首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Field studies have demonstrated that prolonged pesticide-soil contact times (aging) may lead to unexpected persistence of these compounds in the environment. Although this phenomenon is well documented in the field, there have been very few controlled laboratory studies that have tested the effects of long-term aging and the role of differing sorbates on contaminant sorption-desorption behavior and fate in soils. This study examines the sorption-desorption behavior of chlorobenzene, ethylene dibromide (1,2-dibromomethane), atrazine (2-chloro-4-ethylamino-6-isopropylamino-s-triazine), and 2, 4-D (2,4-dichlorophenoxyacetic acid) on one soil type after 1 d, 30 d, and 14 mo of aging. Sorption isotherms were evaluated after each aging period to observe changes in the uptake of each compound by soil. Desorption kinetic data were generated after each aging period to observe changes in release from soil, and desorption parameters were evaluated using a three-site desorption model that includes equilibrium, nonequilibrium, and nondesorption sites. The data indicate no statistically significant increase in sorption for ethylene dibromide or chlorobenzene from 1 to 30 d, although sorption of 2,4-D increased slightly, and sorption of atrazine decreased slightly. Statistically significant increases in linear sorption coefficients (Kd), from 1 d to 14 mo of aging, were apparent for ethylene dibromide and 2,4-D. The Kd values for chlorobenzene, measured after 1 d, 30 d, and 14 mo of aging, were statistically indistinguishable. Aging affected the distribution of chemicals within sorption sites. With aging, the desorbable fraction decreased and the nondesorbable fraction, which was apparent after only 1 d of pesticide-soil contact, increased for all chemicals studied.  相似文献   

2.
ABSTRACT: Many hydrologic models have input data requirements that are difficult to satisfy for all but a few well-instrumented, experimental watersheds. In this study, point soil moisture in a mountain watershed with various types of vegetative cover was modeled using a generalized regression model. Information on sur-ficial characteristics of the watershed was obtained by applying fuzzy set theory to a database consisting of only satellite and a digital elevation model (DEM). The fuzzy-c algorithm separated the watershed into distinguishable classes and provided regression coefficients for each ground pixel. The regression model used the coefficients to estimate distributed soil moisture over the entire watershed. A soil moisture accounting model was used to resolve temporal differences between measurements at prototypical measurement sites and validation sites. The results were reasonably accurate for all classes in the watershed. The spatial distribution of soil moisture estimates corresponded accurately with soil moisture measurements at validation sites on the watershed. It was concluded that use of the regression model to distribute soil moisture from a specified number of points can be combined with satellite and DEM information to provide a reasonable estimation of the spatial distribution of soil moisture for a watershed.  相似文献   

3.
Previous studies have indicated that dissolved-phase metolachlor [2-chloro-N-(2-ethyl-6-methylphenyl)-N-(methoxy-1-methylethyl) acetamide] transported in surface runoff is retained by vegetative filter strips to a greater degree than either metolachlor oxanilic acid 12-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl)amino]-2-oxo-acetic acid] (OA) or metolachlor ethanesulfonic acid [2-[(2-ethyl-6-methylphenyl) (2-methoxy-1-methylethyl-1)amino]-2-oxoethanesul-fonic acid] (ESA), two primary metabolites of metolachlor. Adsorption-desorption of ESA and OA in vegetated filter strip soil (VFSS) has not been evaluated, yet these data are required to assess the mobility of these compounds in VFSS. The objective of this experiment was to compare metolachlor, ESA, and OA adsorption and desorption parameters between VFSS and cultivated soil (CS). Adsorption and desorption isotherms were determined using the batch equilibrium procedure. With the exception of a 1.7-fold increase in organic carbon content in the VFSS, the evaluated chemical and physical properties of the soils were similar. Sorption coefficients for metolachlor were 88% higher in VFSS than in CS. In contrast, sorption coefficients for ESA and OA were not different between soils. Relative to metolachlor, sorption coefficients for ESA and OA were at least 79% lower in both soils. Metolachlor desorption coefficients were 59% higher in the VFSS than in the CS. Desorption coefficients for ESA and OA were not different between soils. Relative to metolachlor, desorption coefficients for ESA and OA were at least 66% lower in both soils. These data indicate that the mobility of ESA and OA will be greater than metolachlor in both soils. However, higher organic carbon content in VFSS relative to CS may limit the subsequent transport of metolachlor from the vegetated filter strip.  相似文献   

4.
Limited information is available on the effects of contaminant aging (i.e., the contact time of Cd with the soil) on Cd transport in soils. We conducted displacement experiments in which indigenous Cd and freshly applied Cd were leached simultaneously from undisturbed samples of three Spodosol horizons. Sorption of Cd was described using Freundlich isotherms, whereas transport was described as a convection-dispersion process. Parameter optimization analysis using a mobile-immobile transport model applied to nonsorbing tracer displacement data showed that 16 to 22% of the water in the columns was immobile. The low dimensionless mass transfer coefficients in the mobile-immobile model were indicative of diffusion-limited transfer between mobile and immobile water, and hence physical nonequilibrium. A two-site kinetic sorption model could be fitted closely to breakthrough curves of the non-aged Cd for three soil horizons. No conclusive evidence was found that contaminant aging in soil affects cadmium transport. On the one hand, predictions of aged Cd leaching, using parameters estimated from displacement experiments with nonaged Cd, differed from those for the aged Cd in the E horizon. On the other hand, no meaningful differences in transport behavior between aged and non-aged Cd were found for the humus Bh and Bh/C horizons. The two-site kinetic rate coefficient alphac was found to depend on water flux, further indicating that mass transfer between sorption sites and the liquid is limited by diffusion rather than by kinetic sorption.  相似文献   

5.
6.
ABSTRACT: Hydrologic models have become an indispensable tool for studying processes and water management in watersheds. A physically-based, distributed-parameter model, Basin-Scale Hydro-logic Model (BSIIM), has been developed to simulate the hydrologic response of large drainage basins. The model formulation is based on equations describing water movement both on the surface and in the subsurface. The model incorporates detailed information on climate, digital elevation, and soil moisture budget, as well as surface-water and ground-water systems. This model has been applied to the Big Darby Creek Watershed, Ohio in a 28-year simulation of rainfall-runoff processes. Unknown coefficients for controlling runoff, storativity, hydraulic conductivity, and streambed permeability are determined by a trial-and-error calibration. The performance of model calibration and predictive capability of the model was evaluated based on the correlation between simulated and observed daily stream discharges. Discrepancies between observed and simulated results exist because of limited precipitation data and simplifying assumptions related to soil, land use, and geology.  相似文献   

7.
ABSTRACT: A soil erosion simulation model that considered the physical conditions of agricultural watersheds and that interfaced with the modified USDAHL-74 watershed hydrology model was developed. The erosion model simulates the detachment and transport of soil particles caused by raindrop impact and overland flow from rill and interrill areas. The model considers temporal and spatial variation of plant residue, crop canopy cover, snow cover, and the moisture content of surface soil as modifying factors of the erosive forces of raindrop impact and overland flow. The hydrology model simulates overland flow and some of the physical parameters that are used in the erosion model. The simulation is executed in the time interval determined by the rainfall rate or snowmelt rate. The erosion model compares the transport capacity of the overland flow and the sediment loaded in the overland flow to determine the fate account for the free soil particles that have already been detached and are readily available to be transported by the overland flow. The model was tested with data from two small agricultural watersheds in the Palouse region of the Pacific Northwest dryland. The model was calibrated by trial-and-error to determine the coefficients of the model.  相似文献   

8.
The sorption and desorption behavior of hexavalent chromium and chlorinated ethenes in a sandy ground water aquifer with a low reduction capacity was evaluated by performing a variety of analyses and experiments at the laboratory (batch and column studies) and field (in situ injection-withdrawal experiment) scales. The partitioning coefficients determined from the field and laboratory experiments are generally similar. Both sets of experiments yielded relatively low partition coefficients for chromium and chlorinated ethenes. The column studies and injection-withdrawal experiment indicate that chromium has the potential to leach from aquifer sediments and act as a secondary source of contamination. However, the magnitude of the secondary source effect is not significant due to low concentrations of leachable contamination. The chromium sorption isotherm data were also simulated using the triple layer surface complexation model (TLM). The isotherm data were modeled using the TLM, illustrating the applicability of geochemical modeling for sorption of chromium to these sediments under variable pE-pH conditions.  相似文献   

9.
Reactive barriers are used for in situ treatment of contaminated ground water. Waste green sand, a by-product of gray-iron foundries that contains iron particles and organic carbon, was evaluated in this study as a low-cost reactive material for treating ground water contaminated with the herbicides alachlor [2-chloro-2',6'-diethyl-N-(methoxymethyl)acetanilide] and metolachlor [2-chloro-6'-ethyl-N-(2-methoxy-1-methylethyl)-o-acetoluidide]. Batch and column tests were conducted with 11 green sands to determine transport parameters and reaction rate constants for the herbicides. Similar Fe-normalized rate constants (K(SA)) were obtained from the batch and column tests. The K(SA) values obtained for green sand iron were also found to be comparable with or slightly higher than K(SA) values for Peerless iron, a common reactive medium used in reactive barriers. Partition coefficients ranging between 3.6 and 50.2 L/kg were obtained for alachlor and between 1.0 and 54.8 L/kg for metolachlor, indicating that the organic carbon and clay in green sands can significantly retard the movement of the herbicides. Partition coefficients obtained from the batch and column tests were similar (+/-25%), but the batch tests typically yielded higher partition coefficients for green sands exhibiting greater sorption. Calculations made using transport parameters from the column tests indicate that a 1-m-thick reactive barrier will result in a 10-fold reduction in concentration of alachlor and metolachlor for seepage velocities less than 0.1 m/d provided the green sand contains at least 2% iron. This level of reduction generally is sufficient to reduce alachlor and metolachlor concentrations below maximum contaminant levels in the United States.  相似文献   

10.
Soil sorption processes largely control the environmental fate of herbicides. Therefore, accuracy of sorption parameters is crucial for accurate prediction of herbicide mobility in agricultural soils. A combined experimental and statistical study was performed to investigate the small-scale spatial variability of sorption parameters for atrazine and dinoseb in soils and to establish the number of samples needed to provide a value of the distribution coefficient (K(d)) next to the mean, with a given precision. The study explored sorption properties of the two herbicides in subsurface samples collected from four pits distributed along a transect of an alluvial soil; two to four samples were taken at about 30 cm apart at each sampling location. When considering all the data, the distribution coefficients were found to be normally and log-normally distributed for atrazine and dinoseb, respectively; the CVs were relatively high (close to 50% for dinoseb and 40% for atrazine). When analyzed horizon by horizon, the data revealed distribution coefficients normally distributed for both herbicides, whatever the soil layer, with lower CVs. The K(d) values were shown to vary considerably between samples collected at very short distance (a few centimeters), suggesting that taking a single soil sample to determine sorption properties through batch experiments can lead to highly unrepresentative results and to poor sorption/mobility predictions.  相似文献   

11.
Infiltration models are based on physical characteristics of the soil and initial soil moisture. For a given soil it is based on the initial soil moisture distribution. A computer simulation model for flood runoff systems (FH-Model) was used to analyze 39 sets of rainfall-runoff data on four small watersheds ranging in size from 17 to 342 square kilometers located in the Yamaska River basin in Quebec. From these analyses, parameters and coefficients have been determined for a water loss (infiltration) equation. A method for determining the loss parameters, using a nonlinear least square curve fitting technique, is presented. Expressions were made to relate the loss parameters to antecedent precipitation. The equations were tested on 11 storm rainfall and runoff events on a watershed located in the same region and close agreements were found.  相似文献   

12.
Phosphorus transport from agricultural soils contributes to eutrophication of fresh waters. Computer modeling can help identify agricultural areas with high potential P transport. Most models use a constant extraction coefficient (i.e., the slope of the linear regression between filterable reactive phosphorus [FRP] in runoff and soil P) to predict dissolved P release from soil to runoff, yet it is unclear how variations in soil properties, management practices, or hydrology affect extraction coefficients. We investigated published data from 17 studies that determined extraction coefficients using Mehlich-3 or Bray-1 soil P (mg kg(-1)), water-extractable soil P (mg kg(-1)), or soil P sorption saturation (%) as determined by ammonium oxalate extraction. Studies represented 31 soils with a variety of management conditions. Extraction coefficients from Mehlich-3 or Bray-1 soil P were not significantly different for 26 of 31 soils, with values ranging from 1.2 to 3.0. Extraction coefficients from water-extractable soil P were not significantly different for 17 of 20 soils, with values ranging from 6.0 to 18.3. The relationship between soil P sorption saturation and runoff FRP (microg L(-1)) was the same for all 10 soils investigated, exhibiting a split-line relationship where runoff FRP rapidly increased at P sorption saturation values greater than 12.5%. Overall, a single extraction coefficient (2.0 for Mehlich-3 P data, 11.2 for water-extractable P data, and a split-line relationship for P sorption saturation data) could be used in water quality models to approximate dissolved P release from soil to runoff for the majority of soil, hydrologic, or management conditions. A test for soil P sorption saturation may provide the most universal approximation, but only for noncalcareous soils.  相似文献   

13.
A majority of North Americans hopes to grow old in the suburbs. This aspiration depends upon their ability to drive and their access to a car. Because it is essential for everyday travel, car-mobility in the suburbs is becoming a symbolic goal. The meanings of mobility for elderly will evolve over time, notably as a result of changes in autonomy. However, the mobility of older adults is mainly understood in terms of daily trips. Little research has considered the temporal dimension of aging as an evolving process. This study aimed at understanding with a qualitative and longitudinal perspective how older people stay (auto-)mobile in their house and their neighborhood against the need to adapt to reduced autonomy and mobility over time. A group of 22 suburbanites aged from 62 to 89 was interviewed in 1999 and in 2006. The results show that even if older people succeed in increasing their mobility, they are headed for inevitable immobility. Among the environmental adaptation strategies that were observed, the constructed behaviors, the dependencies demanding additional supports as well as the social life modulate different evolving experiences of the city: the shrinking city, the fragmented city, and the city by proxy. The built environment is at the heart of a complex process in which the adaptation of mobility contributes to the emergence of new residential experiences.  相似文献   

14.
Minimizing herbicide runoff and mobility in the soil and thus potential contamination of water resources is a national concern. Metribuzin [4-amino-6-(1,1-dimethylethyl)-3-(methylthio)-1,2,4-triazin-5(4H)-one] and atrazine [2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine] dynamics in surface soils and in runoff waters were studied on six 0.2-ha sugarcane (Saccharum spp.) plots of a Commerce silt loam (fine-silty, mixed, superactive, nonacid, thermic Fluvaquentic Endoaquept) during three growing seasons under different best management practices. Metribuzin was applied in the spring as a postemergence herbicide and atrazine was applied following winter harvest. Both herbicides were applied on top of the sugarcane rows as 0.6- or 0.9-m band width application, or broadcast application, where the entire area was treated. Maximum effluent concentrations were measured from the broadcast treatment and ranged from 600 to 1100 microg L(-1) for atrazine and 250 to 450 microg L(-1) for metribuzin. Atrazine runoff losses were highest for the broadcast treatment (2.8-11% of that applied) and lowest for the 0.6-m band treatment (1.9-7.6%), with a similar trend for metribuzin losses. Measured extractable herbicides from the surface soil exhibited a sharp decrease with time and were well described with a simple first-order decay model. For atrazine, estimates for the decay rate (lambda) were higher than for metribuzin. Results based on laboratory adsorption-desorption (kinetic-batch) measurements were consistent with field observations. The distribution coefficients (Kd) for atrazine exhibited stronger retention over time in comparison with metribuzin on the Commerce soil. Moreover, discrepancies between adsorption isotherm and desorption indicated slower release and that hysteresis was more pronounced for atrazine compared with metribuzin.  相似文献   

15.
构建增江流域非点源污染数据库,包括DEM、土地利用,土壤类型,气象数据等,应用分布式流域水文模型SWAT(Soil andWater Assessment Tool,swat 2009版)对增江流域的非点源污染进行模拟。模型运行阶段为2000-2003年,分别应用2000-2001年和2002-2003年的实测月均流量及硝酸盐氮监测数据对模型的参数率定和验证,采用决定系数R2和Nash-Suttcliffe系数对模拟结果进行评定。其中水文模拟的R2均>0.9,Nash-Suttcliffe模型效率系数均>0.8;硝酸盐氮模拟的R2均>0.7,Nash-Suttcliffe模型效率系数均>0.6,表明SWAT模型在增江流域具有较好的适用性。  相似文献   

16.
To evaluate the effects of dissolved organic carbon on sorption and mobility of the insecticide imidacloprid [1-(6-chloro-3-pyridinyl) methyl-N-nitro-2-imidazolidinimine] in soils, adsorption and column experiments were performed by using a typical calcareous soil from southeastern Spain and two different types of dissolved organic carbon, that is, dissolved organic carbon extracts from a commercial peat (DOC-PE) and high-purity tannic acid (DOC-TA). The experiments were carried out from a 0.01 M CaCl2 aqueous medium at 25 degrees C. The results obtained from the sorption experiments show that the presence of both DOC-PE and DOC-TA, over a concentration range of 15 to 100 mg L(-1), produces in all cases a decreasing amount of imidacloprid adsorbed in the soil studied. From the column experiments the retardation coefficients (RC) were calculated for imidacloprid by using either 0.01 M CaCl2 aqueous solution (RC = 2.10), 0.01 M CaCl2 DOC-PE solution (RC = 1.65), or 0.01 M CaCl2 DOC-TA solution (RC = 1.87). The results indicate that mobility of imidacloprid is increased 21.4 and 11.0% in the presence of DOC-PE and DOC-TA solutions, respectively. Dissolved organic carbon reduces imidacloprid sorption by competing with the pesticide molecules for sorption sites on the soil surface, allowing enhanced leaching of imidacloprid and potentially increasing ground water contamination.  相似文献   

17.
Sorption and degradation of the herbicide 2,4-D [2,4-dichlorophenoxyacetic acid] were determined for 123 surface soils (0 to 15 cm) collected in 2002 and in 2004 between 49 degrees to 60 degrees north longitude and 110 degrees to 120 degrees west latitude in Alberta, Canada. The soils were characterized by soil organic carbon content (SOC), pH, electrical conductivity, soil texture, cation exchange capacity, carbonate content, and total soil microbial activity. The 2,4-D sorption coefficients, Kd and Koc, were highly variable with coefficients of variation of 89 and 59%, respectively, at the provincial scale. Both Kd and Koc were well described by regression models with SOC and soil pH as variables, regardless of scale. Surprisingly, variations in 2,4-D mineralization were much smaller than variations in sorption. Variability in total 2,4-D mineralization was particularly low, with a coefficient of variation of only 7% at the provincial scale. Average 2,4-D half-lives in ecoregions ranged from 1.7 to 3.5 d, much lower than the field dissipation half-life of 10 d reported for 2,4-D in general pesticide property databases. Regression models describing degradation parameters were generally poor or not significant because 2,4-D mineralization was only weakly associated with measured 2,4-D sorption parameters and soil properties. As such, regional variations in herbicide sorption coefficients should be measured or calculated based on soil properties, to assign distinct pesticide fate model input parameters when estimating 2,4-D off-site transport at the provincial scale. Spatial variations in herbicide degradation appear less important for Alberta as 2,4-D half-lives were similar in soils across the province. The rapid mineralization of 2,4-D is noteworthy because 2,4-D is widely used in Alberta and perhaps adaptation of soil microbial communities allowed for accelerated degradation regardless of soil properties or the extent of 2,4-D sorption by soil.  相似文献   

18.
The increased use of herbicides poses a risk to the aquatic environment. Easy and economical methods are needed to identify the fields where specific environment protection measures are needed. Phosphorus (P) and organophosphorus herbicides compete for the same adsorption sites in soil. In this study the relationship between P obtained in routine Finnish agronomic tests (acid ammonium acetate [P(AC)]) and adsorption of glyphosate and glufosinate-ammonium was investigated to determine whether P(AC) values could be used in the risk assessment. The adsorption of glyphosate ((N-(phosphonomethyl)glycine) and glufosinate-ammonium (2-amino-4-(hydroxymethylphosphinyl)butanoic acid) was studied in a clay and a sandy loam soil enriched with increasing amounts of P added as potassium dihydrogen phosphate. Desorption was also determined for some P-enriched soil samples. The adsorption of both herbicides diminished with increasing P(AC) value. The correlations between Freundlich adsorption coefficients obtained in the adsorption tests and P(AC) were nonlinear but significant (r > 0.98) in both soils. The exponential models of the relationship between soil P(AC) values and glyphosate adsorption were found to fit well to an independent Finnish soil data set (P < 0.1 for glyphosate and P < 0.01 for glufosinate-ammonium). The desorption results showed that glufosinate-ammonium sorption is not inversely related to soil P status, and the high correlation coefficients obtained in the test of the model were thus artifacts caused by an abnormal concentration of exchangeable potassium in soil. The solved equations are a useful tool in assessing the leaching risks of glyphosate, but their use for glufosinate-ammonium is questionable.  相似文献   

19.
The aging of soil-pollutant interaction, which may lead to an increase in pollutant fixation, is the main driving force in the natural attenuation of contaminated soils. Here a test was evaluated to predict the aging of radiostrontium and radiocesium in soils from the Chernobyl and Mediterranean areas. After contamination, soils were maintained at various temperatures for up to 12 mo, with or without drying-wetting (DW) cycles. Changes in the quantity of radionuclide reversibly sorbed over time were monitored using an extraction test (1 mol L(-1) NH(4)Cl; 10 mL g(-1); 16 h). The fixed fraction could not be predicted from soil properties controlling the sorption step. Aging was not as relevant for Sr as for Cs. The time elapsed since contamination was the main factor responsible for the slight (up to 1.3-fold) decreases in Sr extraction yields. The additional effect of DW cycles was negligible. Instead, all factors accelerated Cs aging due to the enhancement of Cs trapping by clay interlayer collapse, with up to 20-fold increases in Cs fixation. The DW cycles also caused secondary effects on the Cs-specific sorption pool, which were beneficial or detrimental depending on the soil type. Extraction yields from laboratory aged samples agreed with those from field samples taken a few years after the Chernobyl accident. These results confirm the prediction capacity of the laboratory test and its usefulness in risk assessment exercises and in the design of intervention actions, particularly because neither fixation nor aging were related to the soil properties, such as clay content.  相似文献   

20.
/ This paper reports the experience of extracting information on the salinity of soil and offers a method of synthetic analysis. The experimental areas for analysis are located in Yanggao Basin, Shanxi Province, China. The types of soil are mainly meadow soil and salinized meadow soil. The method of synthetic analysis of salinity uses a geographic information system (GIS) as a tool, building a basic saltwater analysis model of saline soil and adjusting the result with expert experience after computer processing. The method of feature extraction has been used for remotely sensed data. An optimum combination of features has been determined and, after comparing several combinations in the Yanggao region, an improved result has been obtained after Kauth-Thomas (K-T) transformation. For precise quantitative analysis of the salinization, not only Thematic Mapper (TM) remote sensing data, but also two forms of non-remote-sensing data are needed: depth of groundwater and mineralization rate of groundwater according to the theory of genesis of soil. For the analysis of synthetic compounded multisources, a generalized Bayes classification is used after overlay, matching, and related coefficients have been determined. On the premise that various information sources are independent, global membership functions with probability are used to combine various pieces of information in order to apply them directly to the pixels and classifications of soil salinity. The experiment indicates that this analytical method is sound because of the increased speed of processing and its simplicity and improved precision of classification of salinity. Finally, it is necessary to examine and adjust the factors using expert intelligence. The experiment shows that synthetic analysis using the geographic information system can raise the precision of quantitative analysis of salinity, which has advantages for environmental monitoring and management.KEY WORDS: Salinity; Remote sensing; Thematic Mapper; Geographic information system; Classification  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号