移)的影响.同时,本文系统梳理了计算表层土壤中239+240Pu空间变异的数学模型,为定量评估239+240Pu的环境水平提供有效的方法.  相似文献   

13.
第一期大运河苏州段底泥中重金属的污染状况及评价························……汪祖强张桂英钱敏仁(2)土壤砷环境容量及其数学模型的研究·····……’二””““””.”””.‘’‘”’‘’‘”’.“””’.’“’‘””””“””’ ·······~················~····~二熊先哲张学询李培军王裕顺任华王连平宋胜焕(8)铬在农业生态环境中归宿的研究···~……郑泽群冯武焕边淑萍郑建民张丽珍邢胜利(l牛)砷、福、铅对土壤酶活性的影响·······················…  相似文献   

14.
石油烃在土柱中的纵向迁移行为模拟   总被引:1,自引:1,他引:0  
通过室内土柱模拟试验研究了石油烃在土壤剖面中的纵向迁移特点及影响因素. 结果表明,淋滤后多环芳烃(PAHs)主要富集在土柱表层,w(PAHs)随深度增加而明显降低,但不同土柱w(PAHs)降幅不同. 饱和烃类化合物组成特征表明,土柱不同深度下饱和烃化合物的组成特征与原土样有明显不同,表明这些化合物在土壤剖面上发生了迁移,但不同化合物(正构烷烃、甾萜类和烷基环己烷)纵向迁移的深度不同,说明饱和烃中不同组分化合物的迁移能力不同. 石油烃组成及质量分数随深度变化特征表明,影响石油烃在土壤中纵向迁移的因素主要有土壤总有机碳(TOC)的质量分数和原油黏度.   相似文献   

15.
环境地学     
X 144 9801916岩溶山区表土中’&、”,es、22‘Ra和2,SRa的地球化学相分配及其侵蚀示踪意义/白占国(中国农科院土壤肥料研究所卜·//环境科学学报/中科院环委会一1997,17(4)一407~411 环信X一9 岩溶山区表土中7Be、‘3,es、’26Ra粕“之”Ra地球化学相分配的实验研究表明,4种核素绝大部分(85%以上)存在于Fe一Mn氧化物、有机质及残渣相中。它们在表土的迁移过程中具微粒迁移性,能较好地随土粒搬运,可作为土粒侵蚀或沉积的示踪剂。但其微粒示踪类型又各具特征:’Be的化学形态与其季节性微粒迁移示踪一致;’3?Cs的化学形态适用于示踪土粒…  相似文献   

16.
1=F4坂2|4抒情、优美、稍慢(领唱、合唱)(3·三1一l U出6一I 3’鱼1 ,‘‘、一5 5_5 3 2‘1一一一’《i5 3绿一f 7 6一I 6 1 编织¨5一l蹲蛆2缒^ I ^。1 6 5 -1 6 1 1 6 5 6 6 1美 丽 播种绿色编织美 啊 啊 I,’、 I/。、 l l,——————、2一一一{u址5一I u 3j 6一l碰毡H蚯{1_一圣:¨丽 播种绿 色 编织美 丽 播种绿色编织 美 丽 (领)红 ——————————15·鱼2-』5 I啊 啊 /^ r——-'.I5‘鱼ⅡH I 3一一鱼:!I t。。一●旗在前面指引 肩们为天空梳洗 晴 ,、/——丁、 “ I6 5 6 5 1 2一【2 7 6 5 5 6 3 I一——== I ··· I…  相似文献   

17.
菌根和间作对滇池流域红壤磷素迁移的影响   总被引:5,自引:0,他引:5       下载免费PDF全文
为了研究菌根和间作对滇池流域红壤磷迁移的减控影响,根据2013年5—10月采集的6次径流水样,通过田间小区试验,选取玉米/大豆间作的红壤径流区,以单作玉米、单作大豆为对照,并设置抑菌处理(施用苯菌灵)和未抑菌处理,模拟分析间作和菌根处理复合作用下的径流磷迁移特征. 结果表明:除7月19日外,整个雨季各处理下径流中ρ(TP)、ρ(可溶性磷)和ρ(颗粒态磷)随采样时间均无明显变化;所有组合处理中,未抑菌-间作处理下径流中ρ(TP)最低,比单作玉米、单作大豆分别降低25.6%、12.2%;无论是否抑菌,玉米/大豆间作处理可使径流中ρ(可溶性磷)较单作玉米处理降低约24.7%;未抑菌处理下,玉米/大豆间作处理径流中ρ(颗粒态磷)比单作玉米、单作大豆分别降低约14.3%、20.2%,并且在玉米/大豆间作条件下,未抑菌处理径流中ρ(颗粒态磷)显著低于抑菌处理. 另外,无论是何种种植模式,抑菌处理下土壤中w(TP)均显著高于未抑菌处理,增幅在9.0%以上;抑菌条件下,间作玉米处理下土壤中w(TP)、w(速效磷)较单作玉米处理显著降低;与抑菌-单作玉米处理相比,未抑菌-间作玉米处理下土壤中w(TP)和w(速效磷)也分别降低了0.25 g/kg和2.56 mg/kg. 研究显示,菌根真菌协同玉米/大豆间作体系可在一定程度上减少坡耕地红壤磷的径流流失,对滇池流域农业非点源污染具有一定削减潜力.   相似文献   

18.
利用小型人工降雨模拟器 ,选择官厅水库周边 4种典型土地利用类型 ,通过进行天然大暴雨实验 ,研究了氮、磷随暴雨径流及径流沉积物的迁移过程 ,同时估算了总氮、总磷在不同土地利用方式下的流失速率 .研究结果表明 ,在相同降雨条件下 ,4种土地利用类型的产流量和沉积物产生量大小顺序均为 :不施肥菜地 >葡萄果园 >施肥玉米地 >海棠果园 ,产流量和沉积物流失量成显著正相关 .氮、磷流失速率和流失量随土地利用类型的不同表现出明显差异 ,地表径流水相TN、TP的流失大小顺序为葡萄果园 >施肥玉米地 >海棠果园 >不施肥菜地 ,其中大部分是以悬浮颗粒态形式流失 .单位面积表层 10cm土壤氮、磷流失量分别高达 17.5 3~ 41 14g·m- 2 和 1 99~ 14 2 5g·m- 2 ,其中随径流沉积物相迁移的氮、磷占绝大部分 .地表径流水相氮、磷的流失速率分别在 2 5 9~ 4 47mg·m- 2 ·min- 1 和 0 43~ 0 63mg·m- 2 ·min- 1 之间 ,而径流沉积物相氮、磷流失速率则分别高达 3 86 42~ 13 61 76mg·m- 2 ·min- 1 和 2 10 5 6~ 5 3 0 19mg·m- 2 ·min- 1 .  相似文献   

19.
(括号中数字为期数一页数)·清洁生产·加强油田清洁生产管理达标治理采油废水······……杨怀杰王志强肖昌胜(1一l)利用排污审计法降低睛纶溶剂消耗’‘”’‘”””.””’“.‘········……王建富(1一5)建筑设计中的绿色概念···……张晓群(1一10)实施清洁生产提高炼油厂装置环保合格率·····················……杨斌(2一l)废弃酸碱精制实现变压器油清洁生产···……任炯宇瞿宾业黄岩波等(2一5)浅谈石油化工厂重要环境因素的评价·······························…  相似文献   

20.
环境监测     
x8312(X) 102482华北平原不同作物一潮土系统中从0排放量的测定/丁洪(福建省农业科学院生物技术中心)…//农业环境保护/中国农业生态环保协会一2(X)l,20(l)一7一9,30环图X一15 在中国科学院封丘农业生态试验站应用原状土柱培养法测定了华北平原主要农作物一潮土系统中凡O的排放量,比较了不同作物对农田土壤中凡O排放的影响。结果表明,大豆、花生、玉米和棉花4种作物系统的从0排放通量有所差异;生长期间不施氮肥处理下凡O排放总量为0.57一1 .ookgN·hm一2,施氮肥处理下为L48一3.12k酬·hm一2,作物系统间有较大差异。氮肥产生的凡O一N占施…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号