共查询到20条相似文献,搜索用时 0 毫秒
1.
Krogh KA Søeborg T Brodin B Halling-Sørensen B 《Journal of environmental quality》2008,37(6):2202-2211
Avermectins are widely used to treat livestock for parasite infections. Ivermectin, which belongs to the group of avermectins, is particularly hazardous to the environment, especially to crustaceans and to soil-dwelling organisms. Sorption is one of the key factors controlling transport and bioavailability. Therefore, batch studies have been conducted to characterize the sorption and desorption behavior of ivermectin in three European soils (Madrid, York, and artificial soil). The solid-water distribution coefficient (K(d)) for ivermectin sorption to the tested soils were between 57 and 396 L kg(-1) (determined at 0.1 microg g(-1)), while the organic carbon-normalized sorption coefficients (K(oc)) ranged from 4.00 x 10(3) to 2.58 x 10(4) L kg(-1). The Freundlich sorption coefficient (K(F)) was 396 (after 48 h) for the artificial soil over a concentration range of 0.1 to 50 microg g(-1), with regression constants indicating a concentration-dependent sorption. The obtained data and data in the literature are inconclusive with regard to whether hydrophobic partitioning or more specific interactions are involved in sorption of avermectins. For abamectin, hydrophobic partitioning seems to be one of the dominant types of binding, while hydrophobicity is less important for ivermectin, which is probably due to the lower lipophilicity of the molecule. Furthermore, the presence of cations such as Ca(2+) leads to decreasing sorption. Thus, it is presumed that ivermectin binds to soil by formation of complexes with immobile, inorganic soil matter. In contrast to abamectin, hysteresis could be excluded for ivermectin in the studied soils for the evaluation of sorption and desorption. The sorption mechanism is highly dependent on physicochemical properties of the avermectin. 相似文献
2.
Many studies have implicated dissolved organic carbon (DOC) as an important contributor to the elevated mobility of trace metals in soils amended with biosolids. Few of these studies, however, have quantified both DOC and metal concentrations. We completed laboratory leaching column studies on a dryland Platner loam (fine, smectitic, mesic Aridic Paleustoll) and an irrigated Osgood sand (loamy, mixed, mesic Arenic Ustollic Haplargid), both with a history of biosolids application. The soils were neutral to slightly alkaline in pH prior to amendment. We performed an additional application of biosolids to one set of columns in the laboratory at a rate of 28 Mg ha(-1) to investigate the effect of time following application on metal mobility. The effect of electrolyte concentration was studied by using both distilled water and simulated irrigation water. Biosolids application increased both DOC and Cu in the column effluents resulting in a positive correlation between Cu and DOC across application treatments for both soils. Both Cu and Pb were mobilized under conditions of low electrical conductivity (EC). This may be the result of the release of a strong metal-binding component of DOC under these conditions. Conversely, Zn mobility was positively correlated with EC, suggesting that either cation exchange or the formation of inorganic complexes influences Zn mobility. Anodic stripping voltammetry measurements indicated that only a small percentage of the total dissolved metals existed as free ions or inorganic complexes; the remainder appears to be complexed to DOC. 相似文献
3.
In animal agriculture, sulfonamides are one of the routinely used groups of antimicrobials for therapeutic and sub-therapeutic purposes. It is observed that, the animals when administered the antimicrobials, often do not completely metabolize them; and excrete the partially metabolized forms into the environment. Due to the continued use of antimicrobials and disposal of untreated waste, widespread occurrence of partially metabolized antimicrobials in aquatic and terrestrial environments has been reported in various scientific journals. In this research, the mobility of two sulfonamides - sulfamethazine (SMN), sulfathiazole (STZ) and a conservative bromide tracer was investigated in three soils collected from regions in the United States with large number of concentrated animal-feed operations. Results of a series of column studies indicate that the mobility of these two sulfonamides was dependent on pH, soil charge density, and contact time. At low pH and high charge density, substantial retention of sulfonamides was observed in all three soils investigated, due to the increased fraction of cationic and neutral forms of the sulfonamides. Conversely, enhanced mobility was observed at high pH, where the sulfonamides are predominantly in the anionic form. The results indicate that when both SMN and STZ are predominantly in anionic forms, their mobility approximates the mobility of a conservative bromide tracer. This observation is consistent for the mobility of both SMN and STZ individually, and also in the presence of several other antimicrobials in all three soils investigated. Higher contact time indicates lower mobility due to increased interaction with soil material. 相似文献
4.
Pueyo M Sastre J Hernández E Vidal M López-Sánchez JF Rauret G 《Journal of environmental quality》2003,32(6):2054-2066
The modified three-step sequential extraction procedure proposed by the Community Bureau of Reference (or Bureau Communautaire de Reference, BCR) was used to predict trace element mobility in soils affected by an accidental spill comprising arsenopyrite- and heavy metal-enriched sludge particles and acid waste waters. The procedure was used to obtain the distribution of both the major (Al, Ca, Fe, Mg, and Mn) and trace elements (As, Bi, Cd, Cu, Pb, Tl, and Zn) in 13 soils of contrasting properties with various levels of contamination and in the sludge itself. The distributions of the major elements enabled us to confirm the main soil fractions solubilized in each of the three steps, and, in turn, to detect the presence of pyritic sludge particles by the high Fe extractability obtained in the third step. Cadmium was identified as being the most mobile of the elements, having the highest extractability in the first step, followed by Zn and Cu, Lead, Tl, Bi, and As were shown to be poorly mobile or nonmobile. In the case of some of the trace elements, the residual fractions decreased at higher levels of contamination, which was attributed to the anthropogenic contributions to the polluted samples. Comparison with soil-plant transfer factors, calculated in plants growing in the affected area, indicated that a relative sequence of trace element mobility was well predicted from data of the first step. 相似文献
5.
The influence of different environmental factors on methane oxidation and degradation of hydrochlorofluorocarbons (HCFCs) was investigated in microcosms containing soil sampled at Skellingsted Landfill, Denmark. The soil showed a high capacity for methane oxidation resulting in a maximum oxidation rate of 104 microg CH4 g(-1) h(-1) and a low affinity of methane with a half-saturation constant of 2.0% v/v. The hydrochlorofluorocarbons HCFC-21 (dichlorofluoromethane) and HCFC-22 (chlorodifluoromethane) were rapidly oxidized and the oxidation occurred in parallel with the oxidation of methane. The maximal HCFC oxidation rates were 0.95 and 0.68 microg g(-1) h(-1) for HCFC-21 and HCFC-22, respectively. Increasing concentrations of HCFCs resulted in decreased methane oxidation rates. However, compared with typical concentrations in landfill gas, relatively high HCFC concentrations were needed to obtain a significant inhibition of methane oxidation. In general, the environmental factors studied influenced the degradation of HCFCs in almost the same way as they influenced methane oxidation. Temperature had a strong influence on the methanotrophic activity giving high Q10 values of 3.4 to 4.1 over the temperature range of 2 to 25 degrees C. Temperature optimum was around 30 degrees C; however, oxidation occurred at temperatures as low as 2 degrees C. A moisture content of 25% w/w yielded the maximum oxidation rate as it allowed good gas transport together with sufficient microbial activity. The optimum pH was around neutrality (pH = 6.5-7.5) showing that the methanotrophs were optimally adapted to the in situ pH, which was 6.9. Copper showed no inhibitory effect when added in relatively high concentrations (up to 60 mg kg(-1)), most likely due to sorption of copper ions to soil particles. At higher copper concentrations the oxidation rates decreased. The oxidation rates for methane, HCFC-21, and HCFC-22 were unaltered in ammonium-amended soil up to 14 mg kg(-1). Higher ammonium concentrations inhibited the oxidation process. The most important parameters controlling oxidation in landfill cover soil were found to be temperature, soil moisture, and methane and oxygen supply. 相似文献
6.
The organic fraction of a municipal solid waste was added in different doses to an eroded soil formed of loam and with no
vegetal cover. After three years, the changes in macronutrient content and the chemical-structural composition of its organic
matter were studied. The addition of the organic fraction from a municipal solid waste had a positive effect on soil regeneration,
the treated soils being covered with spontaneous vegetation from 1 yr onwards. An increase in electrical conductivity and
a fall in pH were noted in the treated soils as were increases in macronutrients, particularly N and available P and the different
carbon fractions. Optical density measurements of the organic matter extracted with sodium pyrophosphate showed that the treated
soils contained an organic matter with less condensed compounds and with a greater tendency to evolve than the control. A
pyrolysis-gas chromatography study of the organic matter extracted with pyrophosphate showed large quantities of benzene both
in the treated soils and control; pyrrole was also relatively abundant, although this fragment decreased as the dose rose.
Xylenes and pyridine were present in greater quantities in the control and furfural in the treated soils. Three years after
addition to the soil, the organic matter had a higher proportion of fragments derived from aromatic compounds and a smaller
proportion derived from hydrocarbons. Similarity indices showed that, although the added and newly formed organic matter 3
yr after addition continued to differ from that of the original soil and to be more mineralizable, the transformations it
has undergone made it more similar to the original organic matter of the soil than it was at the moment of being added. 相似文献
7.
Pagsuyoin Sheree A. Salcedo Gustavo Santos Joost R. Skinner Christopher B. 《The Environmentalist》2022,42(3):350-361
Environment Systems and Decisions - In this paper, we analyzed the association among trends in COVID-19 cases, climate, air quality, and mobility changes during the first and second waves of the... 相似文献
8.
Dalkmann H Hutfilter S Vogelpohl K Schnabel P 《Journal of environmental management》2008,87(2):249-261
Rural areas in China suffer from various problems. The stagnating economic development and a lack of (sufficient) job opportunities and basic services, etc., lead to disadvantages for great parts of China's population. In this context, the transport sector plays a crucial role for the development of rural settlements. Although the degree of undersupply varies between villages, the situation of Chinese villages is often worsened by an insufficient developed transport sector. Regarding mobility in rural China, major constraints and therefore challenges are the difficult access to the transport infrastructure, bad road conditions and the lack of public transport systems. Improvements within the transport sector can be regarded as crucial for the economic and social development of (rural) China and should be carried out in a sustainable and holistic manner using participatory approaches. The aim should be the development of mobility strategies considering the specific needs within the field of transport, which shall have a decisive and positive impact on related sectors. This paper is based on experiences made during the 3 years lasting Sino-European research project SUCCESS (Sustainable Users Concept for China Engaging Scientific Scenario) that analyses the present and the potential future role of transport systems in selected rural areas of China. Referring to the case studies of three villages in rural China, some mobility-related projects that present a favourable impact not only on the transport sector but also on the social system and the economy shall be highlighted. Finally, based on the analysis, instruments and measures for the development of a pathway to a sustainable mobility in rural China will be outlined. 相似文献
9.
Soil amendments can immobilize metals in soils, reducing the risks of metal exposure and associated impacts to flora, fauna and human health. In this study, soil amendments were compared, based on "closed system" water extracts, for reducing metal mobility in metal-contaminated soil from the Broken Hill mining center, Australia. Phosphatefertilizer (bovine bone meal, superphosphate, triple superphosphate, potassium orthophosphate) and pine bark (Pinus radiata) were applied to two soils (BH1, BH2) contaminated with mining waste. Both soils had near neutral to alkaline pH values, were sulfide- or sulfate-rich, and contained metal and metalloid at concentrations that pose high environmental risks (e.g., Pb = 1.25 wt% and 0.55 wt%, Zn = 0.71 wt% and 0.47 wt% for BH1 and BH2, respectively). The addition of fertilizers and/or pine bark to both soil types increased water extractable metals and metalloids concentrations (As, Cd, Cu, Fe, Mn, Pb, Sb, Zn) compared with nonamended soils. One or more of the elements As, Cd, Cu, Mn, Pb, and Zn increased significantly in extracts of a range of different soil+pine bark and soil+fertilizer+piner+pine bark tests in response to increased pine bark doses. By contrast, Fe and Sb concentrations in extracts did not change significantly with pine bark addition. Solution pH was decreased by phosphate fertilizers (except for bovine bone meal) and pine bark, and pine bark enhanced dissolved organic carbon. At least in the short-term, the application of phosphate fertilizers and pine bark proved to be an ineffective method for controlling metal and metalloid mobility in soils that contain admixtures of polymetallic, polymineralic mine wastes. 相似文献
10.
Denitrification in suburban lawn soils 总被引:1,自引:0,他引:1
Raciti SM Burgin AJ Groffman PM Lewis DN Fahey TJ 《Journal of environmental quality》2011,40(6):1932-1940
There is great uncertainty about the fate of nitrogen (N) added to urban and suburban lawns. We used direct flux and in situ chamber methods to measure N and NO fluxes from lawns instrumented with soil O sensors. We hypothesized that soil O, moisture, and available NO were the most important controls on denitrification and that N and NO fluxes would be high following fertilizer addition and precipitation events. While our results support these hypotheses, the thresholds of soil O, moisture, and NO availability required to see significant N fluxes were greater than expected. Denitrification rates were high in saturated, fertilized soils, but low under all other conditions. Annual denitrification was calculated to be 14.0 ± 3.6 kg N ha yr, with 5% of the growing season accounting for >80% of the annual activity. Denitrification is thus an important means of removing reactive N in residential landscapes, but varies markedly in space, time, and with factors that affect soil saturation (texture, structure, compaction) and NO availability (fertilization). Rates of in situ NO flux were low; however, when recently fertilized soils saturated with water were incubated in the laboratory, we saw extraordinarily high rates of NO production for the first few hours of incubation, followed by rapid NO consumption later in the experiment. These findings indicate a lag time between accelerated NO production and counterbalancing increases in NO consumption; thus, we cannot yet conclude that lawns are an insignificant source of NO in our study area. 相似文献
11.
Phosphorus speciation in manure-amended alkaline soils 总被引:2,自引:0,他引:2
Two common manure storage practices are stockpiles and lagoons. The manure from stockpiles is applied to soils in solid form, while lagoon manure is applied as a liquid. Soil amendment with manure in any form introduces a significant amount of phosphorus (P) that exists in both organic and inorganic forms. However, little is known about P speciation in manure stored under different conditions, or the subsequent forms when applied to soils. We used solution (31)P nuclear magnetic resonance (NMR) spectroscopy and conventional P fractionation and speciation methods to investigate P forms in dairy manure and liquid lagoon manure, and to study how long-term amendment with these manures influenced surface and subsurface soil P speciation. Our results show that the P forms in solid and lagoon manure are similar. About 30% of the total P was organic, mostly as orthophosphate monoesters. On a dry weight basis, total P was much higher in the solid manure. In the manure-amended soils the total P concentrations of the surface soils were similar, regardless of manure type. Total P in the subsurface soil was greater in the lagoon-manure-amended soil than the solid-manure-amended subsurface soil. However, the fraction of organic P was greater in the subsurface of the solid-manure-amended soil. The NMR results indicate that the majority of organic P in the soils is phytic acid, which is enriched in the surface soils compared with the subsurface soils. These results provide insight into P speciation and dynamics in manure-amended soils that will further increase our understanding on how best to manage manure disposal on soils. 相似文献
12.
Perchlorate (ClO4-) contamination of ground water and surface water is a widespread problem, particularly in the western United States. This study examined the effect of biodegradation on perchlorate fate and transport in soils. Solute transport experiments were conducted on two surface soils. Pulses of solution containing perchlorate and Br- were applied to saturated soil columns at steady state water flow. Perchlorate behaved like a nonreactive tracer in Columbia loam (coarse-loamy, mixed, superactive, nonacid, thermic Oxyaquic Xerofluvent) but was degraded in Yolo loam (fine-silty, mixed, superactive, nonacid, thermic Mollic Xerofluvent). Batch experiments demonstrated that perchlorate removal from solution in Yolo loam was caused by biodegradation. Other batch experiments with Yolo loam surface and subsurface soils, Columbia loam surface soil, and dredge tailings demonstrated that perchlorate biodegradation required anaerobic conditions, an adequate carbon source, and an active perchlorate-degrading microbial population. The sequential reduction of perchlorate and NO3- by an indigenous soil microbial community in Yolo loam batch systems was also studied. Nitrate reduction occurred much sooner than perchlorate reduction in soils that had not been previously exposed to perchlorate, but NO3- and perchlorate were simultaneously reduced in soils previously exposed to perchlorate. The results of this study have implications for in situ remediation schemes and for agricultural soils that have been contaminated by perchlorate-tainted irrigation water. 相似文献
13.
Transformation of diphenylarsinic acid in agricultural soils 总被引:1,自引:0,他引:1
We investigated the transformation and fate of diphenylarsinic acid (DPAA) during incubation in two types of soils (Entisol and Andisol) under aerobic and anaerobic conditions. Under anaerobic conditions only, DPAA was transformed into methyldiphenylarsine oxide by methylation. Under both aerobic and anaerobic conditions, DPAA was degraded to phenylarsonic acid by dephenylation, and phenylarsonic acid was subsequently methylated to form methylphenylarsinic acid and dimethylphenylarsine oxide. The degradation of DPAA in the Andisol was less extensive than in the Entisol. In autoclaved soil under anaerobic conditions, DPAA underwent little degradation during the 24-wk incubation. In unautoclaved soils, the concentration of DPAA in soil clearly decreased after 24 wk of incubation, indicating that DPAA degradation was driven by microbial activity. 相似文献
14.
Metal immobilization in soils using synthetic zeolites 总被引:6,自引:0,他引:6
In situ immobilization of heavy metals in contaminated soils is a technique to improve soil quality. Synthetic zeolites are potentially useful additives to bind heavy metals. This study selected the most effective zeolite in cadmium and zinc binding out of six synthetic zeolites (mordenite-type, faujasite-type, zeolite X, zeolite P, and two zeolites A) and one natural zeolite (clinoptilolite). Zeolite A appeared to have the highest binding capacity between pH 5 and 6.5 and was stable above pH 5.5. The second objective of this study was to investigate the effects of zeolite addition on the dissolved organic matter (DOM) concentration. Since zeolites increase soil pH and bind Ca, their application might lead to dispersion of organic matter. In a batch experiment, the DOM concentration increased by a factor of 5 when the pH increased from 6 to 8 as a result of zeolite A addition. A strong increase in DOM was also found in the leachate of soil columns, particularly in the beginning of the experiment. This resulted in higher metal leaching caused by metal-DOM complexes. In contrast, the free ionic concentration of Cd and Zn strongly decreased after the addition of zeolites, which might explain the reduction in metal uptake observed in plant growth experiments. Pretreatment of zeolites with acid (to prevent a pH increase) or Ca (to coagulate organic matter) suppressed the dispersion of organic matter, but also decreased the metal binding capacity of the zeolites due to competition of protons or Ca. 相似文献
15.
Pant HK Nair VD Reddy KR Graetz DA Villapando RR 《Journal of environmental quality》2002,31(4):1399-1405
Agricultural lands are often used for constructing stormwater treatment areas (STAs) to abate nutrient loading to adjacent aquatic systems. Flooding agricultural lands to create STAs could stimulate a significant release of phosphorus (P) from soil to the water column. To assess the suitability of agricultural lands, specifically those impacted by animal operations, for the construction of STAs, soils from different components of the New Palm-Newcomer dairies (Nubbin Slough Basin, Okeechobee, Florida, USA) were collected by horizon and their P retention and release capacities estimated. In general, P released from A-horizon soil under flooded (anaerobic) conditions was greater than under drained (aerobic) conditions due to redox effect on iron (Fe) and consequent P releases. However, the P released from Bh-horizon soil was greater under aerobic conditions than under anaerobic conditions, possibly due to excessive aluminum (Al) content in the horizon. Double acid-extractable calcium (Ca), magnesium (Mg), Al, and P explained 87% of the variability in P release under aerobic conditions, and 80% of that under anaerobic conditions. The P release maxima indicated a high solubility of P in A-horizon soil from both active and abandoned dairies (13 and 8% of the total P, respectively), suggesting that these soils could function as potential sources of P to the overlying water column when used in STA construction. Preestablishment of vegetative communities or chemical amendment, however, could ameliorate high P flux from soil to the water column. 相似文献
16.
Biasioli M Kirby JK Hettiarachchi GM Ajmone-Marsan F McLaughlin MJ 《Journal of environmental quality》2010,39(6):2047-2053
Reducing conditions in soils can have significant influences on the availability of nutrient and toxic metals, through their remobilization, their release through reductive dissolution of oxide phases, and from the formation of precipitates. In the literature, contrasting results are reported on the effects of temporary waterlogging conditions on the availability of metals. In the present study, changes in the "labile" or "potentially available" pool of copper (Cu) in soils as a consequence of up to three intermittent soil submergence cycles was investigated using isotopic dilution. The soils (an Oxisol and an Inceprisol) selected were amended in the field with both biosolids-Cu and salt-Cu. Intermittent soil submergence was found to have a significant effect on the lability of Cu in soils, with E(total) values generally increasing in all the treatments with the different submergence cycles, the highest lability of Cu observed in the Cu-salt treatment. The presence of nonexchangeable colloidal forms of Cu, influenced by treatments and submergence cycles, was also reported. 相似文献
17.
Targeting the sources of phosphorus (P) and transport pathways of drainage from agricultural land will assist in the reduction of P loading to surface waters. Our research investigated the vertical movement of P from dairy manure and broiler litter through four Atlantic Coastal Plain soils. A randomized split-plot design with two main-plot tillage treatments (no tillage [NT] and chisel tillage [CH]) and five manure P rate split-plot treatments was used at each location. The split-plot P rates were 0, 100, 200, 300, and 400 kg P ha(-1) yr(-1). Four consecutive years of manure application began at all sites 5 yr before sampling. Soils were sampled to a depth of 150 cm from each split plot in seven depth increments and analyzed for soil test phosphorus (STP), water-extractable soil phosphorus (WSP), and degree of phosphorus saturation (DPS). The DPS of the 0- to 15-cm depths confirmed that at the 100 kg P ha(-1) yr(-1) application rate, all sites exceeded the threshold for P saturation (30%). At depths greater than 30 cm, DPS was typically below the 30% saturation threshold. The DPS change points ranged from 25 to 34% for the 0- to 90-cm depths. Our research concluded that the risk of P leaching through the matrix of the Atlantic Coastal Plain soils studied was not high; however, P leaching via macropore bypass may contribute to P loss from these soils. 相似文献
18.
Horseradish peroxidase- (HRP) mediated stabilization of phenolic contaminants is a topic of interest due to its potential for remediation of contaminated soils. This study evaluated the sorption of 2,4-dichlorophenol (DCP) and its HRP-mediated stabilization in two alkali-extracted soils. Alkali extraction reduced the soil organic matter (SOM) contents of the geomaterials and enriched the residual SOM with humin C. Sorption of DCP on these sorbents was complete within 1 d. However, most of the sorbed DCP was removed from the geomaterials by water and methanol, suggesting weak solute-sorbent interactions. The addition of HRP resulted in the generation of DCP polymerization products (DPP), which partitioned between the aqueous and solid phases. The DPP phase distribution was rapid and complete within 24 h. Between 70 and 90% of the added DCP was converted to DPP and up to 43% of the initial aqueous phase contaminant was transformed into a residue that was resistant to extraction with methanol. Bound residues of DPP increased with initial aqueous phase solute concentration and remained fairly constant after 7 d of contact. Contaminant stabilization was noted to be high in the humin-mineral geomaterial. Results illustrate that HRP may be effective in stabilizing phenolic contaminants in subsoils that are likely to contain SOM enriched in humin C. 相似文献
19.
Utilization of biosolids through land application is becoming increasingly popular among wastewater managers. To minimize the potential contamination of receiving waters from biosolids-derived nitrogen (N), it is important to understand the availability of N after land application of biosolids. In this study, four secondary biosolids (two municipal and two pulp and paper industrial biosolids) were used in a laboratory incubation experiment to simulate N mineralization and transformation after land application. Municipal biosolids were from either aerobically or anaerobically digested sources, while pulp and paper industrial biosolids were from aerated wastewater stabilization lagoons. These biosolids were mixed with two New Zealand forest soils (top 100 mm of a volcanic soil and a brown soil) and incubated at two temperatures (10 and 20 degrees C) for 26 wk. During incubation, mineralized N was periodically leached from the soil-biosolids mixture with 0.01 M CaCl2 solution and concentrations of NH4 and NO3 in leachate were determined. Mineralization of N from aerobically digested municipal biosolids (32.1%) was significantly more than that from anaerobically digested biosolids (15.2%). Among the two pulp and paper industrial biosolids, little N leached from one, while as much as 18.0% of total organic N was leached from the other. As expected, mineralization of N was significantly greater at 20 degrees C (average 22.8%) than at 10 degrees C (average 9.7%). It was observed that more N in municipal biosolids was mineralized in the brown soil, whereas more N in pulp and paper industrial biosolids mineralized in the volcanic soil. Transformation of NH4 to NO3 was affected by soil type and temperature. 相似文献
20.